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Abstract

We study belief change in the branching-time structures introduced in
[8]. First, we identify a property of branching-time frames that is equivalent
(when the set of states is �nite) to AGM-consistency, which is de�ned as
follows. A frame is AGM-consistent if the partial belief revision function
associated with an arbitrary state-instant pair and an arbitrary model based on
that frame can be extended to a full belief revision function that satis�es the
AGM postulates. Second, we provide a set of modal axioms that characterize
the class of AGM-consistent frames within the modal logic introduced in [8].
Third, we introduce a generalization of AGM belief revision functions that
allows a clear statement of principles of iterated belief revision and discuss
iterated revision both semantically and syntactically.

Keywords: branching time, belief revision, information, iterated belief revi-
sion, plausibility ordering.

1 Introduction

The seminal contributions of Hintikka [22] and Alchourrón, Gärdenfors andMakin-
son (AGM) [1] have given rise to two separate strands in the literature, one dealing

�I am grateful to three anonymous reviewers for helpful and constructive comments. A �rst draft
of this paper was presented at the Workshop on Reasoning about knowledge and rational action,
University of Liverpool, March 2009 and the Workshop on Information processing, rational belief
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with static belief and the other with belief revision. The analysis of static belief
is carried out within the framework of modal logic and Kripke [26] structures,
while in the AGM approach beliefs are represented as sets of formulas and belief
revision as a function that associates with a set of formulas K (thought of as the
initial beliefs) and formula � (thought of as new information) a new belief set K�

�

representing the revised beliefs. In [8] a new framework was proposed aimed at
bringing the AGM theory of belief revision within the scope of modal logic by
representing the AGM postulates as axioms in a modal language. Since belief re-
vision deals with the interaction of belief and information over time, the proposed
framework was based on branching-time temporal logic. Besides the next-time
temporal operator, the logic contained a modal operator for belief and a modal
operator for information. In this paper we further develop the analysis of [8] by
establishing a stronger correspondence between the proposed logic and the AGM
theory. In particular, we characterize the conditions under which the �partial� be-
lief revision function induced at a state-time pair (by an arbitrary interpretation of a
branching-time belief revision frame) can be extended to a full belief revision func-
tion satisfying the AGM postulates. This is done both semantically (Proposition 6)
and syntactically (Proposition 9). We also generalize (Sections 5 and 6) the AGM
belief revision functions to iterated belief revision functions and show that well-
known principles of iterated belief revision can be represented as modal axioms.
The remainder of this section provides an intuitive review of the branching-time
structures introduced in [8] and a more detailed account of the main results.
Static beliefs are usually modeled semantically by means of Kripke frames

h
;Bi, where 
 is a set of states (or possible worlds) and B is a binary relation
on 
. The interpretation of !B!0 is that at state ! the agent considers state !0
possible. If S is a set of atomic formulas, one obtains a model based on the frame
h
;Bi by adding a valuation V : S ! 2
 which speci�es, for each atomic formula
p, the set of states at which p is true. Rules are then given for determining the truth
set of an arbitrary formula � and the agent is said to believe � at a state ! if and
only if � is true at every state that she considers possible at ! (that is, if � is true
at every state !0 such that !B!0). The natural way to extend this approach to
belief change would be to consider a sequence fh
;B0i ; h
;B1i ; :::; h
;Bti ; :::g
of Kripke frames, where Bt represents the beliefs of the agent at time t. However,
such an extension is not suf�cient to provide a bridge to the AGM theory of belief
revision for two reasons: (1) the stimulus prompting the change in beliefs (which
in the AGM theory is an informational input) is not modeled explicitly and (2)
some of the AGM postulates require a comparison between the revised belief sets
that arise in response to different informational inputs. In order to take care of the
latter issue, in [8] branching-time frames were used, where an instant t can have
multiple immediate successors. The former issue was dealt with by associating
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with each instant t not only a belief relation Bt but also an information relation It
(on the set of states 
). The interpretation of !It!0 is that at state ! and according
to the information received by the agent at time t, state !0 is a possibility. In a
model based on the frame, at a state-instant pair (!; t) the agent believes a formula
� if -as usual - � is true at every state !0 such that !Bt!0; on the other hand,
the agent is said to be informed that  if the truth set of  , denoted by k k ;
coincides with set of states that are reachable from ! by means of the relation It
(that is, if !0 2 k k if and only if !It!0). This requirement captures the notion that
the agent is informed that, and only that,  is the case. This semantic condition
was used before in the literature to capture the notion that �all the agent knows
is that  � [23, 28]. Thus, in a model based on a branching-time belief revision
frame each state-instant pair (!; t) gives rise to an �initial� belief setK (the set of
formulas that the agent believes at (!; t)) and a collection of potential informational
inputs (the formulas of which the agent is informed at the immediate successors of
instant t and at state !) together with the associated new beliefs. Hence each state-
instant pair (!; t) induces a �partial� belief revision function (partial in the sense
that not every formula is a potential informational input). We investigate under
what conditions such a partial belief revision function can be extended to a �full�
AGM belief revision function (full in the sense that the AGM functions consider
every formula as a potential informational input). We show (Proposition 6) that
a necessary and suf�cient condition - when the set of states 
 is �nite - is that
there exist a total pre-order R of 
 that rationalizes belief revision at (!; t), in
the sense that both at instant t and at its immediate successors (and at state !) the
states that the agent considers possible (according to the belief relations) are theR-
maximal states among the ones that are compatible with the information received.
We also provide a property on frames that is equivalent to the existence of such a
total pre-order and is directly veri�able on the frame itself. We use the expression
�AGM-consistent� to refer to a frame that satis�es any of these three equivalent
properties.
In Section 4 we turn to the associated modal logic introduced in [8] and pro-

vide a set of axioms that characterizes the class of AGM-consistent branching-time
belief revision frames (Proposition 9). Finally, in Sections 5 and 6, we address the
issue of iterated belief revision. First, we discuss the semantic and syntactic modal
correspondents of some well-known principles of iterated belief revision. Then we
introduce a generalization of AGM belief revision functions that can be used to
model iterated revision and show that every model based on an AGM-consistent
branching-time frame gives rise to such an iterated belief revision function. One
advantage of the iterated belief revision functions is that they allow a precise for-
mulation of what an epistemic state is and how an informational input transforms
a epistemic state into a new one.
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The paper is organized as follows. In the next section we brie�y review the
AGM theory of belief revision [1], while in Section 3 we review the branching-
time belief revision frames introduced in [8] and establish the link between such
frames and AGM belief revision functions through the notion of interpretation or
model. The main result of this section is Proposition 6 which establishes three
equivalent properties of branching-time belief revision frames, one of which is the
ability to extend the partial belief revision function induced (at a state-instant pair)
by an arbitrary interpretation of the frame to a full AGM belief revision function.
In Section 4 we turn to the modal logic introduced in [8], which is the syntactic
counterpart of the branching-time belief revision frames, and in Proposition 9 we
provide an axiomatic characterization of the class of AGM-consistent frames. Sec-
tions 5 and 6 are devoted to a discussion of iterated belief revision and the last
section discusses related literature. All the proof are given in the Appendix.
The original contribution of this paper is contained in Propositions 6 and 9.

To the best of our knowledge, the de�nition of iterated belief revision function put
forward in Section 6 is also new.

2 AGM belief revision functions

In this section we brie�y review the AGM theory of belief revision [1].1 Let �
be the set of formulas of a propositional language based on a countable set S of
atomic formulas (or sentence letters).2 Given a subset K � �, its PL-deductive
closure [K]PL (where `PL' stands for Propositional Logic) is de�ned as follows:
 2 [K]PL if and only if there exist �1; :::; �n 2 K (with n � 0) such that
(�1 ^ ::: ^ �n) !  is a tautology (that is, a theorem of Propositional Logic).
A set K � � is consistent if [K]PL 6= � (equivalently, if there is no formula �
such that both � and :� belong to [K]PL). A set K � � is deductively closed if
K = [K]PL. A belief set is a setK � � which is deductively closed.
Let K be a consistent belief set representing the agent's initial beliefs and let

	 � � be a set of formulas representing possible items of information. A belief
revision function based on K is a function BK : 	 ! 2� (where 2� denotes the
set of subsets of �) that associates with every formula  2 	 (thought of as new
information) a set BK( ) � � (thought of as the revised beliefs).3 If 	 6= � we

1For a more detailed account see [16, 20].
2Thus � is de�ned recursively as follows: if p 2 S then p 2 � and if �;  2 � then :� 2 �

and (� _  ) 2 �. The connectives ^ and ! are de�ned as ususal: � ^  def
= :(:� _ : ) and

�!  
def
= :� _  .

3In the literature it is common to use the notation K �  or K�
 instead of BK( ), but for our

purposes the latter notation is clearer.
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call BK a partial belief revision function, while if 	 = � then BK is called a full
belief revision function.

De�nition 1 Let BK : 	! 2� be a (partial) belief revision function and
B�K : � ! 2� a full belief revision function. We say that B�K is an extension of
BK if, for every  2 	, B�K( ) = BK( ).

De�nition 2 A full belief revision function is called an AGM revision function if it
satis�es the following properties, known as the AGM postulates: 8�;  2 �;

(AGM1) BK(�) = [BK(�)]
PL

(AGM2) � 2 BK(�)
(AGM3) BK(�) � [K [ f�g]PL
(AGM4) if :� =2 K, then [K [ f�g]PL � BK(�)
(AGM5) BK(�) = � if and only if � is a contradiction
(AGM6) if �$  is a tautology then BK(�) = BK( )

(AGM7) BK(� ^  ) � [BK(�) [ f g]PL

(AGM8) if : =2 BK(�), then [BK(�) [ f g]PL � BK(� ^  ):

AGM1 requires the revised belief set to be deductively closed.
AGM2 requires that the information be believed.
AGM3 says that beliefs should be revised minimally, in the sense that no new

formula should be added unless it can be deduced from the information received
and the initial beliefs.4

AGM4 says that if the information received is compatible with the initial be-
liefs, then any formula that can be deduced from the information and the initial
beliefs should be part of the revised beliefs.

AGM5 requires the revised beliefs to be consistent, unless the information � is
a contradiction (that is, :� is a tautology).

AGM6 requires that if � is propositionally equivalent to  then the result of
revising by � be identical to the result of revising by  .

AGM7 and AGM8 are a generalization of AGM3 and AGM4 that

�applies to iterated changes of belief. The idea is that ifBK(�) is a
revision ofK [prompted by �] and BK(�) is to be changed by adding
further sentences, such a change should be made by using expansions
of BK(�) whenever possible. More generally, the minimal change of
K to include both � and  (that is, BK(� ^  )) ought to be the same
as the expansion of BK(�) by  , so long as  does not contradict the
beliefs in BK(�)� ([20], p. 55; notation changed to match ours).

4Note that, for every formula  ,  2 [K [ f�g]PL if and only if (� !  ) 2 K (since, by
hypothesis,K = [K]PL).
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3 Branching-time belief revision frames and models

We now turn to the semantic frames introduced in [8], which provide a way of
modeling the evolution of an agent's beliefs over time in response to informational
inputs, and establish a connection between these frames and the AGM belief revi-
sion functions.
A next-time branching frame is a pair hT;�i where T is a set of instants and

� is a binary relation on T satisfying the following properties: 8t1; t2; t3 2 T;

1. if t1� t3 and t2� t3 then t1 = t2,

2. if ht1; :::; tni is a sequence in T with ti � ti+1, for every i = 1; :::; n � 1,
then tn 6= t1:

The interpretation of t1 � t2 is that t2 is an immediate successor of t1 or t1
is the immediate predecessor of t2 : every instant has at most a unique immedi-
ate predecessor but can have several immediate successors. We denote the set of
immediate successors of t 2 T by t�, that is, t� = ft0 2 T : t� t0g.
A branching-time belief-information frame is a tuple hT;�;
; fIt;Btgt2T i

where hT;�i is a next-time branching frame, 
 is a set of states and, for every
t 2 T , It andBt are binary relations on
, the �rst representing information and the
latter beliefs. The interpretation of !It!0 is that at state ! and time t - according to
the information received - it is possible that the true state is !0. On the other hand,
the interpretation of !Bt!0 is that at state ! and time t, in light of the information
received, the agent considers state !0 possible (an alternative expression is �!0 is a
doxastic alternative to ! at time t�). We shall use the following notation:

It(!) = f!0 2 
 : !It!0g and, similarly, Bt(!) = f!0 2 
 : !Bt!0g:

Thus It(!) is the set of states that are reachable from ! according to the relation
It and similarly for Bt(!).

De�nition 3 A branching-time belief revision frame is a frame hT;�;
; fIt;Btgt2T i
that satis�es the following properties: 8! 2 
;8t; t0; t00 2 T :

1. Bt(!) � It(!)
2. Bt(!) 6= ?
3. if t� t0, t� t00 and It0(!) = It00(!) then Bt0(!) = Bt00(!)
4. if t� t0 and Bt(!) \ It0(!) 6= ? then Bt0(!) = Bt(!) \ It0(!):
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Property 1 says that information is believed and Property 2 that beliefs are
consistent. The two together imply that It(!) 6= ?, that is, that information itself
is consistent.5
Property 3 requires that at any two instants that share the same immediate pre-

decessor, if information is the same then beliefs must be the same. That is, differ-
ences in beliefs must be due to differences in information.
Property 4 is called the `Qualitative Bayes Rule' (QBR) in [8], based on the

following observation. In a probabilistic setting, let P!;t be the probability measure
over a set of states 
 representing the agent's probabilistic beliefs at state ! and
instant t, let F � 
 be an event representing the information received by the agent
at a later instant t0 and letP!;t0 be the posterior probability measure representing the
revised beliefs at state ! and instant t0. Bayes' rule requires that, if P!;t(F ) > 0,
then, for every event E � 
, P!;t0(E) = P!;t(E\F )

P!;t(F )
: Bayes' rule thus implies the

following (where supp(P ) denotes the support of the probability measure P ):

if supp(P!;t) \ F 6= ?, then supp(P!;t0) = supp(P!;t) \ F:

If we set Bt(!) = supp(P!;t), F = It0(!), with t� t0, and Bt0(!) = supp(P!;t0)
then we get Property 4. Thus in a probabilistic setting the proposition �the agent
believes that �� would be interpreted as �the agent assigns probability 1 to the set
of states where � is true�.
Figure 1 shows a branching-time belief revision frame. For simplicity, in all

the �gures we assume that, for every instant t, the information relation It is an
equivalence relation (whose equivalence classes are denoted by rectangles) and the
belief relation Bt is transitive and euclidean.6 An arrow from ! to !0 means that
!0 2 Bt(!) (or !Bt!0, that is, !0 is reachable from ! according to the relation Bt).
Note, however, that none of the results below require It to be an equivalence rela-
tion (in particular, veridicality of information is not assumed), nor do they require
Bt to be transitive and euclidean.

5Thus we rule out inconsistent information. As pointed out in [18], it is not clear how one could
be informed of a contradiction or, at least, how one could treat a contradiction as information.

6Bt is transitive if !0 2 Bt(!) implies that Bt(!0) � Bt(!); it is euclidean if !0 2 Bt(!)
implies that Bt(!) � Bt(!0). Property 2 of De�nition 3 is usually referred to as seriality.
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For example, in Figure 1 at state � and instant t3 the agent is informed that the
true state is either �, 
 or " (It3(�) = f�; 
; "g) and (incorrectly) believes that
it is either 
 or " (Bt3(�) = f
; "g). At the next instant t4 (and still at state �)
the agent is now informed that the true state is either � or " (It4(�) = f�; "g)
and forms the revised (and still incorrect) belief that the true state is ". On the
other hand, t5 is an alternative next instant to t3 and at t5 (and still at state �)
the agent's information is It5(�) = f�; �g and she forms the revised (and now
correct) belief that the true state is � (Bt5(�) = f�g). Note that all the properties
of De�nition 3 are satis�ed. In particular the Qualitative Bayes Rule is satis�ed
everywhere: sometimes vacuously (as is the case at state � and instants t3 and t5
where Bt3(�) \ It5(�) = ?) and sometimes non-trivially (as is the case at state �
and instants t3 and t4 where Bt3(�) \ It4(�) = Bt4(�) = f"g).
Given a branching-time belief revision frame one obtains a model based on it

by adding a valuation that associates with every atomic proposition p the set of
states at which p is true. Note that, by de�ning a valuation this way, we frame the
problem as one of belief revision, since the truth value of an atomic proposition
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depends only on the state and not on the time.7 Let S be a countable set of atomic
formulas and � the set of propositional formulas built from S. Given a frame
F = hT;�;
; fIt;Btgt2T i, a model based on (or an interpretation of ) F is
obtained by adding to F a valuation V : S ! 2
.8 Truth of an arbitrary formula
� 2 � at state ! in modelM is denoted by ! j=M � and is de�ned recursively as
follows:
(1) for p 2 S, ! j=M p if and only if ! 2 V (p),
(2) ! j=M :� if and only if ! 6j=M �, and
(3) ! j=M (� _  ) if and only if either ! j=M � or ! j=M  (or both).
The truth set of formula � in modelM is denoted by k�kM; thus k�kM =

f! 2 
 : ! j=M �g.
In a given model, the truth of each formula is thus time-independent, that is, the

state is suf�cient to determine truth (indeed, this is the essence of belief revision
as opposed to belief update). Nevertheless, beliefs and information may change
over time. For example, while an atomic formula p may be true at state ! (and
thus at any state-instant pair (!; t), for every instant t), the agent may believe :p
at state ! and instant t1 and then - upon being informed that p - switch to believing
p at state ! and instant t2 (with t2 an immediate successor of t1). Similarly, what
information the agent receives will depend not only on the state but also on time. In
other words, if t 6= t0 typically the relation Bt will be different from Bt0 (similarly,
It will be different from It0).

De�nition 4 Given a modelM = hT;�;
; fIt;Btgt2T ; V i, a state ! 2 
, an
instant t 2 T and formulas �;  2 � we say that

� at (!; t) the agent is informed that  if and only if It(!) = k kM,

� at (!; t) the agent believes that � if and only if Bt(!) � k�kM.

Note that for information we require equality of the two sets (as explained in
the Introduction, this captures the idea of `being informed precisely that  ' and
corresponds to the notion of `only knowing' introduced in [23, 28]), while for
belief we use the standard requirement that Bt(!) be a subset of the truth set of a
formula.

7The branching-time structures of De�nition 3 can be used to describe either a situation where
the objective facts describing the world do not change � so that only the beliefs of the agent change
over time � or a situation where both the facts and the doxastic state of the agent change. In the
literature the �rst situation is called belief revision, while the latter is called belief update: see [25].
In this paper we restrict attention to belief revision.

8If instead of belief revision we were interested in belief update, then we would need to de�ne a
valuation as a function V : S ! 2
�T :
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Given a modelM and a state-instant pair (!; t), according to De�nition 4 we
can associate with (!; t) a belief set and a (typically partial) belief revision function
as follows. Let

KM;!;t = f� 2 � : Bt(!) � k�kMg ; (1)

denote the set of formulas that the agent believes at (!; t), that is, his (initial)
belief set at (!; t). It is straightforward to show that KM;!;t is a consistent and
deductively closed set. Let

	M;!;t =
�
 2 � : k kM = It0(!) for some t0 2 t�

	
(2)

be the possible items of information that the agent might receive next time (that is,
at some immediate successor of t: recall that t� = ft0 2 T : t� t0g). Finally let
BKM;!;t

: 	M;!;t ! 2� be de�ned as9

BKM;!;t
( ) =

�
� 2 � : Bt0(!) � k�kM for t0 2 t� with It0(!) = k kM

	
:
(3)

That is, if at the immediate successor t0 of t the agent is informed that  (It0(!) =
k kM), then his revised belief set is given by the set of formulas that he believes
at (!; t0): f� 2 � : Bt0(!) � k�kMg.

For example, consider a model of the frame illustrated in Figure 1 above where,
for some atomic formulas p1, p2, p3 and q, V (p1) = f�; 
; �g = It1(�), V (p2) =
f�; �; "g = It2(�), V (p3) = f�; 
; "g = It3(�) and V (q) = f
g. Then the initial
beliefs at (�; t0) are given by the (consistent and deductively closed) set K�;t0 =
f� 2 � : � j= �g. The set 	�;t0 of potential informational inputs at (�; t0)
is rather small; for example, while p1; p2; p3 2 	�;t0 , (p1 _ p2) =2 	�;t0 . Thus
the associated belief revision function BK�;t0 is a partial belief revision function.
As an example we have that :q; p3 2 BK�;t0 (p2) [because It2(�) = kp2k and
Bt2(�) = f"g � k:qk \ kp3k]; thus, since :q;:p3 2 K�;t0 [because Bt0(�) =
f�g and � j= :q and � j= :p3], the agent initially believes both :q and :p3 and,
upon being informed that p2 (at (�; t2)) she revises her beliefs by retaining the
belief that :q but switching from believing that :p3 to believing that p3. A natural
question to ask is whether this partial belief revision function is compatible with
the AGM postulates, in the sense that there exists a full belief revision functionB�K
that satis�es the AGM postulates and is an extension of BK�;t0 (see De�nition 1).
In this case the answer is negative. This can be proved as follows. To simplify the
notation we shall drop the subscripts a; t0; thus we write K instead of K�;t0 , BK

9This function is well de�ned because of Property 3 of De�nition 3.
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instead of BK�;t0 , etc. Suppose that B
�
K is an AGM extension of BK . Then, since

p2 2 BK(p1) and p2 2 BK(p2) (and BK(p1) = B�K(p1) and BK(p2) = B�K(p2))
it follows that10

p2 2 B�K(p1 _ p2): (4)

Thus B�K((p1 _ p2) ^ p2) = B�K(p1 _ p2).11 Since (p1 _ p2) ^ p2 is equivalent to
p2, by AGM6 B�K((p1 _ p2) ^ p2) = B�K(p2). Thus (since BK(p2) = B�K(p2))

B�K(p1 _ p2) = BK(p2): (5)

Since p3 2 BK(p2),

[BK(p2) [ fp3g]PL = [BK(p2)]PL = BK(p2): (6)

[It is straightforward to show that, for every  2 	, BK( ) is deductively closed.]
Furthermore, by (5), p3 2 B�K(p1 _ p2). Since (p1 _ p2) is not a contradiction, by
AGM5 B�K(p1 _ p2) is consistent and thus :p3 =2 B�K(p1 _ p2). Hence, by AGM7
and AGM8, B�K((p1 _ p2)^ p3) = [B�K((p1 _ p2) [ fp3g]

PL and, by (5), the latter
is equal to [BK(p2) [ fp3g]PL which, in turn, by (6), is equal to BK(p2). Thus

B�K((p1 _ p2) ^ p3) = BK(p2): (7)

Since (p1 _ p2)^ p3 is equivalent to p3, by AGM6 B�K((p1 _ p2)^ p3) = B�K(p3).
Thus, by (7),

B�K(p3) = BK(p2): (8)

Since B�K is an extension of BK , B
�
K(p3) = BK(p3). It follows from this and

(8) that BK(p3) = BK(p2), yielding a contradiction, since :q 2 BK(p2) but
:q =2 BK(p3).

In view of the above example, a natural question to ask is whether there exists
a property of branching-time belief revision frames that guarantees that the partial
belief revision functions generated by models based on frames that satisfy that

10This is a consequence of the following result, which is proved in the Appendix (Lemma 13). Let
K be a consistent belief set and BK : � ! 2� an AGM belief revision function. Let �;  ; � 2 �
be such that � 2 BK(�) and � 2 BK( ). Then � 2 BK(� _  ).

11Proof: by AGM1, B�
K(p1 _ p2) = [B�

K(p1 _ p2)]PL. By AGM5, since (p1 _ p2) is not a
contradiction, B�

K(p1 _ p2) 6= �. Thus, since p2 2 B�
K(p1 _ p2), :p2 =2 B�

K(p1 _ p2). Hence,
by AGM7 and AGM8, B�

K((p1 _ p2) ^ p2) = [B�
K(p1 _ p2) [ fp2g]PL = [B�

K(p1 _ p2)]PL =
B�
K(p1 _ p2):
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property are compatible with the AGM postulates.12 The notion of compatibility
with the AGM postulates is made precise in the following de�nition.

De�nition 5 A branching-time belief revision frame F = hT;�;
; fIt;Btgt2T i
is AGM-consistent at (!; t) 2 
 � T if, for every modelM = hF ; V i based on
it, the associated belief revision function BKM;!;t

(see (3) above) can be extended
(see De�nition 1) to a full AGM belief revision function (see De�nition 2).

We showed above that the branching-time belief revision frame illustrated in
Figure 1 is not AGM consistent at (�; t0).
The following proposition, which is proved in the Appendix, builds on results

given in [10] and [21].13 Note that the Qualitative Bayes Rule (Property 4 of De�-
nition 3) is necessary for the validity of Proposition 6.
A total pre-order of 
 is a binary relation R � 
 � 
 which is complete

(8!; !0 2 
, either !R!0 or !0R!) and transitive (8!; !0; !00 2 
, if !R!0 and
!0R!00 then !R!00). We shall interpret !R!0 as �state ! is at least as plausible as
state !0�. Given a total pre-order R of 
 and a subset E � 
, let

bestR E
def
= f! 2 E : !R!0; 8!0 2 Eg:

Thus bestR E is the set of states in E that are most plausible according to R:14

12Why is this a desirable property? By De�nition 4, a state-instant pair (!; t) in a model identi�es
(1) the agent's current beliefs, (2) the possible items of information to be received and (3) the agent's
disposition to revise her beliefs in response to those informational inputs. An introspective agent
would naturally be worried about the consistency of her disposition to revise her beliefs. In the
example just described, by considering counterfactual informational inputs, such as (p1 _ p2 _ p3),
and her hypothetical response to them, the agent would be able to uncover an inconsistency in her
disposition to revise her beliefs in response to the actual informational inputs p1, p2 and p3. The
notion of AMG-consistency de�ned below guarantees that no inconsistecies could be detected by
contemplating hypothetical information in addition to the actual information.

13Both [10] and [21] deal with choice functions f : E ! 2
, where E is a collection of subsets
of 
, satisfying the property that if E 6= ? then ? 6= f(E) � E. Choice functions are used
in economics to represent the choices made by an individual when faced with possible menus of
alternatives. In [21] a necessary and suf�cient condition is given for the rationalizability of a choice
function in terms of a preference relation and in [10] choice functions are shown to be interpretable
in terms of one-shot belief revision. In the proof given in the Appendix more details are given on how
results in [10] and [21] can be extended to branching-time belief revision frames to obtain Proposition
6. In particular, the Qualitative Bayes Rule plays a crucial role.

14In the literature sometimes the total pre-order is denoted by � and the set f! 2 E : ! �
!0;8!0 2 Eg is referred to as the set of maximal elements of E, while some other times the total
pre-order is denoted by � and the set f! 2 E : ! � !0;8!0 2 Eg is referred to as the set of
minimal elements ofE. In order to avoid confusion, we denote the relation byR and refer to the best
elements of a set.
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Proposition 6 Let F = hT;�;
; fIt;Btgt2T i be a branching-time belief revi-
sion frame where 
 is �nite and let (!; t) 2 
� T . Then the following conditions
are equivalent:

(a) F is AGM consistent at (!; t).

(b) There exists a total pre-order R!;t of 
 that rationalizes the agent's beliefs
at t and at the immediate successors of t (and state !) in the sense that

b1. Bt(!) = bestR!;t It(!), and
b2. for every t0 2 T such that t� t0;Bt0(!) = bestR!;t It0(!):

(c) 8u0; u1; :::; un 2 t� with un = u0 (recall that t� is the set of immediate
successors of t),

if Iuk�1(!) \ Buk(!) 6= ?, 8k = 1; :::; n;
then Iuk�1(!) \ Buk(!) = Buk�1(!) \ Iuk(!), 8k = 1; :::; n.

(PLS)

A frame that satis�es Property (b) of Proposition 6 is said to be rationaliz-
able at (!; t) and we say that the total pre-order R!;t rationalizes belief revi-
sion at (!; t). The branching-time belief revision frame illustrated in Figure 1
is not rationalizable at (�; t0). In fact, suppose that there is a total pre-order R�;t0
that satis�es (b:1) and (b:2). Let P�;t0 be the corresponding strict order (thus
!P�;t0!

0 if and only if !R�;t0!0 and not !0R�;t0!). Then, since 
 2 It1(�)
and f�g = Bt1(�) = bestR�;t0 It1(�), �P�;t0
; similarly, since � 2 It2(�) and
f"g = Bt2(�) = bestR�;t0 It2(�), "P�;t0�. Hence, by transitivity, "P�;t0
. How-
ever, from f
; "g = Bt3(�) = bestR�;t0 It3(�) we get that 
R�;t0", yielding
a contradiction. Since the frame is not rationalizable at (�; t0), it follows from
Proposition 6 that it is not AGM-consistent at (�; t0), a fact that was proved di-
rectly above.
Property PLS of part (c) of Proposition 6 gives a condition on the frame which

is necessary and suf�cient for the frame to be rationalizable at (!; t). To verify that
the frame of Figure 1 fails to satisfy Property PLS at (�; t0), let u0 = u3 = t1,
u1 = t3 and u2 = t2. Then It1(�) \ Bt3(�) = f
g 6= ?, It3(�) \ Bt2(�) =
f"g 6= ? and It2(�) \ Bt1(�) = f�g 6= ?, but Bt1(�) \ It3(�) = ? and thus
Bt1(�) \ It3(�) 6= It1(�) \ Bt3(�).

De�nition 7 A branching-time belief revision frame is AGM-consistent if it is
AGM consistent at every state-instant pair (!; t).

13



Thus, by Proposition 6, a frame where
 is �nite is AGM-consistent if and only
if it is rationalizable at every state-instant pair (!; t). Property PLS of part (c) of
Proposition 6 provides a way of verifying directly on the frame whether the frame
is AGM-consistent.
In an AGM-consistent frame, for every state-instant pair (!; t), belief revision

can be rationalized by a plausibility ordering of the set of states, in the sense that
at t and at the immediate successors of t (and a state !) the states that the agent
considers doxastically possible (that is, according to her beliefs) are the most plau-
sible among the ones that are compatible with the information received. Figure
2 shows an AGM-consistent branching-time belief revision frame. For example,
belief revision at (�; t0) is rationalized by the total pre-order R�;t0 generated by
the strict total order �P�;t0�P�;t0
P�;t0�:
R�;t0 = f(�; �); (�; �); (�; �); (�; 
); (�; �); (�; �); (�; 
); (�; �); (
; 
); (
; �)g.
Note that, by Proposition 6, AGM-consistency of a frame at a state-instant

pair (!; t) requires the existence of at least one total pre-order that rationalizes
belief revision at (!; t). Typically, there may be several such total pre-orders.
For instance, in the frame of Figure 2 at (�; t0) another possible total pre-order
(besides the one mentioned above) is the pre-order R0 generated by the strict total
order �P 0�;t0
P

0
�;t0�P

0
�;t0�.

Remark 8 In an AGM-consistent frame, it is possible that, if t0 is an immediate
successor of t, any plausibility ordering of 
 that rationalizes belief revision at
(!; t0) is necessarily different from any plausibility ordering that rationalizes belief
revision at (!; t). For example, in the frame of Figure 2 any total pre-order that
rationalizes belief revision at (�; t0) must be such that 
 is strictly more plausible
than �,15 whereas any total pre-order that rationalizes belief revision at (�; t2)
must be such that � is strictly more plausible than 
.16 Thus the ranking of � and

 is reversed upon moving from (�; t0) to (�; t2).
Note also that, for a given instant t, if ! and !0 are different states any total

pre-order that rationalizes belief revision at (!; t) may be necessarily different
from any total pre-order that rationalizes belief revision at (!0; t). For example,
in Figure 2, any total pre-order that rationalizes belief revision at (�; t2) must be
such that � is strictly more plausible than �,17 whereas any total pre-order that

15Because Bt1(�) = f
g and It1(�) = f�; 
g.
16Because Bt3(�) = f�g and It3(�) = f�; 
g. For example, be-

lief revision at (�; t2) is rationalized by the total pre-order R�;t2 =
f(�; �); (�; 
); (�; �); (�; �); (�; �); (�; 
); (�; �); (�; �); (�; 
); (
; 
)g, that is, by the stict
total order �P�;t2�P�;t2�P�;t2
.

17Because Because Bt3(�) = f�g and It3(�) = f�; �g.
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rationalizes belief revision at (�; t2) must be such that � is strictly more plausible
than �.18
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Figure 2

We now turn to a modal-logic characterization of AGM-consistent branching-
time belief revision frames.

4 A temporal logic for belief revision

To de�ne the notion of AGM-consistency it was suf�cient to consider proposi-
tional models based on a given branching-time belief revision frame; that is, the
language of propositional logic was suf�cient. In this section we turn to the more
expressive language introduced in [8] - in which belief, information and time are
explicitly introduced in the syntax - and provide a syntactic characterization of
AGM-consistent belief revision frames within this richer language.

18Because Because Bt3(�) = f�g and It3(�) = f�; �g. For example, belief revision at (�; t2)
is rationalized by the total pre-order generated by the strict total order �P�;t2�P�;t2
P�;t2�,
while belief revision at (�; t2) is rationalized the total pre-order generated by the strict total order
�P�;t2�P�;t2
P�;t2�:

15



The language contains the following modal operators: the next-time operator

, the belief operator B, the information operator I and the �all state� operator A.
The intended interpretation is as follows:


� : �at every next instant it will be the case that ��
B� : �the agent believes that ��
I� : �the agent is informed that ��
A� : �it is true at every state that ��.
The link between the semantics of branching-time belief revision frames and

the syntactic language is again given by the addition of a valuation to a frame. As
in the previous section, a valuation is a function V : S ! 2
 which speci�es, for
every atomic formula p 2 S the set of states at which p is true. While for proposi-
tional (or Boolean, or non-modal) formulas, states are suf�cient to determine truth,
the same is not true for modal formulas, since - for instance - there can be a state !
and two different instants t1 and t2 such that at (!; t1) the agent believes a formula
�while at (!; t2) she does not, that is,B� is true at (!; t1) but false at (!; t2). Thus
for this more expressive modal language truth of formulas needs to be de�ned at
state-instant pairs (!; t):19 This is done as follows.
Fix a modelM = hT;�;
; fIt;Btgt2T ; V i as de�ned in the previous sec-

tion, where V : S ! 2
 is a valuation. Given a state !, an instant t and a formula
�, we write (!; t) j=M � to denote that � is true at (!; t) in model M. Let
k�kM � 
 � T denote the truth set of �, that is, k�kM = f(!; t) 2 
 � T :
(!; t) j=M �g and let k�kM;t � 
 denote the set of states at which � is true at
instant t, that is, k�kM;t = f! 2 
 : (!; t) j=M �g. Truth at a state-instant pair
(!; t) is de�ned recursively as follows.

if p 2 S, (!; t) j= p if and only if ! 2 V (p):
(!; t) j= :� if and only if (!; t) 2 �:
(!; t) j= � _  if and only if either (!; t) j= � or (!; t) j=  (or both).
(!; t) j=
� if and only if (!; t0) j= � for every t0 such that t� t0:
(!; t) j= B� if and only if Bt(!) � k�kM;t, that is,

if (!0; t) j= � for all !0 2 Bt(!):
(!; t) j= I� if and only if � is Boolean and It(!) = k�kM;t, that is, if

(1) (!0; t) j= � for all !0 2 It(!), and
(2) if (!0; t) j= � then !0 2 It(!):

(!; t) j= A� if and only if k�kM;t = 
, that is, if (!
0; t) j= � for all !0 2 
:

19It is shown in [8] (Proposition 5, p. 148) that if � is a Boolean formula then its truth is determined
only by the state, that is, for every ! 2 
 and t; t0 2 T , (!; t) j= � if and only if (!; t0) j= �.
However, even if � is Boolean, it is possible to have (!; t) j= B� and (!; t0) 6j= B�, that is, the
individual might believe � at state ! and instant t but not believe � at the same state but at a different
instant t0. Indeed this is the essence of the notion of belief change over time.
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Note that, while the other modal operators apply to arbitrary formulas, the in-
formation operator is restricted to apply only to Boolean formulas, that is formulas
that do not contain modal operators. Boolean formulas represent facts and informa-
tion is restricted to be about facts.20 We stress again that, while the truth condition
for the operator B is the standard one, the truth condition for the operator I is non-
standard: instead of simply requiring that It(!) � k�kM;t we require equality:
It(!) = k�kM;t (the reason for this was explained in the Introduction; for further
details see [8], where the role of the �all state" operator is also discussed).
A formula � is valid in a model if k�kM = 
� T , that is, if � is true at every

state-instant pair (!; t). A formula � is valid in a frame if it is valid in every model
based on it. A property of frames characterizes (or is characterized by) an axiom
if the axiom is valid in every frame that satis�es the property and, conversely, if
the frame violates the property then there is a model based on that frame and a
state-instant pair at which the axiom is falsi�ed.
Let 4 be an abbreviation for : 
 : (thus (!; t) j=M 4� if and only if

(!; t0) j=M � for some t0 such that t � t0);21 furthermore, let
V

j=1;:::;m
�j de-

note the formula (�1 ^ ::: ^ �m). In the following proposition (which is proved in
the Appendix) all the formulas are restricted to be Boolean, that is, formulas that
do not contain any modal operators.

Proposition 9 The class of AGM-consistent branching-time belief revision frames
is characterized by the following axioms (in Axiom 5 we let �0 = �n and �0 = �n):

1. I�! B�

2. B�! :B:�

3. 4(I ^B�)!
(I ! B�)

4a. (:B:� ^B )!
(I�! B )

4b. :B:(� ^ : )!
(I�! :B )

5.
V

j=1;:::;n
4
�
I�j^:B:�j�1^B�j

�
!V

j=1;:::;n


�
(I�j ! B(�j�1 ! �j�1)) ^ (I�j�1 ! B(�j ! �

j
))
�

Axiom 1, which corresponds to Property 1 of De�nition 3, says that informa-
tion is believed (if informed that � the agent believes that �) and Axiom 2 says

20A similar (in fact, stronger) restriction is imposed in [27] (p. 175) in the context of dynamic
doxastic logic.

21In [8] the symbol � was used as a short-hand for : 
 :. However, in temporal logic �� is
used with the different meaning of `eventually �'. Thus, to avoid confusion, we have switched to the
symbol4.

17



that beliefs are consistent (it corresponds to Property 2 of De�nition 3). Axiom 3
corresponds to Property 3 of De�nition 3, according to which differences in beliefs
at immediate successors of an instant must be due to differences in information: if
there is a next instant at which the agent is informed that  and believes that � then
at every next instant it must be the case that, if informed that  , she believes that
�. Axioms 4a and 4b provide a characterization of Property 4 of De�nition 3 (the
Qualitative Bayes Rule); the �rst says that if the agent considers � possible and
believes that  , then at any next instant at which she is informed that � she must
continue to believe that  ; the second says that if the agent considers � and : 
possible, then at any next instant at which she is informed that � she cannot believe
that  . Axiom 5 characterizes Property PLS of Proposition 6, which is necessary
and suf�cient for local rationalizability by a total-preorder.
In the next two sections we show that branching-time belief revision frames,

and the associated modal language discussed in this section, can be used to model
iterated belief revision.

5 Iterated belief revision in branching-time frames

Branching-time belief revision frames provide a natural setting for studying iter-
ated belief revision, that is, changes in beliefs prompted by a sequence of informa-
tional inputs. The analysis can be carried out either semantically, within the class of
branching-time frames, or syntactically, within the modal language of the previous
section; furthermore, the two approaches can be linked via axiomatic characteriza-
tion results. In this section we will brie�y discuss some of the principles of iterated
belief revision that have been proposed in the literature,22 while in the next section
we provide a generalization of AGM belief revision functions that captures iter-
ated revision and discuss the correspondence between branching-time frames and
iterated belief revision functions.
In an AGM-consistent frame a total pre-order associated with a state-instant

pair (!; t) (whose existence is guaranteed by Proposition 6) encodes both the
agent's initial beliefs and her disposition to change those beliefs upon receipt of
new information. This is what has been called in the literature an epistemic or dox-
astic state (see, for example, [13, 29, 34]). AGM-consistency imposes only very
weak restrictions on how the epistemic state of the agent can change from (!; t) to
(!; t0) when t0 is an immediate successor of t. The following lemma (proved in the
Appendix) identi�es one such restriction: if E � F � 
 and the agent's beliefs
when informed that F do not rule out E, then she will have the same beliefs in the

22The �rst analysis of iterated belief revision using the branching-time frames introduced in [8]
was carried out in [38].
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situation where she is immediately informed that E as in the situation where she is
�rst informed that F and then she is is informed that E.23

Lemma 10 Let F = hT;�;
; fIt;Btgt2T i be an AGM-consistent frame. Fix an
arbitrary state ! 2 
 and instants t; t1; t2; t3 2 T such that t � t1 � t2 and
t � t3 (that is, t1 and t3 are immediate successors of t and t2 is an immediate
successor of t1). Then

if It3(!) = It2(!) � It1(!) and Bt1(!) \ It2(!) 6= ?,
then Bt2(!) = Bt3(!): (REFweak)

Note that the clause Bt1(!)\It2(!) 6= ? is crucial: without it the lemma is not
true.24 Denote by REF the strengthening of REFweak obtained by dropping the
clause Bt1(!)\ It2(!) 6= ? (as before, t; t1; t2; t3 2 T are such that t� t1� t2
and t� t3 and ! 2 
):

if It3(!) = It2(!) � It1(!), then Bt2(!) = Bt3(!): (REF )
Property REF states that �since the subsequent evidence is more speci�c than

the initial evidence (that is, It2(!) � It1(!)), the later evidence washes away the
earlier evidence� ([29], p. 197). Figure 3 shows a locally rationalizable frame that
violates Property REF at (�; t).25 Consider a model based on this frame where,
for some atomic formulas p, q and r, kpk = f�g, kqk = f�; 
g = It2(�) = It3(�)
and krk = f
g. Then at (�; t) the agent's disposition to revise her beliefs is
such that, if informed that q (which is the case at (�; t3)) she will believe that
r. However, after being informed that (p _ q) (at (�; t1): It1(�) = f�; 
; �g =
kp _ qk) her disposition changes and, if later she is informed that q (which is the
case at (�; t2)), she will believe that :r (despite the fact that information that q is
a re�nement of the information that (p _ q)).

23In the following lemma, E = It2(!) = It3(!) and F = It1(!). Note that, although
REFweak is a rather weak property and is implied by the AGM postulates, the underlying require-
ment for iterated belief revision is not uncontroversial: see, for example, [32, 37].

24`REF ' stands for `re�nement' (of information). Property REFweak can be derived from the
Qualitative Bayes Rule (Property 4 of De�nition 3) and the following property, introduced in [8]:

if t� t1, t� t3, It3(!) � It1(!) and Bt1(!) \ It3(!) 6= ?
then Bt3(!) = Bt1(!) \ It3(!). (CAB)
Property CAB is valid in every branching-time belief revision frame which is rationalizable at

every state-instant pair and - as shown in [9] - it is characterized by the axioms
4(I(� ^  ) ^B�)!
(I�! B ((� ^  )! �)) (K7)
4(I� ^ :B:(� ^  ) ^B( ! �))!
(I(� ^  )! B�) (K8):

25Belief revision at (�; t) is rationalized by the total pre-order generated by the strict total order
�P�P
P�, while belief revision at (�; t1) is rationalized by any total pre-order that contains the
strict component �P�P
. Note that the ranking of � and 
 has been reversed in moving from (�; t)
to (�; t1):
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Although not implied by AGM-consistency, Property REF captures a prin-
ciple that is part of most well-known theories of iterated belief revision (see, for
example, [11, 12, 13, 24, 29]). It is shown in [38] that Property REF is character-
ized by the following axioms:

A( ! �) ^4(I� ^4(I ^B�)) ! 
 (I ! B�) Ref1
A( ! �) ^4(I ^B�) ! 
 (I�!
(I ! B�)): Ref2

A further strengthening of REF is given by the following property, which
corresponds to the postulate `Conjunction' in [29] (p. 203). It says that if two
sequentially received pieces of information are consistent with each other, then
they induce the same beliefs as the information consisting of their conjunction. As
before let t; t1; t2; t3 2 T be such that t� t1� t2 and t� t3 and let ! 2 
:

if It2(!) \ It1(!) 6= ? and It3(!) = It2(!) \ It1(!)
then Bt2(!) = Bt3(!).

(REFstrong)

It is shown in [38] that Property REFstrong is characterized by the following
axioms:
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:A:( ^ �) ^4(I� ^4(I ^B�)) ! 
 (I(� ^  )! B�) Ref3
:A:( ^ �) ^4(I(� ^  ) ^B�) ! 
 (I�!
(I ! B�)): Ref4

The rationale for Property REFstrong is that information should be treated
cumulatively in the sense that information that E followed by information that F
has the same effect on beliefs as information that E \ F (provided that E and F
are compatible, that is, that E \ F 6= ?).
Other principles of iterated belief revision that have been proposed in the liter-

ature have corresponding properties in branching-time belief revision frames and
can be characterized by modal axioms similar to the ones discussed above: see
[38]. Instead of continuing the discussion along these lines, in the next section we
go back to the relationship between branching-time frames and AGM belief revi-
sion functions and provide a generalization of the latter that can be used to discuss
principles of iterated belief revision.

6 Iterated belief revision functions

As in Section 2, let � be the set of formulas in the propositional language based on
the set S of atomic formulas. Recall that, given a belief setK � �, an AGM belief
revision function is a function BK : � ! 2� that associates with every formula
� 2 � (thought of as new information) a revised belief set BK(�) � �, satisfying
the AGM postulates (see De�nition 2). Several authors (for example [29, 34]) have
discussed whether belief revision ought to be thought of as a unary operation (that
is, a function taking an informational input � 2 � and producing a new belief
set) or as a binary operation (that is, a function taking a belief set K � � and an
informational input � 2 � and producing a new belief set). This is an issue that has
been raised in the context of iterated belief revision. We propose to model iterated
belief revision in terms of a three-argument function, that is, a ternary operation.
As we shall see, our proposed functions incorporate the belief revision operations
suggested in the literature and offer a clear way of stating principles of iterated
revision.
Let H be the set of sequences in �. If h = h�1; :::; �ni 2 H and � 2 �, we

denote the sequence h�1; :::; �n; �i 2 H by h�. The empty sequence h i is denoted
by ; and is an element ofH . We think of a sequence h as a history of informational
inputs received in the past and up to the moment under consideration. The �rst
argument of our iterated belief revision functions is a history h. The need to take
into account the history of previous informational inputs has been noted in the
literature. For instance Rott ([34], p. 398) writes:
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�We need to make room for a dependence of the revision function
not only on the current belief state, but also on the history of belief
changes (previous belief states as well as previous inputs).�

In a similar vein Nayak et al ([29], p. 202) write:

�It is conceivable that at two different times, t1 and t2, an agent has the
same set of beliefs but the relative �rmness of the beliefs are different.
If the agent accepts the same evidence at t1 and t2, the resultant belief
sets would be different.�

Presumably, the difference the authors refer to is attributable to the fact that the
two different times t1 and t2 represent different ways in which the agent arrived at
the same set of beliefs, that is, different past histories.
Figure 4 illustrates this possibility by means of an AGM-consistent branching-

time belief revision frame.26 Consider a model based on this frame where, for
some atomic formulas m, p, q, r and s, kmk = f�; �; 
; �; "g, kpk = f�; �; 
g,
kqk = f�; �; "g, krk = f�; 
; "g and ksk = f�g. Then the agent has the same
belief set at (�; t1) and at (�; t2), namely the set K = f� 2 � : � j= �g.
However, the same information (at the corresponding next instant), namely that r
is the case (It3(�) = It4(�) = krk), leads to different beliefs: for instance at
(�; t3) she believes that s while at (�; t4) believes that :s (Bt3(�) � ksk while
Bt4(�) � k:sk). This difference in disposition to revise beliefs upon receiving
information that r, despite the same �initial� set of beliefs K, can be traced to the
different informational history leading to K: the information history at (�; t1) is
given by hm; pi while the information history at (�; t2) is given by hm; qi.

26It is straightforward to check that the frame of Figure 4 is rationalizable at every state-instant pair.
For example, belief revision at (�; t0) is rationalized by the total pre-order generated by the strict
total order �P�;t0�P�;t0�P�;t0
P�;t0", belief revision at (�; t1) is rationalized by the total pre-
order generated by the strict total order �P�;t1�P�;t1
P�;t1�P�;t1" and belief revision at (�; t2) is
rationalized by the total pre-order generated by the strict total order �P�;t2�P�;t2
P�;t2�P�;t2".
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The other two arguments in the iterated belief revision functions are a belief set
K � � and an informational input � 2 �. Let K be the set of deductively closed
sets of formulas.

De�nition 11 An AGM iterated belief revision function is a functionB : H�K�
�! 2� that satis�es the AGM postulates: 8h 2 H;8K 2 K;8�;  2 �

(AGM1) B(h;K; �) = [B(h;K; �)]PL

(AGM2) � 2 B(h;K; �)
(AGM3) B(h;K; �) � [K [ f�g]PL
(AGM4) if :� =2 K, then [K [ f�g]PL � B(h;K; �)
(AGM5) B(h;K; �) = � if and only if � is a contradiction
(AGM6) if �$  is a tautology then B(h;K; �) = B(h;K; )

(AGM7) B(h;K; � ^  ) � [B(h;K; �) [ f g]PL

(AGM8) if : =2 B(h;K; �), then [B(h;K; �) [ f g]PL � B(h;K; � ^  ):

As noted by Nayak et al ([29], p.196) the only restriction that the AGM pos-
tulates imply concerning iterated belief revision is the one given in the following
lemma, which is the counterpart of Lemma 10.

Lemma 12 LetB : H�K��! 2� be an AGM iterated belief revision function.
Then, for every h 2 H ,K 2 K; and �;  2 �
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if : =2 B(h;K; �) then B(h�;B(h;K; �);  ) = B(h;K; � ^  ): (9)

The antecedent of (9), namely : =2 B(h;K; �), says that  is compatible
with the revised belief set after information that �, when the starting point is given
by informational history h and belief set K; the consequent says that the revised
belief set after the further information that  , with new starting point given by
the updated history h� and the revised belief set B(h;K; �), coincides with the
revised belief set after information that (� ^  ), when the starting point is given
by informational history h and belief set K. In short: information that � followed
by information that  produces the same beliefs as the �one step� information that
(� ^  ), provided that  is compatible with the revised beliefs after the �rst piece
of information, namely �.
Property (9) is the counterpart of the semantic property REFweak. The coun-

terpart of the strong version of this property, namely REFstrong is obtained by
replacing the clause `: =2 B(h;K; �)' with `(� ^  ) is a consistent formula':27

if (� ^  ) is consistent, then B(h�;B(h;K; �);  ) = B(h;K; � ^  ): (10)

A consequence of (10) is that the order in which two consistent items of infor-
mation are received is irrelevant:28

if (� ^  ) is consistent,
then B(h�;B(h;K; �);  ) = B(h ;B(h;K; ); �):

(11)

However, (11) is weaker than (10); that is, it is possible for an AGM iterated belief
revision function to satisfy (11) but not (10).
Other principles of iterated belief revision that have been proposed in the liter-

ature can easily be stated by means of AGM iterated belief revision functions. For
instance, Darwiche and Pearl's postulate DP2 ([13]; see also [29], p. 203) can be
stated as follows:

if (� ^  ) is inconsistent while each of � and  is consistent,
then B(h�;B(h;K; �);  ) = B(h;K; ):

27The counterpart of the intermediate property REF is: if  implies �, then
B(h�;B(h;K; �);  ) = B(h;K; � ^  ):

28Proof. Let (� ^  ) be a consistent formula. From (10) we get that B(h�;B(h;K; �);  ) =
B(h;K; � ^  ). Similarly, B(h ;B(h;K; ); �) = B(h;K; ^ �). Since (� ^  ) is equiva-
lent to ( ^ �), by AGM6 B(h;K; � ^  ) = B(h;K; ^ �). Thus B(h�;B(h;K; �);  ) =
B(h ;B(h;K; ); �).
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Rather than restating (within the framework of AGM iterated belief revision
functions) the various principles of iterated revision proposed in the literature, we
�rst comment on the philosophical issue of how revision of belief states should be
modeled and then turn to the relationship between AGM iterated belief revision
functions and branching-time belief revision frames.
Several authors have convincingly argued that a belief state ought to be thought

of as comprising both the initial set of beliefs and the disposition to change those
beliefs upon receipt of new information. As Rott ([34], p. 398) puts it,

�an [AGM] revision function does not revise a belief state - let alone
revise all possible belief states - but a revision function is a belief state.
Actually, a revision function does not revise anything; in particular,
there are no primitive entities in the study of belief revision that could
be revised by such a function. Revision functions are themselves the
primitive entities of the theory of belief revision.�

Rott goes on to note that, if one accepts this point of view, then one faces the
problem of how to represent the revision of belief states:

�If unary revision functions are primitive and the appropriate formal
representation of doxastic states, how do they get revised by proposi-
tional inputs?� [ibidem]

We argue that the AGM iterated belief revision functions of De�nition 11 pro-
vide an answer to this question. The function B : H � K � � ! 2� can be
viewed as a function that transforms a belief state and an informational input into
a new belief state, as follows. A belief state can be taken to be a triple (h; K; b)
where h 2 H is a history of previous informational inputs, K 2 K is the cur-
rent set of beliefs and b(�) def

= B(h;K; �) : � ! 2� is the one-step revision
function obtained from B : H � K � � ! 2� by �xing the values of h and
K. Upon receipt of information � 2 �, the initial belief state (h;K; b) is trans-
formed into the new belief state (h0;K 0; b0) where h0 = h�, K 0 = B(h;K; �) and
b0(�) = B(h0;K 0; �) : �! 2�.29

We now turn to the relationship between branching-time belief revision frames
and AGM iterated belief revision functions. For simplicity we will focus on rooted

29Rott's proposal in [34] is to de�ne iterated belief revision functions as unary operations
� : H ! 2� taking sequences of input formulas into sets of beliefs. Such functions can be generated
by the functions of our De�nition 11 as follows: (1) �x a starting point (h;K), (2) obtain from the
sequence of input formulas h�iii=1;::;n the sequence h(hi;Ki)ii=1;::;n where hi = hi�1�i and
Ki = B(hi�1;Ki�1; �i) and then (3) de�ne �(h�iii=1;::;n) = Kn.
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branching-time frames where there is an instant t0 2 T , called the root, which has
no immediate predecessor and is a predecessor of every other instant (that is, for
every t 2 Tnft0g there is a sequence ht0; t1; :::; tni in T such that tn = t and,
for every i = 1; :::; n, ti�1 � ti).30 Given a branching-time belief revision frame
F = hT;�;
; fIt;Btgt2T i and a valuation V : S ! 2
, letM = hF ; V i be
the corresponding model. ThenM gives rise to a partial iterated belief revision
function in a natural way, as follows. Associate with every state-instant pair (!; t)
a history hM;!;t and a belief set KM;!;t by letting (as before: see (1)) KM;!;t =
f� 2 � : Bt(!) � k�kMg and hM;!;t be the history of past informational inputs
up to t, de�ned as follows. Let ht0; t1; :::; tni be the path from the root t0 to t (thus
tn = t) and let hIt0(!); It1(!); :::; Itn(!)i be the corresponding sequence of sets
of states reachable from ! by the information relations Iti (i = 0; 1; :::; n). For
every i = 0; 1; ::; n, let �i = f� 2 �, Iti(!) = k�kMg and let hM;!;t = ;
(recall that ; denotes the empty sequence) if �i = ? for every i = 0; 1; :::; n,
otherwise hM;!;t = h�1; :::; �mi (m � n + 1) where �j is an arbitrary selection
from �j 6= ?. Finally, if � 2 � is such such that It0(!) = k�kM for some t0 2 T
such that t� t0, let B(hM;!;t;KM;!;t; �) = f 2 � : Bt0(!) � k kMg.
As an illustration, consider a modelM based on the frame of Figure 4 where,

for some atomic formulas m, p, q and r, kmk = f�; �; 
; �; "g, kpk = f�; �; 
g,
kqk = f�; �; "g and krk = f�; 
; "g. For simplicity we drop the subscriptM.
Then

h�;t0 = hmi K�;t0 = f� 2 � : � j= �g
h�;t1 = hm; pi K�;t1 = f� 2 � : � j= �g
h�;t2 = hm; qi K�;t2 = f� 2 � : � j= �g
h�;t3 = hm; p; ri K�;t3 = f� 2 � : � j= �g
h�;t4 = hm; q; ri K�;t4 = f� 2 � : 
 j= �g

andB(h�;t0 ; K�;t0 ; p) = K�;t1 ,B(h�;t0 ; K�;t0 ; q) = K�;t2 ,B(h�;t1 ; K�;t1 ; r) =
K�;t3 and B(h�;t2 ; K�;t2 ; r) = K�;t4 .
By Proposition 6, the partial iterated belief revision function associated with

an arbitrary model based on a frame F = hT;�;
; fIt;Btgt2T i that is ratio-
nalizable at every state-instant pair can be extended to a full AGM iterated belief
revision function. One can extend the analysis by adding to the AGM postulates ap-
propriate postulates of iterated belief revision and identifying properties of frames
that are equivalent to the existence of full AGM iterated belief revision functions

30In a general branching-time frame with no root, instead of identifying a past history with the path
from the root to the instant under consideration one would consider a maximal chain of predecessors
of that instant.
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that (1) satisfy those additional postulates and (2) extend the partial iterated revi-
sion functions obtained by interpreting the given frames. We leave this project to
future research.

7 Related literature

The branching-time belief revision frames discussed in this paper provide a nat-
ural setting for a discussion of iterated belief change both semantically, in terms of
property of frames, and syntactically, in terms of modal axioms. The modal logic
that we considered is based on three operators: a temporal operator, a belief oper-
ator and an information operator. Instead of temporal logic, a number of authors
have used dynamic modal logic to model belief revision [14, 15, 19, 27, 33, 35, 36].
This approach is known as dynamic doxastic logic. Despite some differences in
the proposed logics, the common idea is to think of revision as a dynamic action.
Besides the standard belief operator B (representing initial beliefs), these authors
introduce, for every Boolean formula �, a revision operator [��] with the intended
interpretation of [��]� as �after performing the action of revising by � the indi-
vidual believes that ��. Thus these logics lack an explicit temporal operator and
involve an in�nite number of modal operators (one for each formula �), while our
logic uses only three operators.31
The branching-time belief revision frames discussed above are a generalization

of the Kripke frames used in modeling static beliefs. Indeed, if one considers a se-
quence of instants ht1; t2; :::tni with ti � ti+1 (for each i = 1; :::; n� 1), there is
an associated sequence h(
;Bt1); (
;Bt2); :::; (
;Btn)i of Kripke frames, where,
for every i = 1; :::; n, the Kripke frame (
;Bti) represents the agent's beliefs at in-
stant ti. The representation of belief change in terms of transformation of a Kripke
structure into a new Kripke structure is the key feature of the recent literature on
Dynamic Epistemic Logic (DEL) [2, 3, 16, 31]. DEL is a logic based on modal
operators that describe operations on Kripke models. These operations, called up-
dates, represent events that involve information being revealed to the agents in a
variety of ways, such as through a public or a private announcement. However,
time does not play an explicit role in DEL and thus the DEL framework offers
very limited �exibility in terms of describing beliefs through time. Another recent
approach, where time enters more explicitly, is Epistemic Temporal Logic (ETL)
[17, 30]. Epistemic temporal models consist of a set of histories and a binary

31In a similar vein, Board [7] proposes a modal logic for belief revision which also uses an in�nite
number of modal operators: for every formula �, an operator B� is introduced, representing the
hypothetical beliefs of the individual in the case where she learns that �. Thus the interpretation of
B� is �upon learning that �, the individual believes that  �.
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relation on histories representing the agent's beliefs. Thus there is a connection
between epistemic accessibility and the �ow of time allowing one to model such
properties as memory, perfect recall, etc.32 In ETL models, however, the causes
of belief change are given little structure; in particular, information does not play
an explicit role. The connections between DEL and ETL have recently been clar-
i�ed in [4, 5, 6] in the form of representation theorems showing how sequences
of models produced by `product update' in DEL form a special subclass of ETL
models.
For further discussion of literature that is somewhat related to the approach

proposed in this paper, the reader is referred to [8].
Open issues that are left for future work are (1) the extension of the branching-

time belief revision frames (and the associated modal logic) to multi-agent settings,
(2) a more comprehensive investigation of principles of iterated belief revision and
(3) the integration of time uncertainty into the analysis (see Footnote 32).

A Appendix

First we prove the following lemma (see Footnote 10).

Lemma 13 Let K be a consistent belief set and BK : � ! 2� an AGM belief
revision function. Let �;  ; � 2 � be such that � 2 BK(�) and � 2 BK( ). Then
� 2 BK(� _  ).

Proof. First we show that

(�! �) 2 BK(� _  ): (12)

If :� 2 BK(�_  ) then, since - by AGM1 - BK(�_  ) is deductively closed and
:�! (�! �) is a tautology, (�! �) 2 BK(� _  ). If :� =2 BK(� _  ) then,
by AGM7 and AGM8, BK((�_ )^�) = [BK(� _  ) [ f�g]PL, that is, for every
� 2 �,

� 2 BK((� _  ) ^ �) if and only if (�! �) 2 BK(� _  ): (13)

Since (� _  ) ^ � is propositionally equivalent to �, by AGM6 BK((� _  ) ^
�) = BK(�). Thus, using (13) and the hypothesis that � 2 BK(�), we get that
(�! �) 2 BK(� _  ). A similar proof leads to

32This can be done in branching-time belief revision frames too, by adding a binary `time-
uncertainty' relation on T . This would allow one to model such phenomena as, for example, for-
getting past information or being uncertain about current information.
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( ! �) 2 BK(� _  ): (14)

From (12) and (14) and the fact that BK(� _  ) is deductively closed we obtain

((�! �) ^ ( ! �)) 2 BK(� _  ): (15)

Since ((� ! �) ^ ( ! �)) ! ((� _  ) ! �) is a tautology, it belongs to
BK(� _  ): Hence, by (15), ((� _  )! �) 2 BK(� _  ): By AGM2, (� _  ) 2
BK(� _  ). Hence � 2 BK(� _  ).

We now turn to the proof of Proposition 6. First we need some preliminary
de�nitions and results.

De�nition 14 A choice structure is a triple h
; E ; fi where 
 is a set, E � 2
 is a
collection of subsets of 
 and f : E ! 2
 is a function that satis�es the following
properties: 8E 2 E , (1) f(E) � E and (2) if E 6= ? then f(E) 6= ?:
Give a choice structure C = h
; E ; fi, a Hansson sequence in C is a sequence

hE0; :::; Eni (n � 1) such that (1) En = E0 and, 8k = 1; :::; n, (2) Ek 2 E and
(3) Ek�1 \ f(Ek) 6= ?:

The following result is due to Hansson ([21], Theorem 7, p. 455).

Proposition 15 Let C = h
; E ; fi be a choice structure. The following are equiv-
alent:
1. there exists a total pre-order R � 
 � 
 such that , for every E 2 E ,

f(E) = bestR E
def
= f! 2 E : !R!0;8!0 2 Eg,

2. for every Hansson sequence hE0; :::; Eni in C, Ek�1 \ f(Ek) = f(Ek�1)\
Ek, 8k = 1; :::; n:

As we shall see below, by Proposition 15 Property PLS of Proposition 6 guar-
antees the rationalizability of the beliefs at the immediate successors of an instant
t (and some state !). However, our de�nition of local rationalizability includes the
initial beliefs, that is, also the beliefs at (!; t). Thus a little more work needs to be
done in order to prove the equivalence of (b) and (c) of Proposition 6.

De�nition 16 Given two choice structures C = h
; E ; fi and C0 = h
; E 0; f 0i, we
say that C0 is a QBR-extension of C by the addition of O � 
 (with O 6= ?) if (1)
E 0 = E [ fOg, (2) f 0 is an extension of f , that is, 8E 2 E , f 0(E) = f(E) and (3)
8E 2 E , if E \ f 0(O) 6= ? then f(E) = E \ f 0(O).
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Lemma 17 Let C = h
; E ; fi be a choice structure and C0 = h
; E 0; f 0i, a QBR-
extension of C by the addition of O � 
. Then the following are equivalent:
(A) if hE0; :::; Eni is a Hansson sequence in C then, 8k = 1; :::; n; Ek�1 \

f(Ek) = f(Ek�1) \ Ek;
(B) if hE00; :::; E0ni is a Hansson sequence in C0 then, 8k = 1; :::; n; E0k�1 \

f 0(E0k) = f 0(E0k�1) \ E0k.

Proof. That (B) ) (A) is obvious, since the set of Hansson sequences in C0
contains the set of Hansson sequences in C (they are those where E0k 2 E for all
k). Thus we only need to prove (A)) (B).
Consider �rst the case where, 8E 2 E , E \ f 0(O) 6= ?. Then, by De�nition

16 , f(E) = E \ f 0(O), 8E 2 E . De�ne the following relation R0 on 
: for
all x; y 2 
, xR0y if and only if either (1) x 2 f 0(O) or (2) x =2 f 0(O) and
y =2 f 0(O). Then R0 is a total pre-order33 and, furthermore, for every E 2 E 0,
f 0(E) = bestR0 E.34 Thus, by Proposition 15, (B) holds.
Suppose now thatE\f 0(O) = ? for someE 2 E . Let E0 = fE 2 E : E \ f 0(O) = ?g

and let 
0 =
S
E2E0

E. Then 
0 \ f 0(O) = ?. By Proposition 15 it follows from

(A) that there is a total pre-orderR of
 such that, for allE 2 E , f(E) = bestR E.
Fix such a total pre-order R and de�ne the following relation R0 on 
:

R0 = (R \ (
0 � 
0))
S
f(x; y) 2 
� 
 : x 2 f 0(O)gS

f(x; y) 2 
� 
 : y 2 
n(
0 [ f 0(O))g
(16)

That is, (i) the elements of f 0(O) are the most plausible states, (ii) R0 coincides
with R on 
0�
0 and (iii) the elements of 
n(
0[f 0(O)) are the least plausible
states. We want to show that R0 is a total pre-order of 
 and is such that, for every
E 2 E 0, f 0(E) = bestR0 E. If we establish this then, by Proposition 15, (B) holds.
Proof that R0 is complete. Fix arbitrary x; y 2 
. We need to show that

either xR0y or yR0x: If x 2 f 0(O) then, by (16), xR0y; similarly, if y 2 f 0(O)
then yR0x. If x; y 2 
0 then it follows from (16) and completeness of R. If
y 2 
n(
0 [ f 0(O)) then, by (16), xR0y; similarly, if x 2 
n(
0 [ f 0(O)) then
yR0x.

33Proof of completeness. Fix arbitrary x; y 2 
. We need to show that either xR0y or yR0x: If
x 2 f 0(O) then xR0y; if y 2 f 0(O) then yR0x; if both x =2 f 0(O) and y =2 f 0(O) then xR0y and
yR0x:
Proof of transitivity. Fix arbitrary x; y; z 2 
 and suppose that xR0y and yR0z. We need to show

that xR0z: If x 2 f 0(O), then xR0z. If x =2 f 0(O) then, since xR0y, it must be that y =2 f 0(O) and
thus, since yR0z, it must be that also z =2 f 0(O). Thus xR0z:

34By de�nition of R0, bestR0 
 = f 0(O). Let E 2 E . Then, since f(E) = E \ f 0(O) = E \
bestR0 
, f(E) = bestR0E (recall that we are considering the case where, 8E 2 E , E \ f 0(O) 6=
?).
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Proof that R0 is transitive. Fix arbitrary x; y; z 2 
 and suppose that xR0y and
yR0z. We need to show that xR0z: If x 2 f 0(O), then, by (16), xR0z. Assume that
x =2 f 0(O). Two cases are possible: (1) x 2 
0 and (2) x 2 
n(
0 [ f 0(O)): In
Case 1, since xR0y, it must be that either (1a) y 2 
0 or (1b) y 2 
n(
0[f 0(O)).
In Case 1a, since yR0z, it must be that either z 2 
0, in which case xR0z by (16)
and transitivity of R, or z 2 
n(
0 [ f 0(O)), in which case xR0z by (16). In
Case 1b, since yR0z by (16) it must be that z 2 
n(
0 [ f 0(O)) and thus, by
(16), xR0z. Consider now Case 2, where x 2 
n(
0 [ f 0(O)). Then, since xR0y,
it must be that y 2 
n(
0 [ f 0(O)) and thus, since yR0z, it must be that also
z 2 
n(
0 [ f 0(O)). Hence xR0z by (16).
Thus R0 is a total pre-order of 
. It remains to show that, for every E 2 E 0,

f 0(E) = bestR0 E. It is clear from (16) that f 0(O) = bestR0 
 and thus f 0(O) =
bestR0 O (since, by de�nition of choice structure, f 0(O) � O � 
). Thus we
only need to show that f(E) = bestR0 E for all E 2 E . If E 2 E0 (that is,
E \ f 0(O) = ?) then, since f(E) = bestR E, it follows from (16) that f(E) =
bestR0 E (since R0 and R coincide on 
0 � 
0). Suppose, therefore, that E =2 E0,
that is, E \ f 0(O) 6= ?. Then, by De�nition 16, f(E) = E \ f 0(O). Hence, since
f 0(O) = bestR0 
 and bestR0 
 \ E = bestR0 E (because bestR0 
 \ E 6= ?), it
follows that f(E) = bestR0 E.

Proof of Proposition 6. Part 1: equivalence of (b) and (c). Fix a branching-
time belief revision frame hT;�;
; fIt;Btgt2T i ; an arbitrary state !̂ and an ar-
bitrary instant t̂. Condition PLS states that

8t0; t1; :::; tn 2 t̂� with tn = t0 and n � 1,
if Itk�1(!̂) \ Btk(!̂) 6= ?, 8k = 1; :::; n;
then Itk�1(!̂) \ Btk(!̂) = Btk�1(!̂) \ Itk(!̂), 8k = 1; :::; n:

(17)

Associate with (!̂; t̂) the following choice structure C = h
; E ; fi: E =
fIt(!̂) : t 2 t̂�g and, for every E 2 E , if E = It(!̂) for some t 2 t̂� then
f(E) = Bt(!̂). Note that the function f is well-de�ned because of Property 3 of
De�nition 3. Then (17) can be rewritten as follows (see De�nition 14):

for every Hansson sequence hE0; :::; Eni in C
Ej�1 \ f(Ej) = f(Ej�1) \ Ej , 8j = 1; :::; n:

(18)

Let C0 = h
; E 0; f 0i be the extension of C given by E 0 = E [ fIt(!̂)g and
f 0(It(!̂)) = Bt(!̂) (and, for every E 2 E , f 0(E) = f(E)). Then, by Property 4
of De�nition 3, C0 is a QBR extension of C by the addition of It(!̂) (see De�nition
16). Thus, by Lemma 17, (18) is equivalent to
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for every Hansson sequence hE00; :::; E0ni in C0
E0j�1 \ f 0(E0j) = f 0(E0j�1) \ E0j , 8j = 1; :::; n:

(19)

By Proposition 15, (19) is equivalent to the existence of a total pre-order R̂ �

�
 that rationalizes C0 and thus (by construction of C0) R̂ that rationalizes belief
revision at (!̂; t̂) (that is, (b) of Proposition 6 is satis�ed).

Remark 18 The proofs of Proposition 15 and Lemma 17 do not require 
 to be
�nite. Thus the equivalence of (b) and (c) of Proposition 6 holds also in the case
where 
 is in�nite.

In order to prove the equivalence of (a) and (b) of Proposition 6 we need the
following.

De�nition 19 A choice structure h
; E ; fi (see De�nition 14) is called a U-choice
structure (`U' because E contains the universal set 
) if (i) 
 2 E and (2) 8E 2 E ,
E 6= ?.
A U-choice structure h
; E ; fi is rationalizable if there exists a total pre-order

R of 
 such that, for every E 2 E , f(E) = bestR E
def
= f! 2 E : !R!0; 8!0 2

Eg:
A U-choice structure h
; E ; fi is AGM-consistent if, for every valuation V :

S ! 2
, the (partial) belief revision function BK : 	 ! 2� where K = f� 2
� : f(
) � jj�jjg, 	 = f� 2 � : jj�jj 2 Eg and, for every � 2 	, BK(�) =
f� 2 � : f(jj�jj) � jj�jjg, can be extended to a full AGM belief revision function.

The following proposition is proved in [10].

Proposition 20 A U-choice structure h
; E ; fi with 
 �nite is AGM-consistent if
and only if it is rationalizable.

We now show that a �local� application of Proposition 20, with some appro-
priate modi�cations of the choice structure associated with every state-instant pair
(!; t), yields a proof of the equivalence between (a) and (b) of Proposition 6.
Proof of Proposition 6. Part 2: equivalence of (a) and (b). Fix a branching-

time belief revision frame hT;�;
; fIt;Btgt2T i ; with 
 �nite. Fix an arbitrary
state !̂ 2 
 and an arbitrary instant t̂ 2 T .
Associate with (!̂; t̂) the following U-choice structure C = h
; E ; fi: E =

f
g [ fIt(!̂) : t 2 t̂�g, f(
) = Bt̂(!̂) and, for every E 2 Enf
g, if E = It(!̂)
for some t 2 t̂� then f(E) = Bt(!̂).35

35As noted bove, the function f is well-de�ned because of Property 3 of De�nition 3.
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By construction, (a) of Proposition 6 coincides with AGM-consistency of C
(see De�nition 19).36
Next we show that (b) of Proposition 6 is equivalent to rationalizability of C.

Suppose that C is rationalizable and let R be a total pre-order of 
 that rationalizes
C. Then (b.2) of Proposition 6 holds by de�nition of C. Furthermore, Bt̂(!̂) =
f(
) = bestR 
. Since Bt̂(!̂) � It̂(!̂), it follows that Bt̂(!̂) = bestR It̂(!̂)
and thus (b.1) holds. Conversely, let R be a total pre-order of 
 that satis�es (b.1)
and (b.2). Let E0 = fE 2 Enf
g : E \ f(
) = ?g and let 
0 =

S
E2E0

E. Then


0 \ f(
) = ?. De�ne the following relation R0 on 
:

R0 = (R \ (
0 � 
0))
S
f(x; y) 2 
� 
 : x 2 f(
)gS

f(x; y) 2 
� 
 : y 2 
n(
0 [ f(
))g:
(20)

Then R0 is a total pre-order of 
 (the proof is identical to that given in Lemma
17 for (16), replacing f 0 with f and O with 
). We want to show that, for every
E 2 E , f(E) = bestR0 E. It is clear from (20) that f(
) = bestR0 
. Thus
we only need to show that f(E) = bestR0 E for all E 2 Enf
g. If E 2 E0
(that is, E \ f(
) = ?) then, since f(E) = bestR E, it follows from (20) that
f(E) = bestR0 E (since R0 and R coincide on 
0 � 
0). Suppose, therefore, that
E =2 E0, that is, E \ f(
) 6= ?. Then, since f(
) = bestR0 
, E \ bestR0 
 6= ?
and thus E \ bestR0 
 = bestR0 E. By Property 4 of De�nition 3 (the Qualitative
Bayes Rule), f(E) = E \ f(
).37 Thus f(E) = bestR0 E.
Since (a) of Proposition 6 is equivalent to AGM-consistency of C and (b) of

Proposition 6 is equivalent to rationalizability of C, the equivalence of (a) and (b)
follows from Proposition 20.

Proof of Proposition 9. It is shown in [9] that, for j = 1; 2, Axiom j of
Proposition 9 characterizes Property j of De�nition 3.
Next we show that Axiom 3 of Proposition 9 characterizes Property 3 of De�-

nition 3. Fix an arbitrary frame that satis�es Property 3 of De�nition 3, namely if
t� t0, t� t00 and It0(!) = It00(!) then Bt0(!) = Bt00(!). Fix arbitrary !̂ 2 
,
t̂ 2 T and Boolean formulas � and  and suppose that (!̂; t̂) j= 4(I ^B�). Then
there exists a t0 such that t̂ � t0 and (!̂; t0) j= I ^ B�, that is, It0(!̂) = k kt0
and Bt0(!̂) � k�kt0 . We have to show that (!̂; t̂) j= 
(I ! B�). Fix an arbi-
trary t 2 T such that t̂ � t and suppose that (!̂; t) j= I . Then It(!̂) = k kt.

36Given an arbitrary valuation V : S ! 2
, the initial beliefs and the partial belief revision
function associated with (!̂; t̂) coincide with the initial beliefs and the partial belief revision function
associated with C.

37By de�nition of C, f(
) = Bt̂(!̂), E = It(!̂) for some t such that t̂� t and f(E) = Bt(!̂).
By Property 4 of De�nition 3, if Bt̂(!̂) \ It(!̂) 6= ? then Bt(!̂) = Bt̂(!̂) \ It(!̂).
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Since  is a Boolean formula, by Proposition 5 in [8], k kt0 = k kt. Hence
It0(!̂) = It(!̂) and thus, by Property 3 of De�nition 3, Bt0(!̂) = Bt(!̂). Hence
Bt(!̂) � k�kt0 . Since � is a Boolean formula, k�kt0 = k�kt, so thatBt(!̂) � k�kt,
that is, (!̂; t) j= B�. Hence (!̂; t) j= I ! B� and thus, since t was chosen arbi-
trarily with t̂ � t, (!̂; t̂) j= 
(I ! B�): Conversely, �x a frame that violates
Property 3 of De�nition 3. Then there exist ! 2 
 and t; t1; t2 2 T such that
t� t1, t� t2, It1(!) = It2(!) and Bt1(!) 6= Bt2(!). Without loss of general-
ity we can assume that

there exists an � 2 Bt2(!) such that � =2 Bt1(!) (21)

(otherwise renumber the two instants). Construct a model where, for some atomic
formulas p and q, kpk = It1(!)�T and kqk = Bt1(!)�T . Then (!; t1) j= Ip^Bq
and thus, since t� t1, (!; t) j= 4(Ip^Bq). Furthermore, since It1(!) = It2(!),
(!; t2) j= Ip and, by (21), (!; t2) 2 Bq, so that (!; t2) 2 (Ip ! Bq). Hence,
since t� t2, (!; t) 2
(Ip! Bq) and thus Axiom 3 is falsi�ed at (!; t).
It is shown in [9] that Axiom 4a of Proposition 9 (called ND in [9]) is charac-

terized by the following property

if t� t0 and Bt(!) \ It0(!) 6= ? then Bt0(!) � Bt(!) (22)

and Axiom 4b of Proposition 9 (called NA in [9]) is characterized by the following
property

if t� t0 then Bt(!) \ It0(!) � Bt0(!): (23)

Since Property 4 of De�nition 3 implies both (22) and (23), it follows that a
frame that satis�es Property 4 validates Axioms 4a and 4b. Furthermore, in the
presence of Property 1 of De�nition 3, the conjunction of (22) and (23) implies
Property 4. Thus, in the presence of Property 1, violation of Property 4 implies vi-
olation of either (22) or (23) (or both) and thus leads to the possibility of falsifying
either Axiom 4a or Axiom 4b (or both).
We conclude the proof of Proposition 9 by showing that Axiom 5 is charac-

terized by Property PLS of Proposition 6. Fix a branching-time belief revision
frame that satis�es PLS, an arbitrary model based on it, arbitrary Boolean for-
mulas �1; :::; �n and �1; :::; �n and arbitrary !̂ 2 
 and t̂ 2 T and suppose that
(letting �0 = �n)

(!̂; t̂) j=
V

j=1;:::;n
4
�
I�j^:B:�j�1^B�j

�
(24)

We have to show that, for every j = 1; :::; n (letting �0 = �n and �0 = �n)
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(!̂; t̂) j=

�
(I�j ! B(�j�1 ! �j�1)) ^ (I�j�1 ! B(�j ! �

j
))
�
.

By (24) there exist t1; :::; tn 2 t̂� such that

(!̂; t1) j= I�1^:B:�n^B�1 (recall that �0 = �n) and
(!̂; tj) j= I�j^:B:�j�1^B�j for all j = 2; :::; n:

(25)

Thus

(a) Itj (!̂) =


�j

tj for all j = 1; :::; n,

(b) Btj (!̂) \ Itj�1(!̂) 6= ? for all j = 2; :::; n,
(c) Bt1(!̂) \ Itn(!̂) 6= ?
(d) Btj (!̂) �



�j

tj for all j = 1; :::; n:
(26)

Fix arbitrary j 2 f1; :::; ng and t 2 T with t̂ � t. We have to show that if
(!̂; t) j= I�j then (!̂; t) j= B(�j�1 ! �j�1) and if (!̂; t) j= I�j�1 then (!̂; t) j=
B(�j ! �j). Suppose �rst that (!̂; t) j= I�j , that is, It(!̂) =



�j

t. Since �j is a
Boolean formula, by Proposition 5 in [8] (p. 148),



�j

t = 

�j

tj , so that, by (a)
of (26), It(!̂) = Itj (!̂). It follows from this and Property 3 of De�nition 3, that
Bt(!̂) = Btj (!̂). Thus, without loss of generality, we can take t = tj : Similarly, if
(!̂; t) j= I�j�1 then, without loss of generality, we can take t = tj�1: Thus it will
be suf�cient to show that if (!̂; tj) j= I�j then (!̂; tj) j= B(�j�1 ! �j�1) and
if (!̂; tj�1) j= I�j�1 then (!̂; tj�1) j= B(�j ! �j): By (b) and (c) of (26) and
property PLS we have that (letting t0 = tn)

Itj�1(!̂) \ Btj (!̂) = Btj�1(!̂) \ Itj (!̂): (27)

By (d) of (26), Btj�1(!̂) �


�j�1

tj�1 and, since �j�1 is a Boolean formula, by

Proposition 5 in [8],


�j�1

tj�1 = 

�j�1

tj . Thus

Btj�1(!̂) �


�j�1

tj : (28)

Hence, by (27) and (28),

Itj�1(!̂) \ Btj (!̂) �


�j�1

tj : (29)

Now (letting qE denote the complement E, that is, qE = 
nE),

Btj (!̂) � qItj�1(!̂) [
�
Itj�1(!̂) \ Btj (!̂)

�
: (30)

By (a) of (26), Itj�1(!̂) =


�j�1

tj�1 . Since �j�1 is a Boolean formula, 

�j�1

tj�1 =

�j�1

tj . Thus
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qItj�1(!̂) = q


�j�1

tj = 

:�j�1

tj : (31)

Putting together (30), (31) and (29) we get that Btj (!̂) �


:�j�1

tj[

�j�1

tj =

�j�1 ! �j�1




tj
, that is, (!̂; tj) j= B(�j�1 ! �j�1). The proof that if (!̂; tj�1) j=

I�j�1 then (!̂; tj�1) j= B(�j ! �j) is along the same lines. 38

Conversely, �x a frame that violates property PLS. Then there exist !̂ 2 
,
t̂ 2 T , t1; :::; tn 2 t̂�, and a k� 2 f1; :::; ng such that (letting t0 = tn)

(a) Itk�1(!) \ Btk(!) 6= ?, 8k = 1; :::; n;
(b) Itk��1(!̂) \ Btk� (!̂) 6= Btk��1(!̂) \ Itk� (!̂):

(32)

Let p1; :::; pn; q1; :::; qn; be atomic formulas and construct a model where, for every
k = 1; :::; n, kpkk = Itk(!̂) � T and kqkk = Btk(!̂) � T . Then, by (a) of (32)
(letting p0 = pn)

(!̂; t̂) j=
V

j=1;:::;n
4
�
Ipj^:B: pj�1^Bqj

�
: (33)

By (b) of (32), either
(A) there is an � 2 Itk��1(!̂) \ Btk� (!̂) such that � =2 Btk��1(!̂) \ Itk� (!̂) or
(B) there is a � 2 Btk��1(!̂) \ Itk� (!̂) such that � =2 Itk��1(!̂) \ Btk� (!̂).
Consider Case A �rst. Since � 2 Btk� (!̂) and, by Property 1 of De�nition 3,

Btk� (!̂) � Itk� (!̂), it must be that � =2 Btk��1(!̂), so that (�; t) j= :qk��1, for
every t 2 T: Since � 2 Itk��1(!̂), (�; t) j= pk��1, for every t 2 T: Thus (�; t) j=
:(pk��1 ! qk��1), for every t 2 T , in particular (�; tk�) j= :(pk��1 ! qk��1).
Since � 2 Btk� (!̂), it follows that (!̂; tk�) j= :B(pk��1 ! qk��1), so that, since
(!̂; tk�) j= Ipk� ; (!̂; tk�) j= :(Ipk� ! B(pk��1 ! qk��1)). It follows from this
and the fact that t̂� tk� that (!̂; t̂) j= :
 (Ipk� ! B(pk��1 ! qk��1)). This,
together with (33) falsi�es Axiom 5 of Proposition 9 at (!̂; t̂).
Now consider Case B. Since � 2 Btk��1(!̂) and Btk��1(!̂) � Itk��1(!̂), it

must be that � =2 Btk� (!̂), so that (�; t) j= :qk� , for every t 2 T: Since � 2
Itk� (!̂), (�; t) j= pk� , for every t 2 T: Thus (�; t) j= :(pk� ! qk�), for every t 2
T , in particular (�; tk��1) j= :(pk� ! qk�). Since � 2 Btk��1(!̂), it follows that
(!̂; tk��1) j= :B(pk� ! qk�), so that, since (!̂; tk�1�) j= Ipk��1; (!̂; tk��1) j=
:(Ipk��1 ! B(pk� ! qk�). It follows from this and the fact that t̂� tk��1 that

38By (d) of (26) Btj (!̂) �


�j

tj and since �j is Boolean, 

�j

tj =



�j

tj�1 . Thus,
using (27), we get that Btj�1(!̂) \ Itj (!̂) �



�j

tj�1 . Since Btj�1(!̂) � qItj (!̂) [�
Itj (!̂) \ Btj�1(!̂)

�
and Itj (!̂) =



�j

tj = 

�j

tj�1 , it follows that Btj�1(!̂) � 

:�j

tj�1[

�j

tj�1 = 

�j ! �j



tj�1

.
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(!̂; t̂) j= :
(Ipk��1 ! B(pk� ! qk�)). This, together with (33) falsi�es Axiom
5 of Proposition 9 at (!̂; t̂).
Proof of Lemma 10. First we prove that a frame which is rationalizable at

every state-instant pair satis�es Property CAB (see Footnote 24) and then show
that Property CAB, together with the Qualitative Bayes Rule (Property 4 of De-
�nition 3) implies Property REFweak. Fix ! 2 
 and t; t1; t3 2 T such that
t � t1, t � t3, It3(!) � It1(!) and Bt1(!) \ It3(!) 6= ?; we want to show
that Bt3(!) = Bt1(!) \ It3(!) (this is Property CAB). By rationalizability at
(!; t), there exists a total pre-order R of 
 such that Bt1(!) = bestR It1(!)

def
=

f! 2 It1(!) : !R!0; 8!0 2 It1(!)g and Bt3(!) = bestR It3(!)
def
= f! 2

It3(!) : !R!0; 8!0 2 It3(!)g. Since, by hypothesis, It3(!) � It1(!) and
Bt1(!) \ It3(!) 6= ?, bestR It3(!) = bestR It1(!) \ It3(!). Hence Bt3(!) =
Bt1(!) \ It3(!).
Next we show that Property CAB, together with the Qualitative Bayes Rule

(QBR) implies Property REFweak. Fix ! 2 
 and t; t1; t2; t3 2 T such that
t � t1 � t2 and t � t3 and suppose that It3(!) = It2(!) � It1(!) and
Bt1(!) \ It2(!) 6= ?. By QBR, since Bt1(!) \ It2(!) 6= ?, Bt2(!) = Bt1(!) \
It2(!). Since It3(!) = It2(!), Bt1(!)\It3(!) 6= ? and thus, by Property CAB,
since It3(!) � It1(!), Bt3(!) = Bt1(!) \ It3(!). Hence Bt2(!) = Bt3(!).
Proof of Lemma 12. Fix arbitrary h0 2 H , K 0 2 K and �;  2 �. By AGM3

and AGM4, if : =2 K 0 then B(h0;K 0;  ) = [K 0 [ f g]PL. Thus, letting h0 = h�
andK 0 = B(h;K; �) we get

if : =2 B(h;K; �) then B(h�;B(h;K; �);  ) = [B(h;K; �) [ f g]PL :
(34)

By AGM7 and AGM8,

if : =2 B(h;K; �), then [B(h;K; �) [ f g]PL = B(h;K; � ^  ): (35)

Thus, by (34) and (35), if : =2 B(h;K; �),B(h�;B(h;K; �);  ) = B(h;K; �^
 ):
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