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1. Introduction§

The objective of this paper is to provide a selective overview of the
relatively recent literature on the role of beliefs in game theory,
with particular focus on the foundations of solution concepts. In
order to make the paper self-contained and accessible to the general
reader, we begin in Section 2 with an overview of the ‘‘state space’’
representation of beliefs and knowledge, which has its roots in
modal logic (cf. Chellas, 1984) and is a generalization of the
‘‘information partition’’ approach commonly used in information
economics and game theory. Sections 3 and 4 are devoted to the
study of what assumptions on the beliefs and reasoning of the
players are implicit in various solution concepts. Section 3 focuses
on strategic-form games, while Section 4 is devoted to extensive-
form games. A complementary and in-depth discussion of many of
the issues covered in this paper can be found in Dekel and Gul
(1997).
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2. The semantic representation of knowledge and belief

2.1. REPRESENTING THE BELIEFS OF A SINGLE INDIVIDUAL

To represent the beliefs of an individual we start with a set of
states, or possible worlds, !. Each state should be thought of as
a complete description of the world. The subsets of ! are called
events and the set of all events is denoted by 2!. A possibility
correspondence P : ! ! 2! associates with every state ! 2 ! the
set of states P"!# that the individual considers possible at !. The
pair F D h!, Pi is called a belief frame.†

From the possibility correspondence P a belief operator B : 2! !
2! is obtained as follows: 8E ! !, BE D f! 2 ! : P"!# ! Eg. BE can
be interpreted as the event that (i.e., the set of states at which)
individual i believes that event E has occurred.

REMARK 1: it is easily verified that the belief operator B satisfies
the following properties:
Necessity: B! D !

Conjunction: B

(
⋂
j2J

Ej

)
D
⋂
j2J

BEj where J is any index set

Monotonicity: if E ! F then BE ! BF.

An operator B : 2! ! 2! that satisfies Necessity, Conjunction
and Monotonicity is called normal. Thus the operator that is
obtained from a possibility correspondence is always normal.
Instead of taking a possibility correspondence as primitive, one
could start with a normal belief operator B : 2! ! 2! and obtain
from it a possibility correspondence as follows:

8a 2 !, P"a# D f! 2 ! : a 2 :B: f!gg
(for every event E ! !, :E denotes its complement in !). The two
approaches are equivalent, in the sense the two mappings are one
the inverse of the other.‡

† These structures are known in the modal logic and philosophy literature as
Kripke frames. In this literature instead of a possibility correspondence P : ! ! 2!

it is more common to postulate an accessibility relation R on !. For a, b 2 !, aRb
reads ‘‘state b is accessible from state a’’. The two notions are equivalent. Given
an accessibility relation R, the corresponding possibility correspondence is defined
by: 8a 2 !, P(a) D f! 2 ! : aR!g. Conversely, given a possibility correspondence
P, the associated accessibility relation R is obtained as follows: 8a, b 2 !, aRb if
and only if b 2 P(a).

‡ Let P : ! ! 2! be a possibility correspondence, B : 2! ! 2! the associated
belief operator (8E ! !, BE D

{
! 2 ! : P(!) ! E

}
) and P0 : ! ! 2! the possibility

correspondence obtained from B(8a 2 !, P0(a) D f! 2 ! : a 2 :B:f!gg). Then
P0 D P. Conversely, let B be a normal belief operator, P the possibility
correspondence obtained from B and B0 the belief operator obtained from P.
Then B D B0.
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Beliefs pertain to propositions. Events (that is, subsets of !)
should be thought of as representing propositions. In order to
establish the interpretation of events as propositions we need to
introduce the notion of a model based on a frame.

We begin with a language with a modal operator !. The intended
interpretation of !f is ‘‘the individual believes that f’’. The
alphabet of the language consists of: (1) a finite or countable
set  of sentence letters (representing atomic propositions, such as
‘‘the earth is flat’’), (2) the connectives : (for ‘‘not’’), _ (for ‘‘or’’), and
!, (3) the bracket symbols ( and ). The set  of formulae is obtained
from the sentence letters by closing with respect to negation,
disjunction and the operator !.† As is customary, we shall often
omit the outermost brackets [e.g., we shall write f _ y instead
of (f _ y)] and use the following (metalinguistic) abbreviations:
f ^ y for :":f _ :y# (the symbol ^ stands for ‘‘and’’), f ! y for
":f# _ y (the symbol ! stands for ‘‘if. . . then. . . ’’) and f $ y for
"f ! y# ^ "y ! f# (the symbol $ stands for ‘‘if and only if’’).

Given a frame F one obtains a model M based on it by adding
a function f :  ! 2! that associates with every sentence letter p
the set of states at which p is true. For every formula f 2 , the
truth set of f in M, denoted by jjfjjM, is defined recursively as
follows:

(1) If f D "p# where p is a sentence letter, then jjfjjM D f "p#,
(2) jj:fjjM D :jjfjjM (with slight abuse of notation, the symbol ‘:’

is also used to denote complement: :E D !nE)
(3) jjf _ yjjM D jjfjjM [ jjyjjM,
(4) jj!fjjM D

{
! 2 ! : P"!# ! jjfjjM

}
.

If ! 2 jjfjjM we say that f is true at state ! in model M. Thus
according to (4), at state a the individual believes f if and only if f is
true at every state that the individual considers possible at a, that
is, if f is true at every ! 2 P"a#. If E is the truth set of some formula
f (that is, E D jjfjjM) and B : 2! ! 2! is the belief operator, then
BE is the truth set of the formula !f , that is, BE D jj!fjjM. Hence
the interpretation of BE as the event that the individual believes
E (or, more precisely, the proposition represented by event E). A
formula f is valid in model M if and only if it is true at every state,
that is, if and only if jjfjjM D !.

Properties of the possibility correspondence correspond to
properties of beliefs, as explained in the following remark.

REMARK 2: fix a belief frame F. Then (cf. Chellas, 1984: p. 164):
(1) Non-empty valuedness (or seriality) of the possibility correspon-
dence P corresponds to consistency of beliefs, that is, the following
are equivalent:

† Thus  is obtained recursively as follows: (i) for every sentence letter p 2 ,
(p) 2 , (ii) if f, y 2  then (:f) 2 , (f _ y) 2  and (!f) 2 .
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(i) 8! 2 !, P"!# 6D ;,
(ii) 8E ! !, BE ! :B:E,
(iii) for every model M based on F and for every formula f, the

formula !f ! :!:f is valid in M, that is, jj!f ! :!:fjjM D !
(if the individual believes f then she does not believe its negation).
(2) Transitivity of the possibility correspondence P corresponds to
positive introspection of beliefs, that is, the following are equivalent:

(i) 8a, b 2 !, if b 2 P"a# then P"b# ! P"a#,
(ii) 8E ! !, BE ! BBE,
(iii) for every model M based on F and for every formula f, the

formula !f ! !!f is valid in M (if the individual believes f then
she believes that she believes f).
(3) Euclideanness of the possibility correspondence P corresponds
to negative introspection of beliefs, that is, the following are
equivalent:

(i) 8a, b 2 !, if b 2 P"a# then P"a# ! P"b#,
(ii) 8E ! !, :BE ! B:BE,
(iii) for every model M based on F and for every formula f, the

formula :!f ! !:!f is valid in M (if the individual does not
believe f, then she believes that she does not believe f).

The above three properties are usually taken as an expression
of the notion of rational belief. A frame F D h!, Pi, where the
possibility correspondence P satisfies seriality, transitivity and
euclideanness is called a KD45 frame. From now on we shall
restrict attention to KD45 frames.

REMARK 3: (graphical representation). We will make use of the
following graphical representation of frames (and models). States
are represented by points and for every two states a and b, b 2 P"a#
if and only if either (i) a and b are enclosed in the same cell (denoted
by a rounded rectangle), or (ii) there is an arrow from a to the cell
containing b, or (iii) there is an arrow from the cell containing a to
the cell containing b.

For example, consider the following very simple frame: ! D
fa, bg, P"a# D P"b# D fbg. Let M be the following model based on
this frame: there is a single sentence letter p, representing the
proposition ‘‘the earth is flat’’, which is true at b and false at
a. This model is shown in Figure A according to the convention
established in remark 3.

State a in this model represents a situation where, as a matter
of fact, the earth is not flat but the individual incorrectly believes
the earth to be flat. The possibility of incorrect beliefs is taken to
be the distinguishing feature between knowledge and beliefs: only
true facts can be known.
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FIGURE A.

REMARK 4: fix a frame F and a state a 2 !. Then (cf. Chellas,
1984: p. 164) reflexivity of the possibility correspondence P at a
corresponds to correctness of beliefs at a, that is, the following are
equivalent:†

(i) a 2 P"a#,
(ii) 8E ! !, if a 2 BE then a 2 E (equivalently, a 2 :BE [ E),
(iii) for every model M based on F and for every formula f, the

formula !f ! f is true at a, that is, a 2 jj!f ! fjjM (if, at a, the
individual believes f then, at a, f is indeed true).

If the possibility correspondence is reflexive at every state, then
8E ! !, BE ! E. This is called the Truth Axiom. When the Truth
Axiom is imposed, one normally speaks of knowledge rather than
belief and the corresponding frame is called an S5 frame and is
characterized by the fact that the possibility correspondence gives
rise to a partition of !.

REMARK 5: in a KD45 frame it is possible for an individual
to believe something which is false (cf. Figure A). However,
the individual always believes to have correct beliefs. This is a
consequence of secondary reflexivity: a possibility correspondence
is secondary reflexive if, 8a, b 2 !, if b 2 P"a# then b 2 P"b#. It can
be shown that the following are equivalent.

(i) The possibility correspondence is secondary reflexive,
(ii) 8E ! !, B":BE [ E# D !,
(iii) For every model M and for every formula f, the formula

!"!f ! f# is valid in M (the individual believes that if she believes
f then f is true).

† The reader may have noticed a difference between the wording of remark 2
and that of remark 4. In remark 2 the properties of the possibility correspondence
(seriality, transitivity and euclideanness) were assumed to hold globally, that is,
at every state. Here we allow for the possibility that reflexivity may hold at some
states but not others, that is, the property is treated as a local property. A global
property is one that expresses the logic of rational belief. A local property, on the
other hand, is one that is not required by the notion of rational belief.
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Secondary reflexivity is implied by euclideanness. Thus in a
KD45 frame the individual always believes to be correct in her
beliefs.

2.2. BELIEFS BASED ON INFORMATION

It is often the case that individuals form their beliefs on the
basis of information they receive. News that the Department of
Justice is contemplating taking action against Microsoft conveys
information about Microsoft’s ability to release Windows 98 on
the date originally announced. This information might lead some
investors to believe that the release of Windows 98 will be delayed
and that the price of Microsoft shares will drop. Others might
form the contrary belief that Microsoft will not be deterred by
the threat of legal action and that Windows 98 will be released
on time, with no effect on the price of shares. In order to
distinguish between information and beliefs, we consider a class
of structures that represent the paradigm in the economics of
information literature.† Let ! be a set of states. The individual
has a partition of the set !, representing her information or
knowledge. We represent this partition by means of an information
correspondence K : ! ! 2! that satisfies the following properties:
reflexivity "8! 2 !, ! 2 K"!##, transitivity (8a, b 2 !, if b 2 K"a#
then K"b# ! K"a## and euclideanness (8a, b 2 !, if b 2 K"a# then
K"a# ! K"b#).‡ For every state ! 2 !, K"!# is the set of states
that, according to her information, the individual cannot rule
out at !. The individual’s beliefs are represented, as before, by
means of a belief correspondence B : ! ! 2! that satisfies seriality,
transitivity and euclideanness. Furthermore, beliefs are based
on information and depend only on it, in the following sense:
8a, b 2 !

(R1) B"a# ! K"a#

(R2) if b 2 K"a# then B"b# D B"a#.

Whenever ! is a non-empty set, K : ! ! 2! is reflexive,
transitive and euclidean, B : ! ! 2! is serial, transitive and
euclidean and together they satisfy (R1) and (R2), we call the
structure h!,K,Bi a KB-frame (‘‘KB’’ stands for ‘‘Knowledge and

† See, for example, Geanakoplos (1994: pp. 1456–1458). For the importance of
the interaction between knowledge and belief in game theory see Dekel and Gul
(1997).

‡ Transitivity is implied by the conjunction of reflexivity and euclideanness
(see Chellas, 1984: p. 85). However, throughout the paper we shall allow for some
redundancies when they add clarity to the exposition or make things look more
familiar in the light of the existing literature.
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Belief’’).† From the information correspondence K one obtains a
knowledge operator K : 2! ! 2! by setting, 8E ! !, KE D f! 2 ! :
K"!# ! Eg. The belief operator B : 2! ! 2! is defined similarly (cf.
Section 2.1).

REMARK 6: (R1) corresponds to the requirement that the indi-
vidual always believe what she knows. That is, the following are
equivalent.

(i) 8! 2 !, B"!# ! K"!#,
(ii) 8E ! !, KE ! BE.

Similarly, (R2) corresponds to the requirement that the individual
know her own beliefs. That is, the following are equivalent:

(i) 8a, b 2 !, if b 2 K"a# then B"b# D B"a#,
(ii) 8E ! !, BE ! KBE.‡

Note that in a KB frame it is still the case that the individual
might have incorrect beliefs (although she is always correct in
what she knows). Furthermore (cf. remark 5) she always believes
her beliefs to be correct. However, it is not necessarily the case
that she knows that her beliefs are correct. Consider the following
extension of the example of Figure A: ! D fa, bg, B"a# D B"b# D fbg,
K"a# D K"b# D fa, bg. This is shown in Figure B, where the (trivial)
partition generated by K is denoted by a thick rectangle.

In this example the individual at state a incorrectly believes
the earth to be flat and believes to be correct in her belief.
However, given her information, she cannot rule out the possibility
(represented by state a) that she is wrong in her belief that the
earth is flat. It can be shown that if one imposes the requirement
that the individual know to have correct beliefs, then belief
and knowledge coincide. That is, the following are equivalent:§
(i) 8E ! !, K":BE [ E# D ! and (ii) 8E ! !, BE D KE.

† In the economics of information literature beliefs are usually represented by
a collection of probability measures, one for each cell of the information partition.
In this case one can interpret B(!) as the support of the probability measure over
the cell of the partition that contains state !. It is easy to verify that, with this
interpretation, the belief correspondence B indeed satisfies seriality, transitivity
and euclideanness, as well as (R1) and (R2). See also Halpern (1991). Probabilistic
beliefs are introduced in Section 3.1.

‡ As remarked before, belief and knowledge pertain to propositions and events
should be thought of as representing propositions. In order to establish the
interpretation of events as propositions we need to introduce a language with
two operators: !B and !K . The intended interpretation of !Bf is ‘‘the individual
believes f’’ and the interpretation of !Kf is ‘‘the individual knows f’’. The notion
of a model based on a frame is then developed as explained in the previous
section. If F is a KB frame, then, for every model M based on it and for every
formula f, by (R1) the formula!Kf ! !Bf is valid in M and by (R2) the formula
!Bf ! !K!Bf is valid in M.

§ Another way of obtaining the collapse of belief into knowledge is to assume
that if the individual believes something then he believes that he knows it:
8E ! !, BE ! BKE (cf. Lenzen, 1978).
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FIGURE B.

KB frames can be used to model change of beliefs over time
in response to changes in information: between date t and date
t C 1 the individual might receive new information which might
prompt her to revise the beliefs she held at time t. A basic principle
in belief revision is the so called ‘‘principle of belief persistence’’,
or ‘‘conservativity principle’’, which states that ‘‘When changing
beliefs in response to new evidence, you should continue to believe
as many of the old beliefs as possible’’ (Harman, 1986: p. 46). In
particular, this means that if an individual gets new information,
she has to accommodate it in her new belief set (the set of
propositions she believes), and, if the new information is not
inconsistent with the old belief set, then (i) the individual has
to maintain all the beliefs she previously had and (ii) the change
should be minimal in the sense that every proposition in the new
belief set must be deducible from the union of the old belief set and
the new information.

A ‘‘possible world’’ formalization of the principle easily comes to
mind. The set of all the propositions that the individual believes
corresponds to the set of states of the world that she considers
possible and is a subset of the set of states that are not ruled out by
the individual’s information (or knowledge). The principle of belief
persistence then requires that (1) if the individual considers a
state possible and her new information does not exclude this state,
then she continues to consider it possible, and (2) if the individual
regards a particular state as impossible, then she should continue
to regard it as impossible unless her new information excludes
all the states that she previously regarded as possible. This is
closely related to the well-known conditionalization rule to update
probability measures. If an individual has probabilistic beliefs, the
set of states that she considers possible is simply the support of her
subjective probability measure. Let m0 be the probability measure
representing the agents’ beliefs before she receives information E
and mn her subjective probability measure after she learns E. The
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‘‘qualitative part’’ of the conditionalization rule states the following:

if Supp"m0# \ E 6D ; then Supp"mn# D Supp"m0# \ E

where Supp"m# denotes the support of the probability measure m.
In order to express this principle within the framework of KB

frames, we need to index the belief and knowledge correspondences
by time. Thus for every date t (where t is a natural number), we
postulate a serial, transitive and euclidean belief correspondence
Bt : ! ! 2! and a reflexive, transitive and euclidean knowledge
correspondence Kt : ! ! 2! . Furthermore, for every t, we impose
(R1) and (R2), that is, 8a, b 2 !, Bt"a# ! Kt"a# and if b 2 Kt"a# then
Bt"a# D Bt"b#. Within our framework, the conditionalization rule
can be stated as follows.

8t, 8!, if Bt"!# \ KtC1"!# 6D ; then BtC1"!# D Bt"!# \ KtC1"!#.

(C)
The following modification of the example of Figure B is an

illustration of a frame that satisfies condition (C): ! D fa, bg,
Bt"a# D Bt"b# D fbg, Kt"a# D Kt"b# D fa, bg, BtC1"a# D KtC1"a# D fag,
BtC1"b# D KtC1"b# D fbg. This is shown in Figure C. Here we have
that Bt"a# \ KtC1"a# D ; hence condition (C) is trivially satisfied
at a. On the other hand, Bt"b# D KtC1"b# D BtC1"b# and thus (C) is
also satisfied at b. Note that at state a the individual (incorrectly)
believes the earth to be flat and believes that he will continue
to believe so in the future (although he cannot rule out, given
his information, that in the future he will learn—and therefore
believe—that the earth is not flat).

The following result is proved in Battigalli and Bonanno (1997a).
Let Bt : 2! ! 2! be the belief operator obtained from Bt and
Kt : 2! ! 2! be the belief operator obtained from Kt.

FIGURE C.
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PROPOSITION 2.1: fix an arbitrary time-indexed KB frame. Then
the following are equivalent:

(i) the frame satisfies (C)
(ii) 8E ! !, BtE D BtBtC1E.

Thus, according to the above proposition, the conservativity
principle embodied in the conditionalization rule is equivalent to
the requirement that if at any time the individual believes E then
he must believe that he will continue to believe E in the future
and, conversely, if he believes that in the future he will believe E
then he must believe E now.†

2.3. INTERACTIVE BELIEFS AND THE NOTION OF COMMON BELIEF

Game theory models situations where individuals interact with
other individuals. In such interactive situations it is important
to model not only what a particular individual believes about the
external world but also what she believes about other individuals,
in particular about their beliefs. This is captured by the notion of
interactive belief frame.

A KD45 frame for interactive beliefs is a tuple F D
〈
N, !, fPigi2N

〉
,

where N D f1, . . . , ng is a finite set of individuals, ! is a set of states
(or possible worlds) and for every individual i 2 N, Pi : ! ! 2! is
i’s possibility correspondence which satisfies seriality, transitivity
and euclideanness. Individual i’s belief operator Bi : 2! ! 2! is
defined as usual (8E ! !, BiE D f! 2 ! : Pi"!# ! Eg). The notion
of model based on a frame is as explained before. The only
modification consists in enlarging the language to include n modal
operators !1,!2, . . . ,!n, one for each individual. The intended
interpretation of !if is ‘‘individual i believes that f’’. Thus if F is
a frame, E ! ! an event and M a model based on F where E is
the truth set of some formula f (that is, E D jjfjjM), then BiE is the
truth set of the formula !if, that is, BiE D jj!ifjjM. For example,
consider the frame of Figure D and a model based on it where p is
the atomic proposition ‘‘the universe is expanding’’, which is true
at states t and g, that is, jjpjj D ft, gg. Here the truth set of !1p
is ftg, while the truth set of !2p is ft, gg. It follows that the truth
set of !1!2p is ftg. State t describes a world where in fact the
universe is expanding and both individuals correctly believe that it
is expanding; however, while individual 1 believes that individual 2

† For further characterizations of the conditionalization rule in terms of
contractions and expansions of the individual’s ‘‘belief set’’ (the set of formulae
believed by her) brought about by changes in her knowledge set (the set of
formulae known by her) see Battigalli and Bonanno (1997a). In that paper
a syntactic analysis of belief revision is also given, together with a proof of
soundness and completeness.
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FIGURE D.

believes that the universe is expanding, individual 2 is uncertain as
to whether 1 correctly believes that it is expanding or 1 incorrectly
believes that it is not expanding (jj!1:pjj D fb, gg) and incorrectly
attributes the same belief to individual 2 (jj!1!2:pjj D fb, gg).

The common belief operator BŁ is defined as follows. First,
for every event E ! !, let BeE D \i2NBiE, that is, BeE is the
event that everybody believes E. For any operator B, define Bk,
the kth iteration of B, as follows: for all E, k ½ 1, B0E D E and
BkE D BBk$1E. The event that E is commonly believed is defined
as the infinite intersection:

BŁE D BeE \ BeBeE \ BeBeBeE \ . . . D
⋂

k½1

Bk
e E

Thus an event E is commonly believed if everybody believes
it, everybody believes that everybody believes it, and so on, ad
infinitum.

The corresponding common possibility correspondence PŁ : ! !
2! is given by: for every a 2 !, PŁ"a# D f! 2 ! : a 2 :BŁ:f!gg. PŁ
can be characterized† as the transitive closure of [i2NPi, that is,

8a, b 2 !, b 2 PŁ"a# if and only if there is a sequence hi1, Ð Ð Ð , imi
in N (the set of individuals) and a sequence hh0, h1, Ð Ð Ð , hmi in !
(the set of states) such that: (i) h0 D a, (ii) hm D b and (iii) for every
k D 0, . . . , m $ 1, hkC1 2 PikC1"hk#.

† See, for example, Bonanno (1996), Fagin et al. (1995), Halpern and Moses
(1992), Lismont and Mongin (1994, 1995). These authors also show that the
common belief operator can be alternatively defined by means of a finite list of
axioms, rather than as an infinite conjunction.
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In order to capture the notion of common belief in a model, one
needs to extend the language by adding another operator !Ł. If f is
a formula, the intended interpretation of !Łf is ‘‘it is common belief
that f’’ and if M is a model where E D jjfjjM then the truth set
of !Łf in M is given by BŁE D f! 2 ! : PŁ"!# ! Eg. For example,
consider again the frame of Figure D. The common possibility
correspondence is given by PŁ"b# D fbg and PŁ"g# D PŁ"t# D fb, g, tg.
Figure E illustrates PŁ for the model of Figure D (according to the
convention established in remark 3) with the extended language
that includes the common belief operator !Ł. At state g individual
1 wrongly believes that it is common belief that the universe is not
expanding; hence, since g 2 P2"t#, at state t individual 2 considers it
possible that individual 1 has such incorrect beliefs (:!2:!1!Ł:p
is true at t).

REMARK 7: note that, although PŁ is always non-empty-valued
(or serial) and transitive, in general it need not be euclidean,
despite the fact that the individual possibility correspondences
are (recall that PŁ is euclidean if and only if BŁ satisfies Negative
Introspection: 8E ! !, :BŁE ! BŁ:BŁE). For example, in the frame
of Figure E, b 2 PŁ"t# D ! but PŁ"t# ! PŁ"b# D fbg. Let E D fbg. Then
t 2 :BŁE but t /2 BŁ:BŁE since b 2 PŁ"t# and b 2 BŁE.

REMARK 8: it can be shown that in a KD45 interactive frame a
proposition is commonly believed if and only if everybody believes
that it is commonly believed: for every E ! !, BŁE D \i2NBiBŁE.

FIGURE E.
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2.4. INTERSUBJECTIVE PROPERTIES OF BELIEFS

The structures that are most often used in the economics and com-
puter science literature to discuss interactive beliefs/knowledge
are partition structures.† Partition structures embody the S5
logic for individual beliefs, in particular the Truth Axiom, that
is, the assumption that it is a necessary truth (true in all pos-
sible worlds of the model) that no one has any false beliefs. As
Stalnaker (1994, 1996) points out, there is an important concep-
tual difference between a theory that builds S5 into the concept
of belief (which—Stalnaker argues—is based on equivocating
between knowledge and belief) and a theory that describes epis-
temic conditions under which knowledge and belief coincide, and
then considers the consequences of assuming those conditions. In
the latter, the Truth Axiom can be expressed locally (that is, as
a property of the individuals’ beliefs) as the condition that no one
has any false beliefs and that it is common belief that no one has
any false beliefs.

Let Tj ! ! (for Truth of j’s beliefs) be the following event:‡

Tj D
⋂

E22!

":BjE [ E#

Thus, for every a 2 !, a 2 Tj if and only if individual j does not
have any false beliefs at a (for every E ! !, if a 2 BjE then a 2 E).§
Let T (for Truth) be the event that no individual has any false
beliefs:

T D
⋂

j2N

Tj

For example, in the frame of Figure E, T D fb, tg and, therefore,
BŁT D fbg.

DEFINITION 2.2: for every ˛ 2 !, the Truth Condition holds at ˛ if
and only if ˛ 2 T \ BŁT.

The above definition is justified by the following observation.
Given a frame

〈
N, !, fPigi2N

〉
, and a state t 2 !, define the t-

reduced frame as the frame
〈
N, !0,

{
P0

i
}

i2N

〉
, where !0 D PŁ"t# [ ftg

and P0
i is the restriction of Pi to !0. Let B0

i be the corresponding
belief operator of individual i and P0

Ł the corresponding common

† See, for example, Aumann (1976, 1987, 1989, 1995, 1996, 1998a, b),
Geanakoplos (1992), Fagin et al. (1995).

‡ Throughout the paper, bold-face capital letters are used to denote events (sets
of states) with a particular interpretation we want to emphasize. The letter used
is meant to be suggestive of the interpretation.

§ Recall (cf. remark 4) that a 2 Tj if and only if a 2 Pj(a).
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possibility correspondence. Then P0
Ł is the restriction of PŁ to !0 [in

particular, P0
Ł"t# D PŁ"t#] and, for every E0 ! !0, B0

iE
0 D BiE0 \ !0.

Fix a frame
〈
N, !, fPigi2N

〉
, and a state t 2 ! such that t 2 T \ BŁT.

Then in the t-reduced frame the following is true: 8i 2 N, 8E0 ! !0,
B0

iE
0 ! E0 (note, however, that in the original frame in general it is

not true that 8i 2 N, 8E ! !, BiE ! E: see Figure F(i)). Thus the
t-reduced frame is a partitional frame (unlike the original frame,
in general). Figure F(ii) shows the t-reduced frame corresponding
to the frame of Figure F(i).

The intersubjective implications of the Truth Axiom (8i 2 N,
8E ! !, BiE ! E) are strong:

The assumption that Alice believes (with probability one) that
Bert believes (with probability one) that the cat ate the canary tells
us nothing about what Alice believes about the cat and the canary
themselves. But if we assume instead that Alice knows that Bert
knows that the cat ate the canary, it follows, not only that the cat in
fact ate the canary, but that Alice knows it, and therefore believes
it as well (Stalnaker, 1996: p. 153).

This observation can be stated as a local property of beliefs, as
follows. Given two individuals, i and j, and a state a, i is like-
minded with j at a if and only if i shares all the beliefs that she
attributes to j, that is, for every event E, if a 2 BiBjE then a 2 BiE.
Let Lij be the event that i is like-minded with j:

Lij D
⋂

E!!

(
:BiBjE [ BiE

)
.

Let L be the event that every individual is like-minded with
every other individual:

L D
⋂

i2N

⋂

j2N

Lij

FIGURE F.
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The following equivalence (proved in Bonanno & Nehring, 1998a)
formalizes Stalnaker’s observation and exhibits a converse to it. It
is a straightforward consequence of secondary reflexivity.

PROPOSITION 2.3: Lij D BiTj and, therefore, BŁL D BŁT.

Thus i is like-minded with j if and only if i believes that j has
correct beliefs; furthermore, common belief in like-mindedness is
equivalent to common belief that no individual has any wrong
beliefs. We call this latter property (represented by the event
BŁT) common belief in no error. It will be shown in Section 3
that the assumption of common belief in no error has important
implications in the epistemic foundations of solution concepts in
game theory (see, for example, Ben Porath, 1997; Stalnaker, 1994,
1996; Stuart, 1997).

A weaker property than common belief in no error is Agreement,
defined as the common possibility of common belief in no error and
denoted by A:

A D :BŁ:BŁT

The term ‘‘Agreement’’ is justified by the fact that this property
is equivalent to the impossibility of ‘‘agreeing to disagree’’ about
qualitative belief indices (see Bonanno & Nehring, 1998a) and
is thus a qualitative generalization of the notion of agreement
introduced by Aumann (1976).

To gain further insight into the property of common belief in no
error and the Truth Axiom we introduce two more properties that,
together with Agreement, provide a decomposition of the Truth
Axiom.

Let TCB (for Truth about common belief) and TŁ (for Truth of
common belief) be the following events

TCB D
⋂

i2N

⋂

E!!

":BiBŁE [ BŁE#

TŁ D
⋂

E!!

":BŁE [ E#

TCB captures the notion that individuals are correct in their
beliefs about what is commonly believed: a 2 TCB if and only if,
for every event E and individual i, if, at a, individual i believes
that E is commonly believed, then, at a, E is indeed commonly
believed (if a 2 BiBŁE, then a 2 BŁE). On the other hand, a 2 TŁ

if and only if at a whatever is commonly believed is true (for
every event E, if a 2 BŁE then a 2 E).† Truth of common belief
(TŁ) is a much weaker property than truth (or correctness) of

† It is straightforward that a 2 TŁ if and only if, a 2 PŁ(a).
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individual beliefs (T); in particular, every KD45 frame satisfies the
property that BŁTŁ D !, while in general BŁT 6D !. Thus, while
typically T \ BŁT 6D T, it is always the case that TŁ \ BŁTŁ D TŁ.
In this sense TŁ can be viewed as ‘‘truth with no intersubjective
implications’’: the addition of BŁTŁ to TŁ does not yield a stronger
property than TŁ.

The following proposition (proved in Bonanno & Nehring, 1998a)
gives a decomposition of the Truth Axiom in terms of Agreement,
Truth of common belief and (common belief in) Truth about common
belief.

PROPOSITION 2.4: T \ BŁT D TŁ \ BŁTCB \ A.

REMARK 9: none of TŁ, TCB and BŁTCB, either individually or in
conjunction with the others, has any ‘‘agreement’’ implications.
This can be seen from Figure G where TŁ D TCB D BŁTCB D ! and
yet at both t and b the individuals agree to strongly disagree, in
the sense that it is common belief that individual 2 believes E and
individual 1 believes :E, where E D ftg : BŁ"B1:E \ B2E# D !. On
the other hand, as remarked before, A is precisely the property
that rules out disagreement.

As noted in remark 7, the common possibility correspondence PŁ
satisfies non-empty-valuedness and transitivity but not necessarily
euclideanness. It follows that the common belief operator BŁ
satisfies consistency "BŁE ! :BŁ:E# and positive introspection
"BŁE ! BŁBŁE# but not necessarily negative introspection ":BŁE !
BŁ:BŁE). Thus Negative Introspection of common belief implies
intersubjective restrictions on beliefs, which are uncovered in
proposition 2.5 below.

Let (NI stands for ‘‘Negative Introspection’’)

NIŁ D
⋂

E!!

"BŁE [ BŁ:BŁE#

Thus a 2 NIŁ if and only if, for every event E, whenever at a it
is not common belief that E, then, at a, it is common belief that

FIGURE G.



BELIEF, KNOWLEDGE AND GAME THEORY 165

E is not commonly believed (if a 2 :BŁE then a 2 BŁ:BŁE). The
following result is proved in Bonanno and Nehring (1998b).

PROPOSITION 2.5: NIŁ D TCB \ BŁTCB.

Thus Negative Introspection of common belief is equivalent to
Truth about common belief and common belief in it.† Since NIŁ

can be viewed as describing the ‘‘logic’’ of common belief, a global
(or ‘‘axiomatic’’) version of proposition 2.5 is of some interest. It is
provided in the following corollary.

COROLLARY 2.6: NIŁ D ! if and only if TCB D !.‡

It is clear from propositions 2.4 and 2.5 that TCB captures an
important intersubjective property of beliefs. It will be shown
in the next section that TCB can be interpreted as reflecting an
intersubjective notion of caution.

2.5. KNOWLEDGE AND BELIEF AT THE INTERSUBJECTIVE LEVEL

In this section we extend the knowledge and belief frames of
Section 2.2 to interactive situations. Integrated epistemic systems
that jointly consider knowledge and belief have been studied in
philosophy (Hintikka, 1962; Lentzen, 1978), artificial intelligence
and computer science (Halpern, 1991; van der Hoek, 1993; van der
Hoek & Meyer, 1995; Kraus & Lehmann, 1978), economics and
game theory (Battigalli & Bonanno, 1997a; Dekel & Gul, 1997;
Geanakoplos, 1994). The philosophy and artificial intelligence
literature has dealt mainly with single-agent systems and the
focus has been on the tendency of belief to collapse into knowledge
as a result of plausible-looking axioms. In game theory a study
of systems of knowledge and belief arises naturally in the
context of extensive form games. In this section we focus on
intersubjective properties of knowledge and beliefs and study their
implications.

† One may wonder whether there is something qualitatively different about
the truth of this very special type of beliefs. This question can be answered
affirmatively, in that truth about common belief is necessary and sufficient
for individuals’ beliefs about common belief to coincide: we call this ‘‘Shared
Worlds’’. (By comparison, having correct beliefs about what others believe, in
general, does not imply sharing their beliefs.) Let SW be the following event:
SW D \i2N \j2N \E!!(:BiBŁE [ BjBŁE). SW captures the notion that individuals
agree on what is commonly believed: a 2 SW if and only if, for every event E,
whenever one individual believes that it is common belief that E, then every other
individual believes that too. It can be shown that SW D TCB.

‡ That is, the following are equivalent: (i) 8E ! !, :BŁE ! BŁ:BŁE and
(ii) 8i 2 N, 8E ! !, BiBŁE ! BŁE.
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An interactive KB-frame is a tuple hN, !, fBigi2N, fKigi2Ni where
N is a set of individuals, ! a set of states and, for every individual
i, Bi : ! ! 2! is i’s belief correspondence and Ki : ! ! 2! is i’s
information correspondence. Bi is assumed to be serial, transitive
and euclidean while Ki is assumed to be reflexive, transitive
and euclidean. Furthermore, together they satisfy the following
properties: 8a, b 2 !, (R1) Bi"a# ! Ki"a# (knowledge implies belief)
and (R2) if b 2 Ki"a# then Bi"b# D Bi"a# (knowledge of own beliefs).
Let Bi : 2! ! 2! and Ki : 2! ! 2! be the associated belief and
knowledge operators (respectively) of individual i. The common
belief operator BŁ is defined as in Section 2.3 and the common
knowledge operator KŁ is analogous: KeE D \n

iD1KiE is the event
‘‘everybody knows E’’ and KŁE D \m½1Km

e E. Let BŁ : ! ! 2! and
KŁ : ! ! 2! be the corresponding possibility correspondences:

8a 2 !,BŁ"a# D f! 2 ! : a 2 :BŁ:f!gg ,

KŁ"a# D f! 2 ! : a 2 :KŁ:f!gg .

As explained before, BŁ is the transitive closure of [i2NBi and KŁ is
the transitive closure of [i2NKi.

As noted before (cf. remark 7) the common belief operator does
not inherit all the properties of the individual belief operators, in
particular it does not necessarily satisfy Negative Introspection.
Having moved to a knowledge and belief framework, we now find
a second property which is not reflected at the ‘‘common’’ level,
namely property (R2). That is, whereas individuals always know
what they believe, this is not necessarily so at the common level:
it may be that the individuals don’t commonly know what they
commonly believe. This is illustrated in the following example.

FIGURE H.



BELIEF, KNOWLEDGE AND GAME THEORY 167

EXAMPLE 2.7: individual 1 is a game theorist who knows the
correct spelling of his name (Harsanyi). Individual 2 mistakenly
believes that the spelling is Harsaniy. She even believes this
spelling to be common belief between them. These beliefs are
represented by state a in Figure H, which represents the
following frame: B1"a# D K1"a# D fag, B1"b# D K1"b# D fbg, B2"a# D
B2"b# D fbg, K2"a# D K2"b# D fa, bg. Thus BŁ"a# D fa, bg, BŁ"b# D fbg
and KŁ"a# D KŁ"b# D fa, bg. Let E be the event that represents the
proposition ‘‘the spelling is Harsaniy’’, that is, E D fbg. Then, at
state b, E is commonly believed, but it is not common knowledge
that it is commonly believed (because individual 2’s information
set at b contains state a where E is not commonly believed). That
is, b 2 BŁE but b /2 KŁBŁE.

The following events capture important intersubjective proper-
ties of beliefs and knowledge:

ž Common transparency:

TRNŁ D \E!! ":BŁE [ KŁBŁE# .

ž Intersubjective caution:

ICAU D \i2N \E!! ":BiBŁE [ KiBŁE# .

ž Equivalence of common belief and common knowledge:

EQUŁ D \E!! ""BŁE \ KŁE# [ ":BŁE \ :KŁE## .

Thus ! 2 TRNŁ if and only if, for every event E, if ! 2 BŁE then
! 2 KŁBŁE; ! 2 ICAU if and only if, for every individual i and every
event E, if ! 2 BiBŁE then ! 2 KiBŁE; finally, ! 2 EQUŁ if and only
if, for every event E, ! 2 BŁE if and only if ! 2 KŁE. TRNŁ is the
analogue, for common belief and knowledge, of property (R2) of
individual beliefs/knowledge. ICAU, on the other hand, captures
the following notion of intersubjective caution of beliefs. While, in
general, an individual may simultaneously believe something and
not know it (that is, he cannot rule out the possibility that he
is wrong in his belief), for common belief events the individual’s
knowledge rules out the possibility that his beliefs might be wrong:
if he believes that E is common belief then he also knows that E
is common belief. EQUŁ captures the property that common belief
and common knowledge coincide.

The following result (proved in Bonanno & Nehring, 1998c)
shows that the conjunction of common knowledge of intersubjective
caution and Agreement (defined in the previous section) yields
common belief in no error of beliefs (BŁT, defined in the previous
section) as well as common transparency.
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PROPOSITION 2.8: in an interactive KB-frame the following holds:

A \ KŁICAU D BŁT \ TRNŁ \ KŁTRNŁ

Thus proposition 2.8 gives an interpretation of common belief in
no error as an expression of intersubjective caution. As shown in
Section 3, common belief in no error is an important property in
game theoretic reasoning.

The next result (also proved in Bonanno & Nehring, 1998c) shows
that if one adds to common knowledge of intersubjective caution
the hypothesis that it is common knowledge that only true facts
are commonly believed, one obtains the collapse of common belief
into common knowledge.

PROPOSITION 2.9: in an interactive KB-frame the following holds:

KŁICAU \ KŁTŁ D EQUŁ \ KŁEQUŁ

Further intersubjective properties of knowledge and beliefs are
studied in Bonanno and Nehring (1998c).

3. Epistemic foundations of solution concepts:
(A) strategic-form games

The objective of the literature on the epistemic foundations of
game theory is to determine what assumptions on the beliefs and
reasoning of the players are implicit in various solution concepts.
This is a recent line of inquiry in game theory and one that
is gaining momentum. In this and the next section we give an
introduction to the general approach and review some of the main
contributions.

Why worry about the epistemic foundations of solution concepts?
A common view is that results that relate epistemic conditions
(such as common belief in rationality) to a particular solution
concept help explain how introspection alone can lead players to
act in accordance with it. The task of this research programme
is to identify for any game the strategies that might be chosen
by rational and intelligent players who know the structure of the
game and the preferences of their opponents and who recognize
each other’s rationality and knowledge.

Although several of the papers in the literature deal with the
special case of knowledge and common knowledge, we will take a
more general point of view where the primitive concept is that of
belief (and knowledge can be viewed as a particular form of belief:
cf. Section 2).

This section is devoted to the analysis of normal-form (or
strategic-form) games, although some implications for extensive
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games are also discussed. First we need to introduce probabilistic
beliefs.

3.1. BAYESIAN FRAMES

DEFINITION 3.1: a finite interactive Bayesian frame (or Bayesian
frame, for short) is a tuple B D

〈
N, !, fpigi2N

〉
, where N D f1, . . . , ng

is a finite set of individuals, ! is a finite set of states and for
every individual i 2 N, pi : ! ! (!) (where (!) denotes the set
of probability distributions over !) is a function that specifies her
probabilistic beliefs, satisfying the following property [we use the
notation pi,˛ rather than pi(˛)] : 8˛, ˇ 2 !,

if pi,˛(ˇ) > 0 then pi,ˇ D pi,˛. (1)

Thus pi,a 2 "!# is individual i’s subjective probability distribu-
tion at state a and condition (1) says that every individual knows
her own beliefs. We denote by jjpi D pi,ajj D

{
! 2 ! : pi,! D pi,a

}
the

event that i’s beliefs are given by pi,a 2 "!#. It is clear that the
collection of subsets

{
jjpi D pi,!jj : ! 2 !

}
is a partition of !; it is

often referred to as individual i’s type partition.
Given a Bayesian frame B, its qualitative frame (or frame, for

short) is the tuple Q D
〈
N, !, fPigi2N

〉
, where N and ! are as in

definition 3.1 and for every individual i 2 N, Pi : ! ! 2! is i’s
possibility correspondence, derived from i’s probabilistic beliefs as
follows:†

Pi"a# D Supp"pi,a#

Thus, for every a 2 !, Pi"a# is the set of states that individual
i considers possible (i.e., attaches positive probability to) at a. It
follows from condition (1) of definition 3.1 that the possibility
correspondence of every individual i is serial, transitive and
euclidean. Thus the qualitative frame corresponding to a Bayesian
frame coincides with the notion of interactive frame introduced in
Section 2.3. Let Bi : 2! ! 2! be the belief operator of individual i
and BŁ : 2! ! 2! the corresponding common belief operator.

3.2. TYPE SPACES AND HIERARCHIES OF BELIEFS

Let us recapitulate some of the concepts introduced so far and
elaborate on them. A state of the world should be thought of as
a complete description of every relevant aspect of a situation. In

† If m 2 (!), Supp(m) denotes the support of m, that is, the set of states that
are assigned positive probability by m.
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an interactive epistemology framework this description has two
components: a description of the external state (e.g., the weather
or the actions of the individuals) and a description of the epistemic
states of the individuals.

Fix an interactive beliefs frame F D
〈
N, !, fPigi2N

〉
. In a modal

logic approach we provide an interpretation of states of the
world ! 2 ! by introducing a set  of primitive sentences
about the external state and a function f :  ! 2! specifying
the set of states at which a primitive sentence is true. Thus the
set of sentences fp : ! 2 f "p#g is the description of the external
world at state ! (recall that if ! /2 f "p# then :p is true at !).
A language  is constructed by introducing modal operators
!i (‘‘i believes that’’) and combining primitive sentences into
formulae by means of logical connectives and modal operators.
The possibility correspondences Pi (i 2 N) are used to specify
which formulae involving epistemic operators are satisfied at a
given state. Thus the set of formulae

{
!if : Pi"!# ! jjfjj

}
is a

description of the epistemic state of individual i at !. This set
can be partitioned into formulae involving beliefs of different
orders. First-order beliefs are individual i’s beliefs about the
external world. Second-order beliefs are i’s beliefs about the
external world and the first order beliefs of all the individuals
j.† nth-order beliefs are i’s beliefs about (the external world
and) the 1-to-"n $ 1#th-order beliefs of all the individuals j. Let
0 represent the set of formulae which do not involve any
epistemic operator. Then the first-order beliefs set of individual
i at state ! is the set of formulae

{
!if : f 2 0, Pi"!# ! jjfjj

}
. Let

1 D 0 [
{
!jf : j 2 N, f 2 0}. Then i’s second-order beliefs set at

! is the set of formulae
{
!if : f 2 1, Pi"!# ! jjfjj

}
.‡ Individual i’s

nth-order beliefs set can be constructed inductively.§

3.2.1. Bayesian frames, models and type spaces

The beliefs considered above are not probabilistic, but it should be
intuitively clear that it makes sense to think of probabilistic beliefs
of different orders. We introduced probabilistic beliefs in the

† We may also consider only i’s beliefs about other individuals’ beliefs. The
introspection properties take care of i’s beliefs about himself.

‡ Note that we define the second-order beliefs set at ! to be inclusive of the
first-order beliefs set. Thus an element of this set is either a formula y D !if with
f 2 0 and Pi(!) ! jjfjj, or a formula y D !i!jf with f 2 0 and Pj(!0) ! jjfjj
for all !0 2 Pi(!). This is analogous to the definition of second-order probabilistic
beliefs given below.

§ Let n$1 D n$2 [
{!jf : j 2 N, f 2 n$2

}
.

Then the nth-order beliefs set of individual i at state ! is
{!if : f 2 n$1, Pi(!) !

jjfjj
}

.
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previous section by means of Bayesian frames. By definition,
frames do not provide any interpretation of the states of the world.
Therefore, within a Bayesian frame, we cannot separate external
states from epistemic states and we cannot describe beliefs of
different orders. We might provide an interpretation using the
modal logic approach. However, the formalization of probabilistic
beliefs by means of modal logic turns out to be difficult.† We
take an easier route. We assume that there is a well-defined set
S (finite unless we explicitly say otherwise) of external states,
whose interpretation we take for granted. Then we add to the
Bayesian frame B D

〈
N, !, fpigi2N

〉
a function s : ! ! S, where

s"!# corresponds to the description of the external world at state
!. For example, if we have a finite set of primitive sentences
 D fp1, . . . , pKg, we let S D f0, 1g (the set of functions from
 to f0, 1g), where s"pk# D 1 (s"pk# D 0) means that pk is true
(false) at external state s. Then the function s corresponds to an
interpretation function f :  ! 2!, where s D s"!# if and only if
! 2 f "pk# for all pk such that s"pk# D 1. (Other examples of the
specification of S are given in the following subsections: S can be
the set of strategy profiles in a complete information game or the
set of profiles of payoff-relevant states and strategies in a game
with incomplete information.) The pair M D hB, si is an epistemic
model for S.‡ The first-order (probabilistic) beliefs of individual
i at state a in model M are given by the probability measure
m1

i,a 2 "S# satisfying m1
i,a"s# D !2s$1"s#pi,a"!#. Higher-order beliefs

can be specified inductively. For example, i’s second-order beliefs
(beliefs about the external state and the other individuals’ beliefs)
at state a are given by the measure m2

i,a 2 
(
S ð ["S#]n$1)

satisfying

m2
i,a

(
s,
(
m1

j
)

j 6Di

)
D

∑

!:
(

s"!#,
(

m1
j,!

)
j 6Di

)
D
(

s,
(

m1
j

)
j 6Di

)
pi,a"!#.

[Note that it is important that we specify second-order beliefs
as joint beliefs about the external state and other individuals’
(first order) beliefs. For example, if the external state describes
each individuals’ actions and we want to model the assumption
that i believes that j is rational, we have to look for the set
of states of the world where i assigns probability zero to every
combination of actions and first-order beliefs for j that violate j’s
rationality.] Continuing this way, we can see that for any state

† We might introduce modal operators !p
i with the interpretation ‘‘i assigns

probability at least p to. . . ’’. But in order to have a countable language we should
consider only rational values of p. See, for example, Fagin and Halpern (1994).

‡ Or an S-based belief space, in Mertens and Zamir’s (1985) terminology.
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of the world ! in a model for S there is a corresponding "n C 1#-
tuple

(
s"!#, "m1

i,!, m2
i,!, . . .#i2N

)
specifying the external state and an

infinite hierarchy of beliefs for each individual i.
We now turn to a related, but somewhat more transparent

representation of external and epistemic states due to Harsanyi
(1967–68). The individuals in N are uncertain about the external
state s 2 S and have beliefs about the external state and about each
other’s beliefs. The system of beliefs of individual i is determined
by a parameter ti, called the epistemic type of i, through a function
qi which assigns to each ti a probability measure on the set of
external states and epistemic types of others. Epistemic models
of this kind are called type spaces. We focus mainly on finite type
spaces to avoid measure-theoretic technicalities.

DEFINITION 3.2: let S be a finite set of external states. A finite
type space for S is a tuple T D

〈
N, S, fTigi2N , f(igi2N

〉
where

N D f1, 2, . . . , ng is a finite set of individuals and for every
individual i 2 N, Ti is a finite set of types and (i : Ti ! (S ð T$i)
is a function specifying the probabilistic beliefs of each type
about the external states and the other individuals’ types (where
T$i D T1 ð Ð Ð Ð ð Ti$1 ð TiC1 ð Ð Ð Ð ð Tn).

A state of the world in a type space T for S is an "n C 1#-tuple
"s, t1, . . . , tn# 2 S ð T1 ð Ð Ð Ð ð Tn specifying the external state and
the epistemic types. Every epistemic type corresponds to an infinite
hierarchy of beliefs. First-order beliefs are obtained in an obvious
way: for every individual i and type t 2 Ti, the first-order beliefs
of t are given by the probability measure m1

i,t D mrgS qi,t 2 "S#,
where mrgS denotes ‘‘marginal distribution on S’’ and we write
qi,t rather qi"t# for the probability measure assigned by type t of
player i.† Once we have obtained the first-order-beliefs mappings
t 7$! m1

j,t for all the individuals j, we can define the second order
beliefs of any type t of any individual i : m2

i,t 2 
(
S ð ["S#]n$1) is

the probability measure satisfying

m2
i,t

(
s,
(
m1

j
)

j 6Di

)
D qi,t

({
"s, t$i# : 8j 6D i, m1

j D m1
j,tj

})
.

Note that mrgS m2
i,t D m1

i,t: since second-order beliefs (in our defini-
tion) are also beliefs about the external state, they must subsume
first-order beliefs. Higher order beliefs for each type are constructed
inductively. They satisfy an analogous ‘‘marginalization property’’
and assign probability zero to the lower order hierarchies of other
individuals violating this property. Of course, the same properties
are satisfied by the hierarchies of beliefs generated by a model
for S.

† Thus m1
i,t(s) D t$i2T$iqi,t(s, t$i). Clearly, s2Sm1

i,t(s) D 1.
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Belief (certainty) operators can be defined in a quite straightfor-
ward way. We informally assume that every individual knows his
epistemic type (cf. Sections 2.2 and 3.1). Therefore for any event
E ! S ð T1 ð Ð Ð Ð ð Tn and type ti of individual i the set of states in
E that i does not rule out is

{
"s0, t0

1, . . . , t0
n# 2 E : t0

i D ti
}

. Let

Eti D f"s0, t0
$i# 2 S ð T$i : "s0, ti, t0

$i# 2 Eg.

Type ti believes (is certain of) E if qi,ti"Eti# D 1. Thus the event
‘‘player i believes E’’ is

BiE D
{

"s, ti, t$i# : qi,ti"Eti# D 1
}

.

Mutual and common belief operators are then defined in the usual
way. It can be verified that these belief operators satisfy all the
properties of the corresponding operators defined for standard
(serial, transitive, euclidean) frames.

As the following remark shows, a type space for S is essentially a
model of S where the states of the world are explicitly decomposed
into external and epistemic states. Furthermore, every model for
S can be mapped into a corresponding type space.

REMARK 10: fix a finite set S of external states.
(1) For any model M for S, let TM denote the corresponding type

space where, for each i 2 N, Ti ! "!# is the range of pi and qi is
such that, for all a 2 !, s 2 S, "qj#j 6Di 2 T$i ! ["!#]n$1,

qi,pi,a

(
s, "qj#j 6Di

)
D

∑

!:s"!#Ds,"pj,!#j 6DiD"qj#j 6Di

pi,a"!#.

Then M and TM generate the same hierarchies of beliefs, that is,
for all ! 2 !, i 2 N, "m1

i,!, m2
i,!, . . .# D "m1

i,pi,!
, m2

i,pi,!
, . . .#.

(2) For any type space T for S, let MT denote the corresponding
model where ! D S ð T1 ð . . . Tn, s : ! ! S is the projection
function and for each i 2 N, pi is such that, for all "s, ti, t$i# 2 !,
"s0, t0

$i# 2 S ð T$i,

pi,"s,ti,t$i#
(
s0, ti, t0

$i
)

D qi,ti

(
s0, t0

$i
)

.

Then T and MT generate the same hierarchies of beliefs, that is,
for all i 2 N, ! D "s, ti, t$i# 2 !, "m1

i,ti
, m2

i,ti
, . . .# D "m1

i,!, m2
i,!, . . .#.

3.2.2. The universal type space

We have seen that for any given set S of external states we
can use an epistemic model or a type space for S to provide
consistent representations of the individuals’ systems of beliefs.
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In particular, every state of the world in the model (or type
space) induces a consistent infinite hierarchy of beliefs. But not all
the consistent hierarchies are generated in any particular finite
model.† In fact, there are infinitely many conceivable first order
beliefs, all the elements of "S#. More generally, even an infinite
model need not represent all the consistent hierarchies of beliefs
and, a priori, it is not even obvious that there exist infinite models
representing all the consistent hierarchies. This is to be contrasted
with what we can achieve using the modal logic approach to
represent non-probabilistic beliefs. For any given system  of
axioms and inference rules we can construct a canonical model
which is precisely a model where every (epistemic or non-epistemic)
formula in the language  which is consistent with  is satisfied
at some state. A little more precisely, a state of the world in the
canonical model is defined as a maximal set of formulae which
are mutually consistent (do not generate contradictions) given the
axioms and inference rules in .

It turns out that if S is finite‡ we can provide a sort of
probabilistic-beliefs-analog of the canonical model of modal logic,
that is, a universal type space containing all the conceivable
hierarchies of beliefs. We will argue that this is important
to analyse the epistemic foundations of game theory (see Sec-
tions 3.3 and 4). Therefore we provide here a summary of this
construction.

We want to define the set of all infinite hierarchies of beliefs
satisfying the same consistency properties of the hierarchies that
obtain at some state of a type space (or epistemic model) for S.
For example, first order beliefs should be the marginals of second-
order beliefs and third order beliefs should rule out hierarchies of
beliefs of other individuals that do not satisfy this marginalization
property.

Let us use the following notation:

ž X0 D S ,
ž Z1 D ["X0#]n$1, X1 D X0 ð Z1,
ž Z2 D ["X1#]n$1, X2 D X1 ð Z2.

Given Xk we define

ž ZkC1 D ["Xk#]n$1, XkC1 D Xk ð ZkC1.§

† Furthermore, the function s in a model M for S need not be onto, which
means that some conceivable external states are not realized at any state of the
world in M.

‡ Indeed if S is a ‘‘nice’’ topological space, e.g., a Polish, or a compact metric
space.

§ It can be shown that each Xk is a measurable space and hence the set (Xk)
of all probability measures on Xk is well defined.
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For any given individual i, Z1 is the set of the conceivable
combinations of first-order beliefs of all the other individuals. The
set of his second-order beliefs is therefore "S ð Z1# D "X1#. His
conceivable third-order beliefs are elements of "X2# that rule out
any combination of first- and second-order beliefs which do not
satisfy the marginalization property for at least one individual j.
In general, the conceivable k-order beliefs (k ½ 3) of an individual
i form only a subset of "Xk#, as some elements of "Xk# do
not rule out all the ‘‘inconceivable’’ hierarchies of length k for
the other individuals. Furthermore, each conceivable hierarchy
"m1, . . . , mk, mkC1, . . .# must satisfy the ‘‘marginalization property’’:
mk D mrgXk$1 mkC1. Thus the set of conceivable infinite hierarchies
for any individual i is a subset TU

i ² "X0# ð "X1# ð Ð Ð Ð ð "Xk#
ð Ð Ð Ð, which can be defined inductively as follows:†

ž Y1
$i D X1,

ž Yk
$i D f"s, ""m1

j #j 6Di, . . . , "mk$1
j #j 6Di, "mk

j #j 6Di# 2 Xk$1 ð Zk :
8j 6D i, mrgXk$2 mk

j D mk$1
j , mk

j "Yk$1# D 1g,
ž TU

i D f"m1
i , m2

i , . . . , mk
i , . . .# 2 1

kD0"Xk#:
8k ½ 1, mrgXk$2 mk

i D mk$1
i , mk

i "Yk$1
$i # D 1g.

The following fundamental result is due to Mertens and Zamir
(1985).‡ It shows that a vector

(
s,
(
"m1

i , m2
i , . . .#

)
i2N

)
2 S ð

∏

i2N

TU
i

is a complete and consistent description of the state of the world
and that TU

i can be interpreted as a set of epistemic types in a type
space. Let TU

$i D j 6DiTU
j .

PROPOSITION 3.3: there is a ‘‘canonical homeomorphism’’ between
TU

i and (S ð TU
$i), that is, a bijective and bicontinuous§ function

(U
i : TU

i ! (S ð TU
$i) such that for all t D ()1

i , )2
i , . . .) 2 TU

i and for
each integer k ½ 1,

mrgXk$1 (U
i,t D )k

i .

† All the individuals are symmetric in this construction because they all have
beliefs about the same set of external states. But symmetry is not an important
feature of the model.

‡ See also Brandenburger and Dekel (1993), Heifetz and Samet (1996) and the
references therein.

§ It can be shown that (Xk) (k D 0, 1, . . .), TU
i and (S ð TU

$i) are complete,
separable and metrizable with respect to the topology of weak convergence of
measures. Continuity is defined with respect to this topology. See, for example,
Brandenburger and Dekel (1993).
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The proof of proposition 3.3 is beyond the scope of this paper, but
the main idea of the proof is relatively simple and clarifies the whole
construction. The main point should be familiar to those who know
some theory of stochastic processes and Kolmogorov’s extension
theorem. Within space S ð TU

$i there are ‘‘finite-dimensional’’
events (measurable subsets) which are simply described by
properties of the external state and the other individuals’ beliefs up
to order k. Let Ek denote such an event. For example, E0 D Y ð TU

$i
(where Y ² S ) is an event in S ð TU

$i that is only described by
properties of the external state. All the beliefs of order k C 1 or
higher in hierarchy t D "m1

i , m2
i , . . .) assign a probability to event Ek

(for beliefs of order m D k C 2, k C 3, . . . just take the marginal on
Xk). By consistency, all these probabilities must be the same. For
example, the probability assigned by hierarchy t D "m1

i , m2
i , . . .) to

E0 D Y ð TU
$i is m1

i "Y#. Let qU
i,t"E

k# denote the probability assigned
by t to Ek. Then we can take limits to obtain the probability of sets
of the form E D \k½0Ek :

qU
i,t"E# D lim

m!1
qU

i,t

(
m⋂

kD0

Ek

)
.

Finally, we can define qU
i,t for all the (measurable) subsets of

S ð TU
$i by (countable) additivity. Intuitively, this must be the

‘‘right’’ probability measure to assign to the infinite hierarchy of
beliefs t. Now suppose we fix a probability measure mi 2 "S ð TU

$i#.
Then we can derive an infinite hierarchy of beliefs t D "m1

i , m2
i , . . .#

just by taking the marginal on each space Xk, k D 0, 1, . . ., and it
turns out that qU

i "ti# D mi.
Proposition 3.3 means that we can think interchangeably of types

as infinite hierarchies of beliefs and types as probability measures
on the space of combinations of external states and other players’
types. The first notion of type is explicit, because it relies on an
iterative construction starting from first-order beliefs, a concept
we already understood well. The second notion of type is implicit:
its self-referential nature makes it possible to assign to every type
an infinite hierarchy of beliefs, but this hierarchy is not explicitly
given. This should ring a bell: we are back to type spaces. Indeed,
proposition 3.3 shows that

TU D
〈

N, S,
{

TU
i

}

i2N
,
{

qU
i

}

i2N

〉

is a type space. This particular type space, however, has two
features: (1) it is infinite and infinite dimensional, (2) it is universal
in the sense that it ‘‘contains’’ every type space (more precisely, it
contains all the hierarchies of beliefs corresponding to the types of
any type space T for S). This is made formal by the following result:
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PROPOSITION 3.4: for every type space T D
〈
N, S, fTigi2N , f(igi2N

〉

there is a unique n-tuple of functions ϕ D (ϕi), ϕi : Ti ! TU
i , such

that for all i 2 N, t 2 Ti, E ² S ð TU
$i (measurable)

(i,t
({

(s0, t0
$i) 2 S ð T$i : (s, ϕ$i(t$i)) 2 E

})
D (U

i,ϕi(t)(E)

where we write ϕ$i(t$i) D (ϕj(tj))j 6Di.

The meaning of proposition 3.4 is that there is one and only one
way to assign to every type t of every player i in type space T a
corresponding infinite hierarchy of beliefs (i.e., a type in TU) so that
the same probability is assigned by t and ji"t# to corresponding
events. Note that the finiteness of S ð T$i implies that qU

i,ji"t# must
be a probability measure with finite support. Indeed for each type
t 2 Ti the hierarchy/type ji"t# 2 TU

i ‘‘is certain’’ that his opponents’
hierarchies of beliefs belong to the image set j$i"T$i#. Thus T
corresponds to a finite, ‘‘belief-closed’’ subspace of TU.

The main step in the proof of proposition 3.4 is the inductive
construction of the functions ji. These functions simply assign to
each type t 2 Ti the infinite hierarchy of beliefs "m1

i,t, m2
i,t . . .# derived

above.†

3.3. MODELS OF STRATEGIC-FORM GAMES

Throughout this paper we shall restrict attention to finite
games. A finite normal-form or strategic-form game is a tuple
G D hN, fSigi2N, fuigi2Ni, where N D f1, 2, . . . , ng is a set of players,
Si is a finite set of strategies for player i and ui : S ! < (where
S D S1 ð Ð Ð Ð ð Sn and < is the set of real numbers) is player
i’s von Neumann Morgenstern payoff (or utility) function. This
(standard) definition of game represents only a partial description
of the interactive situation, in that it determines the choices that
are available to the players and the preferences over strategy
profiles, but does not specify the players’ beliefs about each other
or their actual choices. The notion of model of G provides a way of
completing the description. Note that in the following definition it
is implicitly assumed that G is a game with complete information
(the payoff functions are common knowledge).

DEFINITION 3.5: fix a normal-form game G. A model of G is a pair
M D hB, f+igi2Ni, where B D

〈
N, !, fpigi2N

〉
, is a Bayesian frame (cf.

definition 3.1) and, for every player i, +i : ! ! Si is a function that
specifies for every state the choice made by player i at that state.

† Note that the functions ji need not be injective because a type space may
contain ‘‘duplicate’’ or ‘‘redundant’’ types.
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For every state ! 2 !, let s"!# D "s1"!#, . . . , sn"!## 2 S be the
strategy profile played at ! and, for every player i, denote by
s$i"!# 2 S$i the "n $ 1#-tuple of strategies played by the players
other than i. The association of a strategy profile with every state
is what gives content to the beliefs of the players and allows
the derivation of a profile of infinite hierarchies of beliefs for
each state, as explained in Subsection 3.2. All the papers on the
epistemic foundations of normal-form solution concepts considered
here use these kind of epistemic models. Therefore we conform to
this formalization. But it is worth stressing that all the results
could be reformulated in terms of type spaces for S. We will argue
in Section 4 that type spaces are particularly well suited for the
epistemic analysis of extensive form games.

We first provide a precise definition of the event ‘‘player i is
rational’’ within a model M of game G.

DEFINITION 3.6: fix a strategy si and a probability measure
) 2 (S$i). We say that si is a best response to )—written
si 2 ri())—if, for all s0

i 2 Si

∑

s$i2S$i

[
ui(si, s$i) $ ui(s0

i, s$i)
]

)(s$i) ½ 0.

DEFINITION 3.7: player i is rational at state ˛ 2 ! if her beliefs at
˛ assign probability one to her choice at ˛ and this choice is a best
response to her (marginal) beliefs about the opponents’ choices: let
si,˛ D +i(˛), then

(1) Pi(˛) ! +$1
i (si,˛) and

(2) si,˛ 2 ri(mrgS$i
pi,˛).

Let RATi be the set of states where player i is rational and
RAT D \i2NRATi the event that all players are rational. Note
that, by condition (1) of definition 3.7 if player i is rational, she
is certain of being rational (RATi ! BiRATi), but the converse
does not hold. However, many papers on the epistemic foundations
of game theory adopt a stronger definition of model of a game
assuming that condition (1) holds globally (and dropping (1) from
the definition of rationality). In these models, if a player believes
she is rational, she is indeed rational (BiRATi ! RATi). We prefer
the more general formulation where (1) is assumed only locally as
part of a player’s rationality because this forces a more transparent
formulation of results and because it is more appropriate for the
analysis of extensive form games (see Section 4).

EXAMPLE 3.8: Figure I(ii) shows a model of the two-person game
illustrated in Figure I(i). Here we have that RAT1 D ft, bg and
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FIGURE I.

RAT2 D !; hence RAT D ft, bg. Note also that B1RAT D ft, bg,
B2RAT D ftg and BŁRAT D ;.

3.4. RATIONALIZABILITY

The first solution concept we consider is rationalizability (Bern-
heim, 1984; Pearce, 1984), which is intended to capture the
implications of rationality and common belief in it.

The hypothesis of rationality of all the players allows the
elimination of all strategies that are never best responses.
Furthermore, if every player is believed to be rational by everybody
else, then no player should attach positive subjective probability
to strategies of the other players that are never best responses.
However, there might be strategies that are never best responses
given such restrictions on beliefs. Then the hypothesis that
everybody believes everybody else to be rational allows the
elimination of such strategies too. This leads us to consider the
following iterative elimination process:
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ž 8i 2 N, S0
i D Si, 8k ½ 0, Sk D i2NSk

i , Sk
$i D j 6DiSk

j ,
ž 8i 2 N,

SkC1
i D

{
si 2 Sk

i : 9m 2 "S$i#, si 2 ri"m#, m"Sk
$i# D 1

}
,

ž S1
i D \k½1Sk

i , S1 D i2NS1
i .†

Intuitively, this procedure ought to lead to the survival of all
and only those strategies that are compatible with rationality and
common belief in rationality. The surviving strategies are called
rationalizable.‡ [Note that by finiteness of S there is some K such
that SK D S1. In compact-continuous games S1 is the (Hausdorff)
limit of Sk as k ! 1.]

By standard results in linear programming, a strategy of player
i is never a best response if and only if it is strictly dominated,
in the following sense. Recall that a probability distribution
over Si can be interpreted as a mixed strategy for player i.
If ni 2 "Si# and si 2 Si, we denote by ni"si# the probability
assigned to si by ni. A strategy si 2 Si is strictly dominated by
ni 2 "Si# on Ŝ$i ! S$i if, for all s$i 2 Ŝ$i, ui"ni, s$i# > ui"si, s$i#,
where ui"ni, s$i# D x2Sini"x#ui"x, s$i#. [For example, in the game
of Figure J(i), strategy B of player 1 is strictly dominated by the
mixture " 1

2A, 1
2D#.] Therefore we obtain the following alternative

definition of rationalizable strategies:

PROPOSITION 3.9: (Pearce, 1984) for all k ½ 0, i 2 N,

SkC1
i D

{
si 2 Sk

i : 8,i 2 (Sk
i ), si is not strictly

dominated by ,i on Sk
$i
}

.

For the game of Figure J(i), S1, S2 and S3 D S1 and the
corresponding restricted games are shown in Figures J(ii)–(iv).
In the game of Figure I(i), S1 D f"T, L#, "T, C#, "B, L#, "B, C#g, since
for player 1 M is strictly dominated by T and—after deletion of
M—for player 2 R becomes strictly dominated by both L and C.

† It is easily shown that, in the definition of SkC1
i , on the one hand the

restriction si 2 Sk
i can be eliminated (anyway, strategies cannot ‘‘come back’’),

on the other hand si 2 ri(m) can be replaced by the constrained maximization
condition si 2 arg maxs0

i2Sk
i

ui(s0
i, m). Thus a strategy surviving step k of the

procedure need only be compared with other strategies surviving step k.
‡ This is the definition of ‘‘correlated’’ rationalizability. The definition first

given by Pearce (1984) and Bernheim (1984) considered only best responses to
uncorrelated beliefs.
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FIGURE J.

The following results provide an epistemic characterization of
rationalizability. The first such characterization was explicitly
provided by Tan and Werlang (1988) using a universal type space
(cf. Section 4, which also provides a characterization of each subset
Sk). The state space formulation used in propositions 3.10 and 3.11
is due to Stalnaker (1994) (see also Osborne & Rubinstein, 1994),
but it was implicit in Brandenburger and Dekel (1987).†

Given a game G and a model M of it, with slight abuse
of notation let S1 be the event that a strategy profile that
survives iterated deletion of strictly dominated strategies is played:
S1 D f! 2 ! : s"!# 2 S1g. For example, in the model of Figure I(ii),
S1 D ft, bg.

† In our terminology, Brandenburger and Dekel (1987) show that in a model of
G where players are rational at every state, the players always play rationalizable
strategies, and that there is a model of G where the players are rational at every
state and every rationalizable profile is played at some state.
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PROPOSITION 3.10: let G be a game and M an arbitrary model of
it. Then

RAT \ BŁRAT ! S1 \ BŁS1.

That is, if at a state all the players are rational and there
is common belief in rationality then the strategy profile played
at that state is rationalizable and it is common belief that only
rationalizable strategy profiles are played.

The converse of proposition 3.10 does not hold, the reason being
that a model for G typically contains ‘‘too few’’ states of the world.
First, the range of the strategy function s may be smaller than S
and even smaller than S1. Second, the set of infinite hierarchies
of beliefs (epistemic types) corresponding to the states of the model
may be too small to ‘‘rationalize’’ all the rationalizable strategies.
A rather extreme example is provided by the following model of the
game of Figure J: ! D ftg, P1"t# D P2"t# D ftg, s"t# D "A, a#. Then
t 2 S1 \ BŁS1 but RAT2 D ; (and hence BŁRAT D ;), because
player 2’s belief that player 1 is playing A does not justify her
choice of a. In general, that is, for any solution concept, there is
always the possibility that at a state in a model the players make
the ‘‘right’’ choices ‘‘accidentally’’ or ‘‘for the wrong reasons’’. The
following theorem, however, explains the sense in which the notion
of common belief in rationality can be thought of as equivalent to
that of rationalizability.†

PROPOSITION 3.11: let G be a game. Then there is a model M of G
such that, for every s 2 S, s is rationalizable if and only if there is
an ω 2 ! such that: (1) ω 2 RAT \ BŁRAT, and (2) +(ω) D s.

3.5. STRONG RATIONALIZABILITY

Note that propositions 3.10 and 3.11 are not based on any
assumption of correctness of players’ beliefs (cf. remark 4), that is,
it is not assumed that if a player is certain of event E (i.e., attaches
probability 1 to E) then E is indeed true. In particular, a player can
be mistaken in ruling out some strategy choices of the other players.
A natural question to ask is whether ruling out incorrect beliefs
further reduces the set of strategy profiles that can be played when
there is common belief in rationality. The answer is affirmative, as
Stalnaker (1994) shows (see also Bonanno & Nehring, 1996b). The
following algorithm is similar to the iterative deletion of strictly

† The equivalence between rationalizability and common belief in rationality
is made even more transparent within a universal type space, which—by
definition—contains all the conceivable hierarchies of beliefs (cf. Tan & Werlang,
1988; and Section 4).
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dominated strategies, but differs from the latter in that it requires
the iterative deletion of profiles rather than strategies.

DEFINITION 3.12: given a normal-form game G, a strategy profile
x 2 X ! S is inferior relative to X if there exists a player i and a
(possibly mixed) strategy )i of player i (whose support can be any
subset of Si, not necessarily the projection of X onto Si) such that:

(1) ui(x) < ui()i, x$i) and
(2) for all s$i 2 S$i such that (xi, s$i) 2 X, ui(xi, s$i) ) ui()i, s$i).

[Thus if X D S then x is inferior if and only if there is a player i
for whom xi is weakly dominated by some mixed strategy mi such
that ui"mi, x$i# > ui"x#.] For every k ½ 0, define Sk

s ! S and Dk
s ! S

as follows (the subscript s stands for ‘‘strong’’): S0
s D S, Dk

s is the
set of profiles that are inferior relative to Sk

s and SkC1
s D Sk

s nDk
s .

Let S1
s D \1

kD0Sk
s . The strategy profiles in S1

s are called strongly
rationalizable.

EXAMPLE 3.13: in the game of Figure K(i), the first step in the
algorithm leads to the profiles shown in Figure K(ii) [for player 2 D
is weakly dominated by E and for player 1 C is weakly dominated
by B], the second step leads to the profiles shown in Figure K(iii)
[now F is dominated by E and C is dominated by A] and the third
and final step leads to the profiles shown in Figure K(iv) [now B
is dominated by A]. Thus S1

s D f"B, D#, "C, D#, "A, E#, "A, F#g. Note
that, on the other hand, every strategy profile is rationalizable, that
is, S1 D S, since no player has any strictly dominated strategies.

Given a game G and a model M of it, with slight abuse of notation
let S1

s be the event that a strongly rationalizable strategy profile
is played: S1

s D f! 2 ! : s"!# 2 S1
s g. Let T (Truth) be defined as in

Section 2.4.

PROPOSITION 3.14: (Stalnaker, 1994; see also Bonanno & Nehring,
1996b).† Let G be a game and M a model of it. Then

(1) BŁT \ BŁRAT ! BŁS1
s and

(2) T \ BŁT \ BŁRAT ! S1
s \ BŁS1

s .

That is, if there is common belief in no error and common belief in
rationality, then it is common belief that only strongly rationalizable
profiles are played. If, furthermore, no individual has false beliefs,
then it is also true that the strategy profile actually played is
strongly rationalizable.

† Stalnaker (1994: p. 63) incorrectly states the result as BŁT \ BŁRAT ! S1
s .

Bonanno and Nehring (1996b) give a counterexample and prove the results as
stated in proposition 3.14.
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FIGURE K.

To see that, in general, BŁT \ BŁRAT ! S1
s consider the model

of the game of Figure K(i) illustrated in Figure L. It is easy to check
that RAT D ! (indeed, for x 2 fb, gg, s"x# is a Nash equilibrium).
Hence at t (indeed at every state) it is common belief that all
the players are rational. Furthermore, there is common belief (at
t, indeed at every state) that no player has false beliefs, that is,
BŁT D !. However, while t 2 BŁT \ BŁRAT, s"t# D "A, D# /2 S1

s .
A partial converse to proposition 3.14 is given by the following

result.

PROPOSITION 3.15: let G be a game and s 2 S1
s . Then there is a

model M of G such that: (1) . 2 T \ BŁT \ BŁRAT, and (2) +(.) D s.

The example of Figure K shows that strong rationalizability is
considerably stronger than rationalizability. To stress this point,
consider the extensive game of Figure M(i), whose normal form is
shown in Figure M(ii).

For the normal form, S1 D S (that is, all the strategy profiles
are rationalizable), since no strategy of any player is strictly
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FIGURE L.

FIGURE M.
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dominated. Hence every outcome is compatible with common
belief in rationality (in the sense of proposition 3.11). On the
other hand, S1

s D f"DG, d#, "DG, a#, "DC, d#, "DC, a#g† and all the
strategy profiles in S1

s give rise to the Nash equilibrium outcome,
namely the payoff vector (1,0).

One might wonder whether the above example can be generalized
to the claim that in the normal form of an extensive game with
perfect information strong rationalizability implies the play of
a Nash equilibrium outcome.‡ The answer is negative, as the
following example shows. Figure N(ii) shows a model of the
normal form of the extensive game of Figure N(i). At state t
the players choose (A, d, G), which is not a Nash equilibrium;
furthermore, there is no Nash equilibrium that gives rise to the
outcome (2,2,2). Note that t 2 T \ BŁT \ BŁRAT (remember that
T \ BŁRAT ! RAT, in particular, player 1’s choice of A is rational,
given his belief that player 2 plays d and a with equal probability).

The extensive game of Figure N(i) has several Nash equilibria
and more than one Nash equilibrium outcome. Does strong
rationalizability imply Nash equilibrium outcome if there is a
unique such outcome? Once again, the answer is negative as the
following modification of the game of Figure N(i) shows.§ Here
there is a unique Nash equilibrium outcome, namely the payoff
vector (7, 7, 7, 7). Yet in the model shown in Figure O(ii) at
state t the realized outcome is (2, 2, 2, 10) despite the fact that
t 2 T \ BŁT \ BŁRAT.¶

3.6. CORRELATED EQUILIBRIUM

We now turn to the notion of correlated equilibrium which was
introduced by Aumann (1974, 1987).

DEFINITION 3.16: let G be a normal-form game. A correlated
equilibrium distribution is a probability distribution p over the
set S of strategy profiles such that, for every player i and every
function di : Si ! Si

† In the first round (AG, a) and (AC, a) are eliminated [the first because d
weakly dominates a, the second because AG weakly dominates AC]; in the second
round (AG, d) and (AC, d) are eliminated (because 1’s strategy is dominated by
DG).

‡ Stalnaker (1994: p. 64, theorem 4) incorrectly makes this claim.
§ This example is due to Stalnaker (1996, pers. comm.).
¶ However, in perfect information games like the Centipede (see Section 4),

which has a unique Nash equilibrium outcome in every subgame, strong
rationalizability implies the Nash (and subgame perfect) equilibrium outcome
(for a related result see Aumann, 1998a). Aumann and Brandenburger (1995)
provide sufficient epistemic conditions for Nash equilibrium.
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FIGURE N.

∑

s2S

ui(s)p(s) ½
∑

s2S

ui(di(si), s$i)p(s) (3.1)

EXAMPLE 3.17: consider the game of Figure P (discussed by
Aumann, 1974) and the following distribution: p"U, L# D p"D, R# D
1
2 . Consider player 1. The left-hand side of (3.1) is equal
to 1

25 C 1
21 D 3. The possible functions d : fU, Lg ! fU, Lg are the

identity function id [which gives the LHS of (3.1)], dU [defined
by dU"x# D U for all x], dD [defined by dD"x# D D for all x] and d0
[defined by d0"U# D D, d0"D# D U]. With dU the RHS of (3.1) is
equal to 1

25 C 1
20 D 2Ð5, with dD it is equal to 1

24 C 1
21 D 2Ð5, with d0

it is equal to 1
24 C 1

20 D 2. Thus (3.1) is satisfied for player 1. Similar



188 P. BATTIGALLI AND G. BONANNO

FIGURE O.

calculations show that (3.1) is also satisfied for player 2. Thus
p"U, L# D p"D, R# D 1

2 is a correlated equilibrium distribution.

Every Nash equilibrium is a correlated equilibrium.† Further-
more, every convex combination of Nash equilibria is also a cor-
related equilibrium. In a two-person zero-sum game all correlated

† For example, if s is a pure-strategy Nash equilibrium, take p such that
p(s) D 1.



BELIEF, KNOWLEDGE AND GAME THEORY 189

FIGURE P.

equilibria are convex combinations of pairs of optimal (maxmin
and minmax) strategies. Thus, if a two-person zero-sum game has
a unique pure-strategy Nash equilibrium s, then s is the unique
correlated equilibrium point. However, in general, there are corre-
lated equilibria that are outside the convex hull of the set of Nash
equilibria.

One interpretation of the correlated equilibrium concept is that
a correlated equilibrium distribution is the outcome of a Nash
equilibrium of an expanded game with asymmetric information
where each player privately observes a randomly generated, payoff-
irrelevant signal before choosing her action. Correlation between
the signals to different players induces (spurious) correlation
between the players’ actions. In other words, the players use
a correlation device and a self-enforcing choice rule to co-
ordinate their actions. But Aumann (1987) put forward another
interpretation of correlated equilibrium ‘‘as an expression of
Bayesian rationality’’. His interpretation relies on the following
result.

Let ! be a set of states; for every player i let Hi be a partition of
! and denote by Hi"!# the element of the partition that contains
state !. Let pi 2 "!# be individual i’s ‘‘prior’’ such that pi"Hi# > 0
for all Hi 2 Hi. Let si : ! ! Si be a function that specifies i’s choice
of strategy at every state, satisfying the property that if !0 2 Hi"!#
then si"!0# D si"!# [that is, player i knows his own strategy]. Let
s D "s1, . . . , sn#. Player i is rational at state a if the strategy he
chooses at a maximizes his expected utility calculated on the basis
of his ‘‘posterior’’ beliefs pi"ÐjHi"a##:†

8x 2 Si,
∑

!2!

ui"s"!##pi"!jHi"a## ½
∑

!2!

ui"x, s$i"!##pi"!jHi"a##.

Note that here the states ! represent possible worlds, not the
outcomes of a correlation device. According to this interpretation,
there is no ex ante stage where the players contemplate which

† Defined by pi(!jHi(a)) D pi(!)
pi(Hi(a)) [where pi(Hi(a)) D x2Hi(a)pi(x)] if ! 2 Hi(a)

and pi(!jHi(a)) D 0 otherwise.
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signals they could receive and how they should react to them, and
the ‘‘prior’’ pi is simply a notational device to describe player i’s
beliefs at each possible world.

PROPOSITION 3.18: (Aumann, 1987) if the players have a common
prior p (i.e., if there is a probability measure p on ! such that
p1 D . . . D pn D p) and each player is rational at every state, then
the probability distribution induced by p on S is a correlated
equilibrium distribution.

It is clear that the structure considered by Aumann is just a
special case of the notion of model of a game given in definition 3.5.
The extra assumptions that Aumann introduces are: (1) that the
possibility correspondences give rise to partitions and (2) that
the ‘‘posterior’’ beliefs of the players are Harsanyi consistent,
in the sense that they are derived from a common prior.† An
interesting question is, therefore, whether Aumann’s theorem can
be generalized to the case where the possibility correspondences
are non-partitional (i.e., where some players might have false
beliefs). In order to do so one first needs to have a local definition
of Harsanyi consistency (i.e., of the existence of a common prior).
However, obtaining a local formulation of the notion of a common
prior is only part of the difficulty. Recent contributions (Gul, 1998;
Dekel & Gul, 1997; Lipman, 1995) have pointed out that the
meaning of a common prior in situations where there is no ex ante
stage is highly problematic. This skepticism can be developed along
the following lines. As shown in Section 3.2, the description of the
‘‘actual world’’ in terms of belief hierarchies generates a collection
of ‘‘possible worlds’’ (combinations of external states and infinite
hierarchies of beliefs), one of which is the actual world. This set
of possible worlds, or states, gives rise to an epistemic model with
type partitions for each individual. Thus—as Harsanyi (1967–68)
noticed—there is a formal similarity between situations where
the primitives are the individuals’ belief hierarchies and those
of asymmetric information (where there is an ex ante stage at
which the individuals have identical information and subsequently
update their beliefs in response to private signals). However, while
a state in the latter represents a real contingency, in the former it is
‘‘a fictitious construct, used to clarify our understanding of the real
world’’ (Lipman, 1995: p. 2), ‘‘a notational device for representing
the n-tuple of infinite hierarchies of beliefs’’ (Gul, 1998: p. 924).
As a result, notions such as that of a common prior, ‘‘seem to be

† Let us emphasize once again that the prior beliefs pi of player i postulated by
Aumann play no role: only the posterior beliefs pi(ÐjHi(!)) are relevant. Indeed,
given a model of a game according to definition 3.5, one can obtain a ‘‘prior’’ for
player i by taking any convex combination of the different beliefs (types) of that
player, that is, a prior of player i is any point in the convex hull of fpi,! : ! 2 !g.
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based on giving the artificially constructed states more meaning
than they have’’ (Dekel & Gul, 1997: p. 115). Thus an essential
step in providing a justification for correlated equilibrium in such
situations is to provide an interpretation of the common prior
based on ‘‘assumptions that do not refer to the constructed state
space, but rather are assumed to hold in the true state’’, that is,
assumptions ‘‘that only use the artificially constructed states the
way they originated—namely as elements in a hierarchy of beliefs’’
(Dekel & Gul, 1997: p. 116).†

An interpretation of the desired kind of the common prior
assumption in situation where there is no ex ante stage was
provided recently (Bonanno & Nehring, 1996a; see also Feinberg,
1995; and Samet, 1996b, 1998) in terms of a generalized notion
of absence of agreeing to disagree à la Aumann (1976), called
consistency of expectations.

DEFINITION 3.19: at state ˛ there is Consistency of Expectations if
there do not exist random variables Yi : ! ! < (i 2 N) such that:

(1) 8ω 2 !, i2NYi(ω) D 0, and
(2) at ˛ it is common belief that, for every individual i, i’s subjective

expectation of Yi is positive, that is, ˛ 2 BŁ(jjE1 > 0jj \ . . . \ jjEn >
0jj), where jjEi > 0jj D fω 2 ! : ω02!Yi(ω0)pi,ω(ω0) > 0g.

Consistency of Expectations turns out to be equivalent to a
particular local version of the Common Prior Assumption defined
as follows.

DEFINITION 3.20: for every ) 2 (!), let HQC) (for Harsanyi
Quasi Consistency with respect to the ‘‘prior’’ )) be the following
event: ˛ 2 HQC) if and only if

(1) 8i 2 N, 8ω, ω0 2 PŁ(˛), if )(jjpi D pi,ωjj) > 0 then pi,ω(ω0) D
)(ω0)

)(jjpiDpi,ωjj) if ω0 2 jjpi D pi,ωjj and pi,ω(ω0) D 0 otherwise (that is, pi,ω

is obtained from ) by conditioning on jjpi D pi,ωjj),‡ and
(2) )(PŁ(˛)) > 0.

If ˛ 2 HQC), ) is a local common prior at ˛. Furthermore, let
HQC D [)2(!)HQC).

PROPOSITION 3.21:§ at ˛, Consistency of Expectations is satisfied
if and only if ˛ 2 HQC.

Harsanyi Quasi Consistency may seem weaker than expected
in that condition (2) of its definition only requires the derived

† For a defense of the common prior assumption see Aumann (1998b).
‡ Where, for every event E, )(E) D ω2E)(ω). Note that, for every ω 2 ! and

i 2 N, ω 2 jjpi D pi,ωjj. Thus )(ω) > 0 implies )(jjpi D pi,ωjj) > 0.
§ For a proof see Bonanno and Nehring (1996a). See also Feinberg (1995),

Morris (1994) and Samet (1996a).
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common prior to assign positive probability to some commonly
possible state but allows the state representing the actual beliefs
to be assigned zero ‘‘prior’’ probability. However, as illustrated in
the example of Figure Q, Consistency of Expectations (and No
Trade-type arguments) cannot deliver more.

In this example, at state t individual 1 wrongly believes that it
is common belief that the earth is flat, while individual 2 correctly
believes that the earth is not flat and knows 1’s incorrect beliefs.
Expectation consistency is satisfied at t (as well as at b). In fact,
let Y1 and Y2 be random variables on ft, bg such that Y2 D $Y1
and suppose that t 2 BŁjjE1 > 0jj, that is, at t it is common belief
that individual 1’s expectation of Y1 is positive. Then Y1"b# > 0,
hence Y2"b# < 0. Thus b /2 jjE2 > 0jj, that is, at b individual 2’s
expectation of Y2 cannot be positive. Since b 2 PŁ"t#, it follows that
t /2 BŁjjE2 > 0jj. Thus Consistency of Expectations is necessarily
satisfied at t. By proposition 3.21 there must be a m such that
t 2 HQCm. Indeed such a local common prior is given by m"b# D 1.

Is Harsanyi Quasi Consistency an adequate epistemic basis for
correlated equilibrium? Perhaps not too surprisingly, in view of the
previous example, Harsanyi Quasi Consistency is insufficient by
itself, as demonstrated by the following example. Figures R(i) and
R(ii) show a two-person zero-sum game with a unique correlated
equilibrium (B,R), and an epistemic model of it.

In this example, at state t (i) the players’ beliefs satisfy Harsanyi
Quasi Consistency (t 2 HQCm D ! where m"z# D 1), (ii) there is
common belief in rationality (PŁ"t# D ! and at every state each
player’s strategy is optimal given her beliefs) and (iii) no individual
has any false beliefs (t 2 T). Yet at t the players play (T,L) which
is not a correlated equilibrium strategy profile [no correlated
equilibrium distribution assigns positive probability to (T,L)]. Note
that in the above example, although the derived common prior
assigns zero probability to t, there is no sense in which the belief
hierarchies described by state t are ‘‘improbable’’ and constitute a

FIGURE Q.
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FIGURE R.

null event. Indeed the actual beliefs of all players assign positive
probability to t.

What seems to go wrong in the example is that, while player 2
believes player 1 to be wrong at e, this does not show up
as disagreement—and hence as a violation of Harsanyi Quasi
Consistency—since player 1 falsely believes at e that there is
agreement that the true state is z. Hence TCB is violated at e, and
therefore BŁTCB at t (the event TCB was defined in Section 2.4).

Indeed—in the absence of collectively false beliefs—BŁTCB is
exactly what needs to be added to HQC to ensure the play of a
correlated equilibrium strategy-profile, as the following theorem
shows. To take account of the local character of our analysis, we
call a strategy profile a correlated equilibrium strategy profile if it
is played with positive probability in some correlated equilibrium
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(in the ordinary sense). Let CE be the event that (i.e., the set of
states at which) a correlated equilibrium strategy profile is played.

PROPOSITION 3.22: (Bonanno & Nehring, 1998b) fix an arbitrary
finite normal-form game G and an arbitrary model of it. Then

TŁ \ BŁTCB \ HQC \ BŁRAT ! CE.

That is, if t is a state where: (1) what is actually commonly
believed is true and there is common belief in Truth about common
belief, (2) Harsanyi Quasi Consistency of beliefs is satisfied and
(3) there is common belief in rationality, then the strategy profile
associated with t (i.e., the strategy profile actually played) is a
correlated equilibrium strategy profile. On the other hand, as
the example of Figure R shows, if (2) and (3) are satisfied and
instead of t 2 TŁ \ BŁTCB one assumes t 2 T then the strategy
profile associated with t need not be a correlated equilibrium.

REMARK 11: if the condition TŁ \ BŁTCB is weakened to NIŁ

(or, equivalently—cf. proposition 2.5—TCB \ BŁTCB) then the
conclusion is that it is common belief that a correlated equilibrium
is played: NIŁ \ HQC \ BŁRAT ! BŁCE.

A converse to proposition 3.22 is given by the following result.

PROPOSITION 3.23: let G be a game and p 2 (S) a correlated
equilibrium distribution. Then there exists a model M of G, a
probability measure ) 2 (!) and a state . such that

(1) . 2 TŁ \ BŁTCB \ HQC) \ BŁRAT,
(2) the distribution over strategy profiles induced by ) restricted

to f.g [ PŁ(.) coincides with p and
(3) )(.) > 0 (so that the strategy profile actually played is in the

support of p).

4. Epistemic foundations of solution concepts:
(B) extensive-form games

The theory of extensive form (dynamic) games is more complex
and more controversial than the theory of strategic form (static)
games and until recently the epistemic foundations of extensive
form solution concepts were not well understood. The fundamental
reason of these difficulties is that a crucial ingredient of the theory
is modelling how players would behave and what they would believe
immediately after every (partial) history of play, including those
that are inconsistent with the players’ initial beliefs and/or with
the theory. Game theorists agree that ‘‘static’’ solution concepts
are too weak when applied to the strategic form of dynamic games,
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because they do not take into account that each player anticipates
that her opponents would react rationally to whatever information
they receive. But several ‘‘refinements’’ of strategic form solution
concepts have been proposed without a clear understanding of
their epistemic underpinnings. In fact, the static epistemic models
presented in Section 3 do not have sufficient expressive power to
represent the subtleties of the theory of dynamic games, because
they cannot represent the conditional beliefs of the players and
hence their counterfactual reasoning.†

In the last few years our understanding of the foundations
of the theory of extensive form games has been substantially
improved by the development of adequate epistemic models, which
make it possible to provide sufficient epistemic conditions and
even full epistemic characterizations of some extensive form
solution concepts. In this section we present some of these
results within a common framework. Section 4.1 provides an
informal discussion of the main issues using a few simple
examples. The arguments presented here are formalized later.
Section 4.2 introduces extensive form epistemic models. Since
all the examples we are concerned with are multistage games
with observed actions and (possibly) simultaneous moves in some
stages (i.e., games with almost perfect information), we restrict
our analysis to this class of games. This facilitates the discussion
of interactive beliefs as the play unfolds. Section 4.3 presents
the notion of conditional common belief in sequential rationality
and a characterization of a weak notion of extensive form
rationalizability. The methodology and concepts here are still quite
similar to those developed for strategic form games. Section 4.4
features a radical departure from strategic form analysis in order
to explore the epistemic foundations of solution concepts relying
on a ‘‘forward induction’’ principle. Section 4.5 analyses epistemic
independence and backward induction.

4.1. INTRODUCTORY EXAMPLES

4.1.1. The Entry game

The simplest example illustrating the differences between strategic
form and extensive form analysis can be found in any recent
textbook on game theory. The usual story is that there is
a monopolistic market and player 1 is a potential entrant,
while player 2 is the incumbent monopolist. Player 2 may fight

† However, static epistemic models can be used to provide an epistemic
characterization of a weak extensive form refinement of the rationalizability
solution concept (cf. Section 4.3).
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FIGURE S.

the entrant (f ) or acquiesce (a) and split the market. The
game is depicted in Figure S(i), while Figure S(ii) shows its
strategic form.

The game has two Nash equilibria in pure strategies, (In, a)
and (Out, f ), but only the first one is ‘‘plausible’’. There is no
disagreement about the right way to play this game: if the players
understand the game (complete information) and are rational, and
if player 1 believes that player 2 is rational, then they play (In, a),
because the potential entrant anticipates that the incumbent would
react optimally to entry. This is the so-called ‘‘backward induction’’
logic. Here we only want to emphasize that the standard argument
used to deem (Out, f ) ‘‘implausible’’ or ‘‘wrong’’ implicitly relies
on the possibility of assigning a truth value to a subjunctive
conditional. According to this argument, in equilibrium (Out, f )
player 1 believes with positive probability that the statement ‘‘if I
enter, player 2 fights’’ is true while he should be certain that the
statement is false. But since player 1 stays out, the statement is
counterfactual. If the statement were interpreted as the material
implication ‘‘either I stay out, or player 2 fights’’ it would be true,
because player 1 is actually staying out, and player 1 should be
certain that the statement is true.

The backward induction logic used to solve the Entry game
is uncontroversial in all two-stage games where (i) each active
player has a dominant action in the second stage (which may
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depend on the outcome of the first stage) and (ii) anticipating
a second-stage dominant choice yields a unique rational choice
in the first stage. Stackelberg games and the twice repeated
Prisoners’ Dilemma are well-known examples. Intuitively, common
belief—at the beginning of the game—in sequential rationality
(conditional expected utility maximization) yields the backward
induction solution. All the extensive form solution concepts
considered in this section are consistent with initial common
belief in sequential rationality and hence agree with the backward
induction logic in such games. But in more complex games the
equilibrium refinement capturing the backward induction logic,
subgame perfection, becomes more problematic. On the one hand,
there are backward-induction-solvable games with more than
two stages where initial common belief in sequential rationality
seems to be consistent with subgame imperfect outcomes and
assuming common belief in sequential rationality at later stages
is problematic. The finitely Repeated Prisoners’ Dilemma, the
Chainstore game and the Centipede game† (discussed below) are
well-known examples. On the other hand, there are games, such
as the Battle of the Sexes (BoS) with an Outside Option, where
some subgame perfect equilibrium outcomes are inconsistent with
the ‘‘forward induction’’ assumption that each player tries to
‘‘rationalize’’ the observed behaviour of her opponents.

4.1.2. The Centipede

Figure T depicts a version of the Centipede game with its strategic
form.† This is a multistage game of length K with alternating
moves. At the kth stage of the game there are k dollars on the
table, the active player can either take them and terminate the
game or leave them on the table. In the second case one dollar is
added on the table. The game is interrupted after K stages with
the active player either taking K dollars or leaving them to the
opponent.

Like the Repeated Prisoners’ Dilemma, this game has a
unique Nash equilibrium outcome and a unique subgame perfect
equilibrium (backward induction) strategy profile: at each stage
the active player is supposed to take the dollars. But there are
other outcomes consistent with initial common belief in conditional

† The Chainstore game is a finite repetition of the Entry game where the
incumbent sequentially faces different potential entrants in different markets
(Selten, 1978). The Centipede game was first introduced by Rosenthal (1981) to
discuss the ‘‘paradoxical’’ implications of backward induction in the Chainstore
and other games.

† This is Reny’s ‘‘Take-it-or-Leave-it’’ game (see, for example, Reny, 1985,
1995).
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FIGURE T.

expected utility maximization. Suppose that player 2 is initially
certain that player 1 will apply the backward induction logic and
take one dollar, but player 1 leaves it. Then player 2 will be
surprised and may believe that player 1 is probably irrational
and would leave him three dollars if given the opportunity. Given
such beliefs, after action L0, player 2 would rationally leave two
dollars on the table. Suppose that player 1 is rational and assigns
a sufficiently high probability to the event that player 2 is rational
and would have such beliefs after L0. Then player 1 initially leaves
one dollar (correctly) hoping to get three dollars later. In the
situation just described, (0) each player is a conditional expected
utility maximizer, (1) each player is initially certain of (0), (2) each
player is initially certain of (1), and so on.

Can we obtain the backward induction outcome by assuming
that there would be common belief in sequential rationality at
later stages? No. Common belief in sequential rationality after
action L0 is impossible: if player 2 believes that player 1 is



BELIEF, KNOWLEDGE AND GAME THEORY 199

rational, he takes two dollars. If player 1 initially believes that
player 2 is rational and that player 2 would believe that player 1 is
rational after L0, player 1 takes one dollar immediately. Player 1’s
beliefs about player 2 do not change after her own initial action.
This leaves us with only two possibilities: either (a) player 1 is
irrational and chooses L0, or (b) player 1 is rational, chooses T0,
but would believe, if she chose L0, that player 2 is rational and
would believe that player 1 is rational. Since these two events
are mutually exclusive, player 2 could not believe both after
observing L0.

We conclude that, although the backward induction logic may
seem as compelling as the rationalizability logic in static games, it
cannot be justified by a straightforward extension of the epistemic
assumptions characterizing normal form rationalizability.

4.1.3. The Battle of the Sexes (BoS) with an outside option

Consider the game depicted in Figure U. Player 1 (by convention
a female) initially decides whether to play the BoS subgame (In)
or take an outside option (Out) that yields an intermediate payoff.
This game has two subgame perfect equilibrium outcomes, Out
and "In, "T, L##,† but it is often argued that only the second is
‘‘reasonable’’. In fact, only the second equilibrium is consistent
with the following assumptions: (0) all players are rational, (1)
all players believe (0) whenever possible, (1) all players believe
(0)&(1) whenever possible. By (0) player 1 does not play the strictly
dominated strategy "In, B#. On the other hand, strategy "In, T# can
be rationalized by some beliefs. Therefore (0) and (1) imply that,
if player 2 observed In, he would believe that player 1 is playing
"In, T# and hence would respond with L.

Note that the same assumptions yield the backward induc-
tion outcome in the Centipede game of Figure T. In both cases
the solution induced by these assumptions can be obtained by
iteratively deleting weakly dominated strategies. In general, we
may consider a longer list of assumptions where assumption
(k C 1) is: all players believe (0)&(1)&. . . &(k) whenever possi-
ble. We will see that these assumptions are captured by a
notion of extensive form rationalizability which is quite sim-
ilar to the iterative (maximal) deletion of weakly dominated
strategies. These assumptions correspond to a ‘‘forward induc-
tion’’ logic: each player always tries to ‘‘rationalize’’ the observed
behaviour of her opponents, looking for its ‘‘most sophisticated’’
explanation.

† Out is supported by two equilibria in behavioural strategies: [(Out, B), R] and
[(Out, 3

4 T C 1
4 R), ( 1

4 L C 3
4 R)].
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FIGURE U.

4.2. EPISTEMIC MODELS FOR EXTENSIVE FORM GAMES

A finite multistage game with observed actions is a tuple

 D
〈
N, fAigi2N , H, Z, fuigi2N

〉

where N D f1, 2, . . . , ng is a set of players, Ai is a non-empty finite
set of a priori feasible actions for player i, H is a non-empty finite
set of partial histories of play, Z is a non-empty finite set of complete
(or terminal) histories of play and ui : Z ! < is player i’s payoff
function. A history of length k is a finite sequence of action profiles

h D
((

a1
1, . . . , a1

n
)

, . . . ,
(

ak
1, . . . , ak

n

))
2 Ak,
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where A D A1 ð Ð Ð Ð ð An.† As usual, A$i denotes the set of action
profiles of all players other than i. For notational convenience
the empty sequence—denoted by f—is also regarded as a history
preceding every other history and representing the beginning of
the game. The set of (partial and complete) histories is naturally
ordered by the relation ‘‘initial (proper) subhistory of’’, that is,
h D "a1, . . . , ak# precedes h0 D "b1, . . . , bm# if and only if k < m and
"a1, . . . , ak# D "b1, . . . , bk#. The set of histories with this partial
order is a tree, with root given by the empty history f.‡

For every sequence h D "a1, . . . , ak# 2 Ak and action profile a 2 A
we denote the concatenation of h and a by "h, a# D "a1, . . . , ak, a#.
The set of feasible actions for player i immediately after partial
history h 2 H is

Ai"h# D fai 2 Ai : 9a$i 2 A$i, "h, "ai, a$i## 2 H [ Zg .

The set of feasible action profiles immediately after h 2 H is
A1"h# ð Ð Ð Ð ð An"h#. The set of (pure) strategies for player i
is Si ! "Ai#H, where si 2 Si if and only if si"h# 2 Ai"h# for all
h 2 H.§ The complete history induced by a strategy profile
s 2 S is denoted by z"s#.¶ Thus Ui D ui * z : S ! < is player i’s
strategic form payoff function. The strategic form of game  is
G D

〈
N, fSigi2N , fUigi2N

〉
.

For the sake of notational simplicity we are assuming that
each player takes an action at each stage, but the assumption is
completely innocuous, because the set of feasible actions of a player
may be a singleton. Thus we are able to represent any combination
of sequential and simultaneous moves. We say player i is active
at h 2 H if Ai"h# has at least two elements. Game  has perfect
information if there is at most one active player at each history. 
is static, or simultaneous, if H D

{
f
}

.  is generic if for all players
i 2 N and terminal histories z0 6D z00, ui"z0# 6D ui"z00#.

† See Fudenberg and Tirole (1991), Section 3.2.1 and Osborne and Rubinstein
(1994), Sections 6.1.1 and 6.3.2.

‡ The sets of partial and complete histories have the following (quite obvious)
properties: for all h, h0 2

{
f
}

[ ([k½1Ak), ai, bi 2 Ai, a$i, b$i 2 A$i,

ž if h0 2 H [ Z and h precedes h0, then h 2 HnZ,
ž if h 2 H, then h precedes some complete history z 2 Z,
ž if (h, (ai, a$i)) 2 H [ Z and (h, (bi, b$i))) 2 H [ Z, then (h, (bi, a$i)) 2 H [ Z.

The first two properties imply that H \ Z D ; and that the set H [ Z ordered by
the natural precedence relation ‘‘initial subhistory of’’ is a tree with root f where
H is the set of non-terminal nodes and Z is the set of terminal nodes. The third
property says that for every partial history the set of feasible action profiles is a
Cartesian product of its projections on the action sets Ai, i 2 N.

§ Recall that YX is the set of all functions with domain X and range Y.
¶ Thus, z(s) D (a1, . . . , am) if and only if si(a1, . . . , ak) D akC1

i for all i 2 N, k < m.
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[Note that to represent a game with observed actions and
simultaneous moves in some stages with the standard graph-
theoretic definition (e.g., Kreps & Wilson, 1982) we would have
to eliminate inactive players from each stage and introduce (i) an
artificial order among simultaneous moves and (ii) appropriate
information sets. This would make the discussion of interactive
knowledge and beliefs as the play unfolds more cumbersome and
complex. In particular, we implicitly assume that a player receives
information about past behaviour even when she is inactive, while
the standard formulation of extensive form games represents only
the information a player receives when she is active and implicitly
assumes that no information is received otherwise. Thus the
standard formulation does not allow a synchronous representation
of interactive knowledge and beliefs.†]

Fix a multistage game with observed actions . We may obtain
an epistemic model of  simply by providing a model of (or type
space for) its strategic form G. Such a model specifies the initial
beliefs and the strategy of each player at each possible world.
Although the formalism is the same as in Section 3, the most
natural game-theoretic interpretation here is different. Since a
strategy is a contingent plan of action, the model specifies, for each
state of the world, the actions taken along the actual path but
also the action that player i would take at each partial history h
if history h occurred. In other words, we interpret the statement
‘‘if h occurred, i would take action ai’’ as a subjunctive conditional.
A strategy is a combination of subjunctive conditionals and we
assume that the subjunctive conditional ‘‘if h occurred, i would
take action ai’’ is verified at state ! if and only if player i’s strategy
at ! is a function si such that si"h# D ai, independently of whether
history h occurs at state ! or not.‡

For the same reason, the most natural notion of rationality in
an extensive form context is more demanding than in a normal
form context. Intuitively, player i is rational if for every history h
her continuation strategy at h maximizes her conditional expected
payoff given h (see, for example, Kreps & Wilson, 1982). However,
i’s conditional beliefs given h are (implicitly) specified at a state !
of a model for G only if i’s beliefs at ! assign positive probability
to the event that h occurs. In this case, conditional beliefs given
h can be derived via Bayes rule; otherwise, the model is silent
about such beliefs. Thus it seems that in order to make sense of

† Battigalli and Bonanno (1997b) show how to extend the information structure
of extensive form games (inheriting the perfect recall property) so that a player
receives information at every node, including those owned by other players.

‡ Partial history h occurs at ! if the strategy profile at ! is s and h precedes
z(s). Note that even the definition of rationality for static models implicitly relies
on subjunctive conditionals, because a player compares the expected consequences
of her actual decision with the consequences that (in her opinion) would occur if
she chose a different action.
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the notion of rationality in an extensive game framework we have
to enrich the model by specifying, for each state of the world, a
player’s conditional beliefs for any given partial history h. In other
words, a state of the world should describe, not only the action
that player i would take at h, but also the conditional beliefs that i
would have at h.

In order to describe conditional beliefs we first define the concept
of conditional probability system (Rênyi, 1955; Myerson, 1986). Let
! be a finite set and let H be a collection of non-empty subsets of !.†
The set of all functions assigning to each element of H (a subset)
a probability measure on ! is ["!#]H. For every such function
m 2 ["!#]H, we write m"ÐjB# for the probability measure associated
to subset B 2 H and we interpret m"EjB# as the probability of E
given B. When convenient we write m as a vector: m D "m"ÐjB##B2H.
A conditional probability system on h!,Hi is a function m 2 ["!#]H
such that for all E ! !, B, C 2 H,

(1) m"BjB# D 1,
(2) if E ! B ! C, then m"EjC# D m"EjB#m"BjC#.
Condition (1) is obvious. Condition (2) says that the usual rule to

compute conditional probabilities applies whenever possible. The
set of conditional probability systems on h!,Hi is denoted H"!#.
Two special cases are worthy of attention. (i) Suppose that the
set of states is a product ! D S ð T and let H be a collection of
non-empty subsets of S. Then we obtain a corresponding collection
HSðT of subsets of !, that is,

HSðT D
{

B D S0 ð T : S0 2 H
}

.

The interpretation is that only the s-co-ordinate of the state "s, t#
is (partially) observable and HSðT is a collection of potentially
observable events. In this case, with a slight abuse of notation,
we write H"S ð T# for the set of conditional systems. (ii) If H
is the collection of all non-empty subsets of ! (H D 2!n f;g), then
a conditional probability system on h!,Hi is called complete. A
complete conditional probability system represents a belief revision
rule that can be applied for any information structure on !.‡ The
set of complete conditional probability systems is denoted Ł"!#.
We will focus mainly on case (i).

4.2.1. Type spaces for extensive form games

When the players reason about their best course of action at any
point of the game they form beliefs about what their opponents

† H may, but need not be the family of events corresponding to the occurrence
of partial histories in .

‡ For references on belief revision see Gärdenfors (1988). See also Stalnaker
(1996, 1998) and Brandenburger (1997).
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would do and what they would believe immediately after some
different histories of play, if such histories occurred. Similarly, as
‘‘external observers’’, or ‘‘theorists’’, we would like to be able to
specify, for every possible world, what the players would do and
what they would believe about each other’s behaviour and beliefs
at each partial history of the game. Extensive form type spaces are
epistemic models with such expressive power.

Let S be the set of strategy profiles of game  and, for every
h 2 H, let S"h# denote the set of profiles inducing, or ‘‘reaching,’’ h,
that is,

S"h# D
{

s 2 S : h precedes z"s#
}

.

Clearly, S"h# D S1"h# ð Ð Ð Ð ð Sn"h#, where Si"h# is the projection of
S"h# on Si.† The collection of subsets

H D fS"h# : h 2 Hg

represents a family of commonly observable events about players’
behaviour. Note that H has a special structure, which reflects the
tree-structure of H : S D S"f# 2 H and for all S0, S00 2 H, either
S0 ! S00, or S0 + S00 or S0 \ S00 D ;.

DEFINITION 4.1: a finite type space for  is a tuple T D〈
N, S,H, fTigi2N , f(igi2N

〉
where, for every i 2 N, Ti is a finite set

and (i is a function (i : Ti ! H(S ð T$i) (T$i D j 6DiTj).‡

Note that definition 4.1 extends the notion of type space given in
Section 3.2. The strategic form definition is obtained as a special
case if  is a static game. Furthermore, since S D S"f# 2 H, the
model specifies the actual initial beliefs of each player at the
actual state: if i’s type in a given state is t 2 Ti, her initial beliefs
at this state are given by the probability measure qi,t"ÐjS ð T$i#.
Therefore an extensive form type space contains a type space in
the usual sense and we can define the belief operators Bi"i 2 N#
and the common belief operator BŁ as before. But in this extended
model we can do more: for every i 2 N and h 2 H, we can define a
belief operator Bi,h, where Bi,hE is the event that player i would

† In games with imperfectly observed actions, perfect recall implies that, if I is
an information set of player i, then S(I) D Si(I) ð S$i(I), where S(I) is the set of
strategy profiles inducing a path through information set I.

‡ Infinite type spaces are similarly defined, but one has to take care of measure-
theoretic issues. The extension of the concept to general extensive form games
and dynamic games of incomplete information is straightforward.

Finite extensive form type spaces have been originally introduced by Ben
Porath (1997) (the working paper version is dated 1992). The definition given
here is due to Battigalli and Siniscalchi (1998a), who elaborate on the concept.
In particular, they analyse type-morphisms between general (possibly) infinite
spaces and construct a universal extensive form type space.
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believe E immediately after history h, if h occurred. Since each
history is commonly observed, it makes sense to define common
belief operators BŁ,h"h 2 H#, where BŁ,hE is the event that, if h
occurred, E would be commonly believed. Formally, for every event
E ! S ð T1 ð Ð Ð Ð ð Tn and player i 2 N we define†

Bi,hE D
{

"s, t, t$i# : qi,t"EtjS"h# ð T$i# D 1
}

,

Be,hE D
⋂

i2N

Bi,hE, BŁ,hE D
⋂

k½1

Bk
e,hE,

BiE D Bi,fE, BŁE D BŁ,fE.

It is easily checked that these belief operators have all the
properties of the corresponding operators defined for Bayesian
frames.‡ In particular, they satisfy consistency, conjunction,
positive introspection and monotonicity, and the individual belief
operators Bi,h also satisfy negative introspection.

4.2.2. Hierarchies of conditional beliefs and universal type spaces

We know that a ‘‘static’’ epistemic model for a game with strategy
space S implicitly specifies a profile of infinite hierarchies of beliefs
for each state (see Section 3.2). Similarly, a type space for 
implicitly specifies a profile of infinite hierarchies of conditional
beliefs. The first-order conditional beliefs of type t 2 Ti are given
by the conditional probability system

m1
i,t D

(
mrgS qi,t"ÐjS"h# ð T$i#

)
h2H 2 H"S#.

Given all the first-order mappings tj 7$! m1
j,tj

"j 2 N) we can define
the second-order conditional beliefs of type t 2 Ti: for all h 2 H,

m2
i,t

(
"s, "m1

j #j 6Di#jS"h# ð
[
H"S#

]n$1
)

D

qi,t

({
"s, t$i# : 8j 6D i, m1

j,tj
D m1

j

}
jS"h# ð T$i

)
.

Higher-order belief mappings can be obtained inductively. Thus,
a hierarchy of conditional beliefs for a given player i specifies for

† Recall that, for each event E and type t 2 Ti, Et is event E from the point of
view of type t, i.e., the set of elements of S ð T$i that are consistent with event E
and type t (see Section 3.2).

‡ In fact, for each history h 2 H, we can derive from T a type space
Th for S(h): just take the belief functions qi,h : Ti ! (S(h) ð T$i), where
qi,h,t(E) D qi,t(EjS(h) ð T$i) for all E ! S(h) ð T$i. As we noticed in Section 3.2,
a type space for S(h) corresponds to a model of S(h) in an obvious ‘‘beliefs
preserving’’ way. The conditional belief operator Bi,h corresponds to i’s belief
operator in this model.
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each order k and each history h the beliefs that i would have
at h about his opponents’ contingent behaviour and lower-order
conditional beliefs for any history h0.† As with ‘‘static’’ type spaces,
at each state "s, t# the corresponding hierarchies of beliefs satisfy a
natural ‘‘marginalization property’’ and assign zero probability to
the states violating this property.

Any fixed type space contains only a small subset of the set
of all conceivable hierarchies of conditional beliefs for game .
We have seen in the analysis of strategic form games how the
‘‘smallness’’, or incompleteness, of epistemic models prevents the
formulation of simple ‘‘if and only if’’ characterizations of solution
concepts like normal form rationalizability. The incompleteness
of type spaces becomes more relevant in the context of extensive
form games. In fact, if we want to formalize the assumption that
a player would try to ‘‘rationalize’’ the observed actions of his
opponents whenever possible (as in our discussion of the BoS
with an Outside Option), we would like this player to be able
to consider any conceivable profile of opponents’ hierarchies of
conditional beliefs. But in an incomplete type space this search
for hierarchies that can rationalize some observed behaviour is
artificially limited. Thus the possibility of constructing a universal
type space is even more important for extensive form games. We
present below the construction of a universal type space for  due
to Battigalli and Siniscalchi (1998a), which is quite close to the
standard construction of Section 3.2.‡

In analogy with the construction for the static case, we let
H"Xk# denote the set of all kth-order conditional beliefs (including
the inconsistent ones) and Zk denote the set of kth-order beliefs of
a given player’s opponents:

ž X0 D S,
ž given Xk$1 (k ½ 1), Zk D [H"Xk$1#]n$1, Xk D Xk$1 ð Zk.

† According to our definition of type space a player also has beliefs about her
own behaviour. But we will assume that rational players are always certain of
their behaviour.

‡ In the construction we use a more general definition of conditional probability
system on a possibly infinite space. Let ! be a measurable space with a sigma-
algebra of events A and let H ! A. Since in our analysis the appropriate
sigma-algebras are always understood, they are not explicit in our notation.
A conditional probability system on h!,Hi is a function m 2

[
(!)

]H satisfying
the same properties as in the finite case for all measurable subsets E and all
B, C 2 H. We consider spaces of the form ! D S ð T endowed with the information
structure H ! 2S, where S and H are derived from the finite game , and T is
some metrizable, separable and complete topological space endowed with the
Borel sigma-algebra. With the usual slight abuse of notation we write H(S ð T)
for the set of conditional systems even if H is not a collection of subsets of S ð T. It
can be shown that also H(S ð T) is a metrizable, separable, complete topological
space, given the (product) topology of weak convergence of measures.
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Now we define the set TU
i ² H"X0# ð H"X1# ð Ð Ð Ð ð H"Xk#

ð Ð Ð Ð of ‘‘conceivable’’ hierarchies of beliefs, i.e., those which satisfy
the appropriate consistency property:† for notational convenience
we write mk

i,h for player i’s beliefs conditional on the event
corresponding to history h:

ž Y1
$i D X1,

ž Yk
$i D f"s, ""m1

j #j 6Di, . . . , "mk$1
j #j 6Di, "mk

j #j 6Di# 2 Xk$1 ð Zk:
8j 6D i, 8h 2 H, mrgXk$2 mk

j,h D mk$1
j,h , mk

j,h"Yk$1# D 1g,
ž TU

i D f"m1
i , . . . , mk$1

i , mk
i , . . .# 2 1

kD0H"Xk#:
8k ½ 1, 8h 2 H, mrgXk$2 mk

i,h D mk$1
i,h , mk

i,h"Yk$1
$i # D 1g.

The consistency property here says that the marginalization
condition must be satisfied for every given history, and that
all conditional beliefs must rule out other players’ hierarchies
violating this condition as well as the hierarchies not ruling out
other players’ hierarchies violating this condition, and so on. Let
TU

$i D j 6DiTU
j .

PROPOSITION 4.2: there is a ‘‘canonical homeomorphism’’ between
TU

i and H(S ð TU
$i), that is, a bijective and bicontinuous function

(U
i : TU

i ! H(S ð TU
$i) such that for all t D ()1

i , )2
i , . . .) 2 TU

i , k ½ 1
and h 2 H,

mrgXk$1 (U
i,h,t D )k

i,h,

where (U
i,h is the h-co-ordinate function of (U

i .

In analogy with the static case, proposition 4.2 shows that

TU D
〈

N, S,H,
{

TU
i

}

i2N
,
{

qU
i

}

i2N

〉

is a type space for . Type space TU is universal in the following
sense:

PROPOSITION 4.3: for every type space TD
〈
N, S,H, fTigi2N , f(igi2N

〉

there is a unique n-tuple of (measurable) functions ϕ D (ϕi)i2N, ϕi :
Ti ! TU

i , such that for all i 2 N, t 2 Ti, E ! S ð TU
$i (measurable)

and h 2 H,

(i,h,t
({

(s0, t0
$i) 2 S ð T$i : (s, ϕ$i(t$i)) 2 E

})
D (U

i,h,ϕi(t)(E).

† Again, all the individuals are symmetric in this construction (as in the static
case), but symmetry is a special feature due to symmetric information. In general
extensive games each player has her own information structure Hi and this
introduces an asymmetry in the construction.
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4.2.3. State space models and belief revision

The following definition of a model for  is adapted from Stalnaker
(1996)† and extends the notion of a model for a strategic form game.

DEFINITION 4.4: a finite model for  is a tuple
〈
N, fSigi2N , fpigi2N , f+igi2N , fqigi2N

〉

where
〈
N, fSigi2N , fpigi2N , f+igi2N

〉
is a model for G with type

partition Ti D
{

jjpi D pi,ωjj : ω 2 !
}

(see definition 3.5) and, for each
player i, qi : ! ! [Q2Ti

Ł(Q) is a function such that, for all ˛ 2 !,
all ω 2 !,

(1) qi,˛ 2 Ł (jjpi D pi,˛jj
)

and qi,˛
(
Ðj(jjpi D pi,˛jj)

)
D pi,˛,

(2) if pi,˛ D pi,ω, then qi,˛ D qi,ω,
(3) for each h 2 H there is some world ω 2 ! such that +(ω) 2 S(h).

Recall that Ł"X# !
[
"X#

]2Xnf;g is the set of complete conditional
probability systems on a given set X. A complete CPS represents
an individual’s belief revision policy independently of the class of
potentially observable events. Condition (1) of definition 4.4 says
that for each state of the world a player i has a complete CPS
qi,a on the states where i’s epistemic type is the same as in a and
that the ‘‘initial beliefs’’ given by qi,a coincide with pi,a (actually,
the pi belief functions are redundant in this definition, but they
facilitate the comparison with the standard definition of model for a
game). By condition (2), the type partition fully expresses player i’s
epistemic attitudes, including her dispositions to revise her beliefs
conditional on any possible event. Condition (3) says that each
partial history obtains at some world. Representing epistemic types
as complete CPSs allows us to ignore the information structure of
 in the definition of the epistemic model, except for the ‘‘richness’’
condition (3).‡

An extensive form type space T can be derived from such a
model M (cf. remark 10). Let tj"!# denote the cell of player j’s type
partition containing world ! in M. Then we can derive mappings
qi : Ti ! H"S ð T$i# as follows:

8a 2 !, 8E ! S ð T$i, 8h 2 H, qi,ti"a# "EjS"h# ð T$i# D
qi,a "f! 2 ti"a# : "s"!#, t$i"!## 2 Eg j f! 2 ti"a# : s"!# 2 S"h#g# .

† Stalnaker’s original definition uses ‘‘epistemic priority’’ relations. It can be
checked that there is a canonical bijection between the class of models à la
Stalnaker and the class of models defined here.

‡ The stronger condition that the mapping s be onto avoids any direct reference
to the underlying extensive form. Stalnaker (1996) uses a notion of ‘‘perfect ration-
ality’’ given by lexicographic expected utility maximization, which also exclusively
relies on the strategic form. Perfect rationality implies conditional expected utility
maximization at every relevant information set in the extensive form.
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It is easily verified that we get essentially the same hierarchies of
conditional beliefs at corresponding states of T and M. We can also
do the converse, i.e., obtain a model M for  from a (finite) type
space T for . But, except for trivial cases, there are several models
M corresponding to T, because in general there are many ways to
complete a CPS on "S,H#.

4.3. SEQUENTIAL RATIONALITY AND COMMON BELIEF

Strategies have two interpretations in the present framework. A
strategy for player i is (i) a component of a possible world describing
a combination of subjunctive conditionals of the form ‘‘i would take
action ai at history h 2 H’’, (ii) a plan of action which is part of i’s
beliefs about how the play will unfold and hence guides i’s choice
at any given history. If an individual rules out the possibility of
mistakes in implementing her plan, she does not have to plan
in advance for contingencies prevented by the plan itself. Yet a
strategy si may specify behaviour at histories (more generally at
information sets) whose occurrence is prevented by si. Thus a
plan of action is typically a less complete description of a player’s
contingent behaviour than a strategy (see, for example, Rubinstein,
1991).† In this section we focus on the notion of sequential
rationality of plans of action, but rather than working explicitly
with plans of action, we take the equivalent and notationally
simpler approach of checking the properties of a strategy si
only at histories not prevented by si itself. Let H"si# denote
this set of histories, that is, Hi"si# D fh 2 H : si 2 Si"h#g. Similarly,
let H$i"si# D fS$i"h# ! S$i : h 2 Hi"si#g denote the corresponding
collection of subsets of opponents’ strategy profiles. In Section 3 we
assumed that a rational player is certain of her own strategy, which
is a best response to her marginal beliefs about the opponents.
Likewise, we assume here that a rational player is initially certain
of her own strategy and, for each history consistent with it, would
continue to be certain of her strategy and would optimize against
her conditional beliefs about the opponents.

REMARK 12: fix si 2 Si and m 2 H"S ð T$i#. Suppose that

8h 2 Hi"si#, m"fsig ð S$i ð T$ijS"h# ð T$i# D 1. "4.1#

Then the vector of probability measures m$i D "mrgS$i
m$i"ÐjS"h#ð

T$i##h2H"si# is a conditional probability system on hS$i,H$i"si#i, that
is, m$i 2 H$i"si#"S$i#.

† Formally, a plan of action is defined as a class of realization-equivalent
strategies. The plan of action contained in si is given by the maximal set [si] ! Si
of strategies s0

i such that, for every s$i 2 S$i, z(si, s$i) D z(s0
i, s$i). It turns out that

[s0
i] D [si] if and only if si(h) D s0

i(h) for all h such that si, s0
i 2 Si(h).
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DEFINITION 4.5: fix si 2 Si and )$i 2 H$i(si)(S$i). We say that si is
a (weakly) sequential best response to )$i —written si 2 ri()$i)—if,
for all h 2 H(si) and all s0

i 2 Si(h),
∑

s$i

[
Ui(si, s$i) $ Ui(s0

i, s$i)
]

)$i(s$ijS$i(h)) ½ 0.

We say ‘‘weakly sequential’’ because expected payoff maximiza-
tion is required only at histories consistent with the given strategy.
This simply reflects that we are defining a notion of sequential
rationality for plans of action. But we put ‘‘weakly’’ in parentheses
because from now on we simply say ‘‘sequential’’.

DEFINITION 4.6: fix a type space T for . Player i is sequentially
rational at state (si, s$i, ti, t$i) if

(1) type ti is certain of si whenever possible, that is, si and ) D (i,ti

satisfy condition 4.1 above,
(2) si is a sequential best response to (mrgS$i

(i,ti (ÐjS(h)ðT$i))h2H(si)
(the first-order conditional beliefs of type ti about the opponents at
histories consistent with si).

Let SRATi denote the set of states where player i is sequentially
rational and let SRAT D \i2NSRATi denote the event that all
players are sequentially rational.

REMARK 13: (Tabular representation) when considering two-
person games, we represent the essential features of finite type
spaces as follows. First, we restrict our attention to states where
condition 4.1 (certainty of one’s own strategy) is satisfied and this
is common belief. Then, for each player i we construct a matrix
where each row fully specifies her behaviour and relevant beliefs.
The first element is player i’s strategy, the second element is
her epistemic type label, the following elements are the marginal
conditional distributions on Sj ð Tj for every history h 2 H (i’s
beliefs about herself are implied by condition 4.1 at all histories
consistent with the given strategy and arbitrary otherwise). For
each h 2 H, the kth element of the corresponding probability vector
is the probability of row k in the matrix for player j. A state of the
world is labelled by the ordered pair of indices of the corresponding
rows in the matrices for player 1 and 2.

FIGURE V.
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EXAMPLE 4.7: the tables in Figure V represent the essential
features of a type space for the Entry game (Figure S). Note that,
in player 2’s matrix, all the probability distributions of the column
corresponding to history "In# assign probability one to the first row
of player 1’s matrix. This is implied by conditioning on the observed
history. In fact, player 1’s first row is the only one where she plays
In. (Furthermore, in row 1, player 1 does not change her beliefs
after playing In because she originally assigned probability one to
this action. Her row-2 beliefs conditional on In are immaterial for
our arguments.) Player 1 is (sequentially) rational at each state ! 2
f1, 2g ð f1, 2g. Player 2 is sequentially rational at "1, 1# and "2, 1#.
At state "1, 1# there is common belief in sequential rationality.

Fix a partial history h 2 H. We would like to characterize the
strategies consistent with (history h, sequential rationality and)
common belief in sequential rationality at h. The following iterative
procedure is meant to capture this assumption (cf. Reny 1985, 1993,
1995):†

ž 8i 2 N, S0
i,h D Si"h#, 8k ½ 0, Sk

h D i2NSk
i,h, Sk

$i,h D j 6DiSk
i,h,

ž 8i 2 N,

SkC1
i,h D

{
si 2 Si"h# : 9m$i 2 H$i"si#"S$i#, si 2 ri"m$i#,

m"Sk
$i,hjS$i"h## D 1

}
,

ž S1
h D \k½1Sk

h.

† Reny’s papers do not use an epistemic model. The epistemic foundations of
Reny’s work are provided in Battigalli and Siniscalchi (1998a). In particular, Reny
(1993) defines a general class of procedures to characterize the set of strategies
S1

F consistent with (sequential rationality and) common belief in (the opponent’s)
sequential rationality for a given set of histories F ! H. Battigalli and Siniscalchi
(1998a) show that, in two-person games, S1

F is indeed the projection on S of the
following event (defined in TU , otherwise the projection is included in S1

F ):

SRAT \




⋂

h2F,i,j2f1,2g,j6Di

Bi,hSRATj



\




⋂

h,g2F,i,j2f1,2g,j6Di

Bi,hBj,gSRATi



 \ . . .

Reny (1993) addresses the following problem: we could justify backward induction
in generic perfect information games by assuming common belief in rationality for
the class of all partial histories consistent with rationality except those where the
active player has a dominant continuation strategy. Let F() be this class for game
. Clearly this justification of backward induction is possible only if S1

F() 6D ;. It
is easy to verify in simple examples that S1

F() may be empty (Centipede game) or
not (Entry game). Reny shows that S1

F() is empty if and only if F() is included in
the set of backward-induction histories.
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S1
i,h is the set of sequentially rational strategies consistent with h.

The proposed interpretation of S2
i,h is the set of strategies consistent

with h and with the event that player i is sequentially rational and
would believe at h that everybody is sequentially rational. SkC1

i,h has
a similar proposed interpretation. It is easily proved by induction
that SkC1

h ! Sk
h. Since S is finite, there is some kŁ such that Sk

h D S1
h

for all k ½ kŁ.

EXAMPLE 4.8: in the Centipede game depicted in Figure T,
Sk

"L0# D ; for all k ½ 3. In fact, taking into account that L0L00 is
strictly dominated by T0 which is the unique best response to t, we
have S1

"L0# D fL0T00g ð fl, tg, S2
"L0# D fL0T00g ð ftg, S3

"L0# D ;.

Note that the above procedure yields normal form rationaliz-
ability in static games. Furthermore, for h D f, the procedure is
very similar to normal form rationalizability; the only difference
is that ‘‘best response’’ is replaced by ‘‘sequential best response’’.
The fSk

fgk½1 procedure selects the backward induction solution in
the Entry game and more generally in all ‘‘backward-induction-
solvable’’ two-stage games, but not in more complex games. For
example, the only strategy eliminated in the Centipede game of
Figure T is "L0, L00# and the only strategy eliminated in the BoS
with an Outside Option (Figure U) is "In, B#. We call this proce-
dure weak extensive form rationalizability , where the adjective
‘‘weak’’ refers to the fact that the players do not necessarily try
to ‘‘rationalize’’ their opponents behaviour after unexpected histo-
ries. A stronger notion of rationalizability featuring this ‘‘forward
induction’’ principle is presented in Section 4.4.

Given the similarity to normal form rationalizability, it should
not come as a surprise that weak extensive form rationalizability
is related to a notion of iterated dominance. Recall that a
strategy si 2 Si is weakly dominated by a (pure or) mixed strategy
mi 2 "Si# if and only if (a) 8s$i 2 S$i, Ui"si, s$i# ) Ui"mi, s$i# and
(b) 9sŁ

$i 2 S$i, Ui"si, sŁ
$i# < Ui"mi, sŁ

$i#. Let Wi ! Si denote the set
weakly undominated pure strategies of player i’s and let Wp

i + Wi
denote the set of player i’s pure strategies not weakly dominated by
other pure strategies. We say that a strategy si 2 Si is conditionally
dominated at history h 2 H if and only if si 2 Si"h# and si is (strictly)
dominated on the subset S$i"h# by some mixed strategy mi 2 "Si#
with Supp"mi# ! Si"h#. We let Ci"h# denote the set of conditionally
undominated strategies at h (note that :Si"h# ! Ci"h#). The
following results relate conditional dominance, weak dominance
and sequential rationality.†

† Results (1) and (2) hold for all finite extensive form games with perfect recall.
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LEMMA 4.9: (Battigalli, 1997; Ben Porath, 1997; Shimoji &
Watson, 1998) fix a finite game with observed actions  and an
arbitrary player i in .

(1) Wi ! S1
i,0 D \h2HCi(h).

(2) If  is generic, S1
i,0 ! Wp

i .
(3) If  has perfect information, Wi D Wp

i .
(4) If  is generic and has perfect information, Wi D S1

i,0 D Wp
i .

Let S1W (S1Wp) be the set of strategy profiles whose elements
are not strictly dominated by a mixed strategy in the restriction
of strategic game G to W ! S (Wp ! S). Similarly, let SkW
(SkWp) be the set of strategy profiles whose elements are not
strictly dominated by a mixed strategy in the restriction of G
to Sk$1W (Sk$1Wp).† The following result is a straightforward
consequence of lemma 4.9 and—together with it—provides an
‘‘iterative dominance characterization’’ of weak extensive form
rationalizability.

COROLLARY 4.10: for all k ½ 1,
(1) SkW ! SkC1

0 ,
(2) if  is generic, SkC1

0 ! SkWp,
(3) if  is generic and has perfect information, SkW D SkC1

; D
SkWp.

EXAMPLE 4.11: using corollary 4.10 it is easy to check that
the set of weakly extensive form rationalizable strategies in
the Centipede game of Figure T is quite large: S1

f D S1
f D

fT0T00, T0L00, L0T00g ð fl, tg. Similarly, for the BoS with an Outside
Option, S1

f D S1
f D f"Out, T#, "Out, B#, "In, T#g ð fL, Rg.

The following results show that the intended interpretation of
the procedures

{
Sk

h
}

k½1 (h 2 H) is indeed correct. In particular,
they provide an epistemic characterization of weak extensive
form rationalizability (cf. propositions 3.10 and 3.11).‡ For static

† The SkW procedure has been first put forward by Dekel and Fudenberg (1990)
to characterize the implications of iterated weak dominance that are robust to
a ‘‘small amount’’ of incomplete information. Börgers (1994) shows that S1W is
the set of strategies consistent with ‘‘almost common belief’’ (common belief with
probability close to one) in rationality. Gul (1996) and Brandenburger (1992)
provided other characterizations. On this see Dekel and Gul (1997).

‡ Weak extensive form rationalizability can be given an epistemic character-
ization using ‘‘static’’ epistemic models. Let T be a ‘‘static’’ type space for the
strategic form game G. Say that i is extended rational at state (si, s$i, ti, t$i) if
there is some m$i 2 H$i(si)(S$i) such that m$i(ÐjS$i) D mrgS$i

qi,ti and si 2 ri(m$i).
Then s 2 S1

f if and only if there is some type space T for G and some state
(s, (ti)i2N) such that every i is extended rational and there is common belief in
extended rationality at (s, (ti)i2N).
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games, we obtain a ‘‘type space’’ characterization of normal form
rationalizability. The characterization of rationalizability due to
Tan and Werlang (1988) is a special case of proposition 4.13 below.
For any given type space T and history h, let [h] :D S"h# ð i2NTi
denote the event that h occurs. Recall that B0

e,h"E# D E.

PROPOSITION 4.12: (Ben Porath, 1997) let  be a finite game with
observed actions and fix a type space T for . Then, for all h 2 H
and k D 0, 1, 2 . . .

(i) SRAT \ (\k
jD0Bj

e,hSRAT) \ [h] ! SkC1
h ð (i2NTi) and

(ii) SRAT \ BŁ,hSRAT \ [h] ! S1
h ð (i2NTi).

PROPOSITION 4.13: (Battigalli & Siniscalchi, 1998a) let  be a
finite game with observed actions and consider the universal type
space TU for . Then, for all s 2 S, h 2 H and k D 0, 1, 2, . . .,

(i) s 2 SkC1
h if and only if there is a type profile (ti)i2N 2 i2NTU

such that

(
s, "ti#i2N

)
2 SRAT \




k⋂

jD0

Bj
e,hSRAT



 \ [h],

(ii) s 2 S1
h if and only if there is a type profile (ti)i2N 2 i2NTU

such that (
s, "ti#i2N

)
2 SRAT \ BŁ,hSRAT \ [h].

(Ben Porath, 1997) Furthermore, there is a finite type space T for 
satisfying the same properties.

EXAMPLE 4.14: proposition 4.13 implies that the set of strategy
profiles consistent with initial common belief in sequential ratio-
nality in the Centipede game of Figure S is fT0T00, T0L00, L0T00g ð fl, tg
(cf. example 4.11). Figure W(i) shows a type space for this game.
Since we are interested in plans of actions, we do not completely
specify the strategy of player 1 when she chooses T0. We further
simplify the tables by coalescing the columns corresponding to
histories where player i has the same marginal distribution about
player j. Figure W(ii) represents interactive beliefs at the beginning
of the game with the usual graphical conventions (cf. remark 3).
It can be checked that at state "2, 1# the players are sequentially
rational and this is common belief at the beginning of the game. The
outcome is "L0, l, T00#. This confirms our informal discussion of the
Centipede game. State "1, 2# corresponds to the backward induction
equilibrium. (This is the only state satisfying the Truth Condition.)

4.4 STRONG BELIEF AND FORWARD INDUCTION

As we mentioned in Section 4.1.3, we would like to formalize and
characterize the following sequence of assumptions:
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FIGURE W.

(0) every player is sequentially rational,
(1) every player believes (0) whenever possible,
(2) every player believes (0)&(1) whenever possible,
. . .
(k+1) every player believes (0)&(1)&. . . &(k) whenever possible,
. . .
We have argued that assumptions (0), (1) and (2) eliminate

the subgame perfect equilibrium outcome Out in the BoS with
an Outside Option. But in order to appropriately formalize this
argument we must be careful with the qualification ‘‘whenever
possible’’. If we represent the players’ interactive beliefs with a
‘‘small’’ type space, a player may find it impossible to rationalize
his opponent’s behaviour just because the space does not contain
the conceivable epistemic types that rationalize such behaviour.
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FIGURE X.

EXAMPLE 4.15: Figure X shows two type spaces for the BoS with
an Outside Option. It can be checked that type space (a) can
be embedded in type space (b), that is, the profiles of strategies
and hierarchies of conditional beliefs corresponding to the states
of space (a) are a subset of the profiles corresponding to states of
space (b).† In space (a) there is no state consistent with the forward
induction story, because player 2 is forced to believe, in the BoS
subgame, that only irrational strategy/type pairs could have chosen
In. On the contrary, in space (b) player 1’s rational strategy/type
pair "In, T; t0000

1 # chooses In and player 2’s rational strategy/type
pair "L, t000

2 # rationalizes this move. State (4,3) of type space (b) is
consistent with the forward induction story of Section 4.1.3.

Type space (b) in the above example is sufficiently rich to
correctly represent the forward induction story, but in order to

† To be precise, we should also check the states inconsistent with assumption
(1) of definition 4.5, but we are free to specify the beliefs at such states so that the
claim holds.
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provide a neat formalization it is better to work with a type
space that contains all the conceivable epistemic types, that is, the
universal type space for the given extensive form game. Here we
present some concepts and results due to Battigalli and Siniscalchi
(1997). Related ideas are discussed by Stalnaker (1998).

4.4.1. Extensive form rationalizability

We first introduce the solution procedure called ‘‘extensive form
rationalizability’’ that is supposed to capture assumptions (0), (1),
. . . ,(k),. . .

DEFINITION 4.16: let S0
e D S. Assume that S1

e , . . . , Sk
e have been

defined. Then s D (si)i2N 2 SkC1
e if and only if s 2 Sk

e and, for each
player i, there exists some CPS )$i 2 H$i(si)(S$i) such that:

(1) For each h 2 H(si), S$i(h) \ Sk
e,$i 6D ; ) )$i(Sk

e,$ijS$i(h)) D 1.
(2) si 2 ri()$i).
A strategy profile s is extensive form rationalizable if and only if

s 2 \k>0Sk
e .

The preceding definition is very similar to that originally
proposed by Pearce (1984) (see Battigalli, 1997). It can be checked
that the only extensive form rationalizable profile in the BoS
with an Outside Option is the ‘‘forward induction’’ equilibrium
["In, T#, L].

4.4.2. Strong (or robust) beliefs

Next we define the meaning of ‘‘believing event E whenever
possible’’. This is captured by the notion of ‘‘strong’’ (or ‘‘robust’’)
belief. † Fix the universal type space TU for game . Recall that an
event in TU is a (measurable) subset E ! S ð i2NTU

i .

DEFINITION 4.17: for any event E 6D ;, player i and type (hierarchy
of conditional beliefs) t 2 TU

i we say that type t strongly believes E
(believes E whenever possible) if for all partial histories h 2 H,

Et \ (S(h) ð TU
$i) 6D ; ) (i,t(EtjS(h) ð TU

$i) D 1.

Let Bs
i E denote the event that player i strongly believes E and

let Bs
eE denote the event that everybody strongly believes the

(non-empty) event E, that is:

† ‘‘Robust belief’’ is the terminology used by Stalnaker (1998) for a similar
concept.
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ž Bs
i E :D

{
"s, ti, t$i# : 8h 2 H, Eti \ "S"h# ð TU

$i# 6D
; ) qi,ti"Eti jS"h# ð TU

$i# D 1
}

,†
ž Bs

eE :D \i2NBs
i "E#.

By inspecting the definition of strong belief, one notices that the
event E itself determines the class of information sets h 2 H where
player i’s conditional beliefs are restricted. This simple observation
has two important consequences. First, for arbitrary events E and
F, we have Bs

i "E \ F# + Bs
i E \ Bs

i F, but equality need not hold.
Clearly, every state of the world in Bs

i E \ Bs
i F is such that player i’s

belief at any information set h 2 H consistent with E \ F (i.e., such
that "E \ F#ti \ "S"h# ð TU

$i# 6D ;) assigns probability one to both E
and F, hence to E \ F: thus, every such state is also an element of
Bs

i "E \ F#. However, the converse need not be true, because there
might be an information set h 2 Hi which is inconsistent with F but
consistent with E (or vice versa): in this case, Bs

i "E \ F# places no
restrictions on player i’s beliefs at any such h, but clearly Bs

i E \ Bs
i F

does. Thus, a given state of the world may be an element of the
former set, but not of the latter.‡ As a result, one must be careful
to interpret assumptions involving conjunctions of strong belief
operators accurately.

Second, note that the argument above implies that, unlike
standard epistemic operators, the strong belief operator Bs

i is not
monotone (otherwise the inclusion relation Bs

i "E \ F# + Bs
i E \ Bs

i F
would necessarily hold as an equality).

Now we define an auxiliary operator that simplifies the
representation of assumptions (0), (1), (2), . . . . For any event E, let

CE D E \ Bs
eE

denote the set of states where E is true and everybody strongly
believes E. We can define iterations of C in the usual way. In
particular, we obtain the following identities:

C0E D E,

C1E D E \ Bs
eE,

C2E D C
(
E \ Bs

eE
)

D E \ Bs
eE \ Bs

e
(
E \ Bs

eE
)

,

. . .

It should be clear that the iterated application of the operator
C yields a nested sequence of events which represent the informal
assumptions (0), (1), (2), . . . discussed above, that is, event CkSRAT
represents (0)&(1)&. . . &(k). We can actually be even more explicit:

† For E D ;, let Bs
i (E) D ;.

‡ Also note that there may be histories consistent with E and F but inconsistent
with E \ F. In this case Bs

i (E) \ Bs
i (F) D ; because it is impossible to believe E and

F at such histories.
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REMARK 14: by inspection of the definitions above

CmSRAT D
⋂

i2N

[
SRATi

⋂(
\m$1

kD0 Bs
i "C

kSRAT#
)]

.

Therefore "s, "ti#i2N# 2 CmSRAT if and only if, for each player i,
si is a (weakly) sequential best response to the first-order beliefs of
type ti and ti strongly believes CkSRAT for all k D 0, . . . , n $ 1.

4.4.3 Characterization

Having disposed of all the preliminaries, we are ready to state the
main result:

PROPOSITION 4.18: for every strategy profile s 2 S the following
statements hold:

(a) for all k ½ 0, s 2 SkC1
e if and only if there exists a profile of

infinite hierarchies of conditional beliefs (ti)i2N 2 i2NTU
i such that

(s, (ti)i2N) 2 CkSRAT;
(b) s 2 \1

kD0Sk
e if and only if there exists a profile of infinite hierar-

chies of beliefs (ti)i2N 2 i2NTU
i such that (s, (ti)i2N) 2 \1

kD0CkSRAT.

4.4.4. Strong belief and backward induction

In the introductory discussion of Section 4.1 we noticed that
assumptions (0), (1) and (2) yield the backward induction out-
come in the Centipede game of Figure T. This observation can be
generalized. In fact, extensive form rationalizability is generically
equivalent to backward induction in games with perfect informa-
tion (cf. Reny, 1992 and Battigalli, 1997), therefore we can derive
from proposition 4.18 the following result.

PROPOSITION 4.19: suppose that the given game  has perfect
information and is generic. Then for every state (s, (ti)i2N) 2
\1

kD0CkSRAT, 1(s) (the complete history induced by s) is precisely
the (unique) backward induction complete history.

We emphasize that the joint assumptions (0)&(1)&(2)& . . . do
not imply that a player at a non-rationalizable partial history
would play and/or expect the backward induction continuation. In
certain games this is actually inconsistent with strong belief in
sequential rationality. The following example (figure 3 in Reny,
1992), illustrates this point:

EXAMPLE 4.20: consider the game depicted in Figure Y. At the
first iteration, C0SRAT D SRAT eliminates A0D00 for player 1 and
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FIGURE Y.

a0a00 for player 2. Then, C1SRAT D SRAT \ Bs
eSRAT eliminates

A0A00 and d0, which yields the backward induction outcome. Hence,
if player 2 were reached, he must conclude that it is not the case
that everybody is sequentially rational and there is strong belief
in sequential rationality. However, he can continue to (strongly)
believe that everybody, in particular player 1, is sequentially
rational. Of course, this implies that player 2 should expect player 1
to move Across at her second node. Event

C2SRAT D C1SRAT \ Bs
eC

1SRAT D
SRAT \ Bs

eSRAT \ Bs
e"SRAT \ Bs

eSRAT#

incorporates precisely this restriction. However, backward induc-
tion reasoning implies that player 2, upon being reached, should
expect player 1 to move Down at her next node.

4.4.5. Rationalizability and conditional common belief in sequential
rationality

We have seen that common belief in sequential rationality at a
given partial history h may be impossible. Now, as a consequence
of proposition 4.18, we can identify a set of histories consistent with
common belief in sequential rationality: all the histories induced
by extensive form rationalizable profiles.

PROPOSITION 4.21: fix a partial history h 2 H. If there is an
extensive form rationalizable strategy profile s inducing h (i.e.,
S1

e \ S(h) 6D ;), then there is a type space for  such that

SRAT \ BŁ,hSRAT \ [h] 6D ;.

Note that the proposition provides only a sufficient condition.
There are games with histories consistent with common belief in
sequential rationality and yet unreachable by profiles of extensive
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form rationalizable strategies (Battigalli & Siniscalchi, 1997; see
also Reny, 1985).

4.5. EPISTEMIC INDEPENDENCE AND BACKWARD INDUCTION

We say that player i’s beliefs exhibit epistemic independence if
information exclusively concerning opponent j does not affect
i’s beliefs about opponent k.† Here we relate the assumption of
epistemic independence to the backward induction procedure.
Consider the following modification of the Centipede game of
Figure T: player 1 is split into two different players, 1’ and 1’’,
with identical payoffs. Suppose that (i) each player is sequentially
rational and her beliefs exhibit epistemic independence, (ii) this is
common belief at the beginning of the game. Then player 1’ chooses
T0 and the other two players would choose their backward induction
action if given the opportunity. In fact, since player 2 initially
believes that player 1’’ is rational, she would not change this
belief after L0, a move of a different opponent. Therefore player 2
would anticipate T00 and—by sequential rationality—choose t after
L0. Initial common belief in the event [rationality and epistemic
independence] implies that player 1’ anticipates choice t.

In order to formally define the epistemic independence assump-
tion in the present setting we look at ‘‘marginal’’ CPSs on the sets of
strategies and types of each player i. Let Hi D f"Si"h# ð Ti# : h 2 Hg
be the set of conditioning events concerning player i. The set of
‘‘marginal’’ CPSs on hSi ð Ti,Hii is denoted by Hi"Si ð Ti#. With
a slight abuse of notation we also denote by Hi"Si# the set of
marginal CPSs on the set of player i’s strategies.

DEFINITION 4.22: fix a type space T for . We say that CPS ) 2
H(S ð T$i) exhibits epistemic independence if there are marginal
CPSs )i 2 Hi (Si), )j 2 Hj (Sj ð Tj)(j 6D i) such that, for all h 2 H,
)(ÐjS(h) ð T$i) is the product measure obtained from )i(ÐjSi(h)) and
()j(ÐjSj(h) ð Tj))j 6Di. Let I denote the set of states (s, t) such that (i,ti

exhibits epistemic independence for each i 2 N.

The epistemic independence assumption can be used to define
modifications of the notions of weak extensive form rational-
izability and extensive form rationalizability (see Battigalli &
Siniscalchi, 1998b). Battigalli (1996) discusses the relationship
between this notion of independence (for first-order beliefs) and

† The phrase ‘‘epistemic independence’’ is due to Stalnaker (1998). Aumann
(1974), Stalnaker and others argue that epistemic independence is not a
consequence of causal independence (the basic tenet that the plans and thought
processes of different players cannot affect each other). This argument is now
widely accepted.
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consistency of assessments in the sense of Kreps and Wilson
(1982). Here we simply consider the behavioural implications of
epistemic assumptions concerning rationality and independence
in a class of simple games. Recall that BŁ denotes the ‘‘initial
common belief’’ operator. Furthermore, let sBI denote the (unique)
backward induction strategy profile of a generic game with perfect
information.

PROPOSITION 4.23: (cf. Stalnaker, 1998; Battigalli & Siniscalchi,
1998b) let  be a finite and generic game with perfect information
such that no player is active more than once along any play path
(for all z 2 Z, i 2 N, there is at most one h preceding z such that
Ai(h) has at least two elements) and fix a type T space for .

(1) For all states (s, t) 2 BŁ(I \ SRAT), partial histories h, h0 2 H
and players i, j 2 N, if h precedes h0 and j is active at h0, then

(i,ti

(
fsBI

j g ð S$j ð T$ijS(h) ð T$i

)
D 1.

(2) For all states (s, t) 2 (I \ SRAT) \ BŁ(I \ SRAT), s D sBI.

Part (1) of proposition 4.23 says that initial common belief in
rationality and independence implies that first-order beliefs about
future behaviour conform to backward induction. Part (2) is the
self-explanatory consequence of this fact. The assumption that
no player moves more than once in any play path is crucial.
For example, it is easily checked that in the type space for the
original Centipede represented in Figure W state (1,2) satisfies the
epistemic assumptions of proposition 4.23, but violates backward
induction.

Different epistemic foundations for the backward induction
solution have been provided by Aumann (1995, 1996), Samet
(1996a) and Balkenborg and Winter (1997). The epistemic models
used in these papers differ substantially from the one used here
because they do not represent Bayesian updating. This makes
a formal comparison difficult. We refer to Stalnaker (1997) and
Battigalli and Siniscalchi (1998a) for a discussion of these models.
Aumann (1998a) provides a result for the Centipede that is related
to our discussion of strong rationalizability in strategic form games
in Subsection 3.5.
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