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Abstract

We model information as possibilities consistent with signals re-
ceived from the environment. Knowledge is obtained by reasoning
about the signals received as well as those that might have been re-
ceived but were not. We use the term ‘knowledge’ to refer to those
beliefs that are obtained by reasoning about the available informa-
tion and nothing else. That is, one ought to be able to fully justify
what one knows by means of the information that is available to her.
We use the term ‘belief’ to refer to those beliefs that are based on
information but not necessarily only on information. We investigate
the relationship between information, knowledge and belief, as well as
the issue of updating knowledge and belief in response to changes in
information.

*An earlier version of this paper was presented at the Fourth Conference on Logic and
the Foundations of Game and Decision Theory (LOFT4), Turin, July 2000. I benefited
from comments by the conference participants, in particular Pierpaolo Battigalli, Johan
van Benthem and Joe Halpern. I would also like to express my gratitude to an anonymous
referee for several helpful suggestions.



1 Introduction

Starting with Hintikka’s (1962) pioneering contribution, the notions of knowl-
edge and belief have been studied extensively in the literature. The distin-
guishing feature of knowledge is the veridicality property: while it is possible
for an individual to mistakenly believe something which is false, only true
facts can be known. The literature has mainly focused on the notions of
rational belief (or knowledge) as captured by the introspection properties.
Positive introspection is the property that if the individual believes A then
she believes that she believes A, while negative introspection requires that if
the individual does not believe A then she believe that she does not believe A.
Often, and especially in the economics literature, knowledge and belief are
modeled together and their interaction is captured by two more rationality
postulates: (1) beliefs must be compatible with knowledge, in the sense that
whatever is known is also believed, and (2) the individual knows her own
beliefs, in the sense that if she believes A then she knows that she believes
A.

If beliefs are derived from knowledge, what is the source of one’s knowl-
edge? Changes in knowledge are typically thought of as prompted by the
discovery of new evidence or the receipt of new information. Indeed, in the
economics literature it is common to identify knowledge with information:
one postulates an initial “information partition” and the receipt of new in-
formation is modeled as a refinement of this partition.

The objective of this paper is to explicitly model information and the
process of deriving knowledge from information. We model information as
possibilities consistent with signals received from the environment. Knowl-
edge is obtained by reasoning about the signals received as well as those
that are missing, that is, by eliminating those states that would have yielded
further signals. This can be illustrated with the following example, adapted
from Conan Doyle’s Silver Blaze mystery. In the dead of night, someone
removed the horse Silver Blaze from the stable in which he was kept. Foot-
prints found outside the stable match those of two individuals, who therefore
become the primary suspects. During the investigation, Scotland Yard In-
spector Gregory asks Sherlock Holmes (Baring-Gould, 1967, Vol. 2, p. 277):

Gregory: “Is there any other point to which you would wish
to draw my attention?”



Holmes: “To the curious incident of the dog in the night-
time.”

Gregory: “The dog did nothing in the night-time.”

Holmes: “That was the curious incident.”

Holmes deduces from the fact that the dog did not bark (absence of a signal)
that the thief must have been known to the dog and is therefore able to
eliminate one of the two suspects on these grounds.!

We use the term ‘knowledge’ to refer to those beliefs that are obtained
by reasoning about the available information and nothing else. That is, one
ought to be able to fully justify what one knows by means of the information
that is available to her. Thus two rational individuals who were exposed to
the same information would necessarily end up sharing the same knowledge.
We use the term ‘belief’ to refer to those beliefs that go beyond the infor-
mation received and therefore involve an element of arbitrariness: they are
based on information but not only on information. Beliefs might reflect some
extra elements such as intuition, a hunch, a guess, etc. We investigate the
relationship between information, knowledge and belief, as well as the issue
of updating knowledge and belief in response to changes in information.

It is worth noting that, since our account of knowledge is one of “belief
entirely based on information”, knowledge need not satisfy the veridicality
axiom (if the individual knows A then A is true). If information is accurate,
it will. But, unfortunately, we often trust information which is incorrect; in
such cases it is possible for us to mistakenly claim that we know something
which, as a matter of fact, happens to be false.?

IThis Sherlock Holines example has been exploited by several authors, in different
contexts. Dawid and Dickey (1977) use it to make a similar point to ours in the context
of face-value likelihood and Bayesian inference. They stress the fact that the way in
which probabilities should be updated after receipt of information may depend on what
information might have been received, but wasn’t. Dekel et al. (1998) use it in the context
of how to model the notion of unawareness (see also Geanakoplos, 1989). It is important
to stress that our interpretation of the Sherlock Holmes example has nothing to do with
unawareness: we take it that both Sherlock Holmes and Inspector Gregory were aware of
the fact that there was a dog in the stable and that the dog did nothing. The difference
between them is that Sherlock Holmes, unlike Gregory, infers something from the absence
of a potential signal (the dog barking) whereas Gregory only pays attention to the actual
(or positive) signals (the footprints). What we mean by ‘signal’ is further explained in
Section 2.

2 A clear illustration of this can be found in a recent newspaper article ( The Sacramento
Bee, September 1, 2000): “Mark J. made a big bet in mid-August that Emulex shares



The paper is organized as follows. Section 2 deals with the notion of
information as signals, while section 3 models knowledge as belief rationally
arrived at on the basis of, and only of, information. Section 4 contains some
remarks about the syntactic approach. Section 5 deals with the interaction
of knowledge and belief. In Section 6 we discuss how knowledge and beliefs
change in response to the receipt of new information. Section 7 concludes.

2 Information as signals

We will think of information as possibilities associated (or consistent) with
signals received from the environment. Let 2 be a set of states and Qx C Q2
the set of known states. For example, 2 could be the set of all diseases and
QO the set of known diseases (e.g. the set of diseases in some database). Let
¥ be a set of signals and o : Q — 2” (where 2 denotes the set of subsets of
Y)) be a function that associates with every state w the set of signals produced
by w. In the example where states are identified with diseases, signals can
be thought of as symptoms so that o(w) is the set of symptoms associated
with disease w.

It is worth stressing that by ‘signal’ we mean something that alters the
physical environment, so that there is an objectively measurable difference
between a situation where the signal is present and a situation where it
absent. Thus a sound, a symptom, the presence of a physical clue such as
a footprint, etc., are all signals. On the other hand, in our terminology,
the absence of a signal (e.g. the dog not barking) is not itself a signal.
This allows us to think of information as signals received and to represent
knowledge as inference based on the signals that are present as well as those
that are absent.?

would decline, federal prosecutors say. Instead they soared, leaving him with a paper
loss of almost $100,000 in just a week. So J. took matters into his own hands. [...] On
the evening of August 24, he sent a fake press release by e-mail to Internet Wire, a Los
Angeles service where he had previously worked, warning that Emulex’s chief executive
had resigned and its earnings were overstated. The next morning, just as financial markets
opened, Internet Wire distributed the damaging release to news organizations and Web
sites. An hour later, shareholders in Emulex were $2.5 billion poorer. And J. would soon
be $240,000 richer. [...] The hoax [...] was revealed within an hour of the first news report
and Emulex stock recovered the same day. Still, investors who [believed the fake news
release and] panicked and sold their shares, or had sell orders automatically executed at
present prices, are unlikely to recover their losses”.

3Thus we think of the individual as being aware of all the potential signals (the set )

4



Definition 1 The information function I : Q — 2% is given by:
IT(w) ={w €Qx:0W) Do(w)}.

Thus Z(w) is the set of known states that are compatible with the signals
produced by the true state w, in the sense that those states would also have
produced those signals (although they might have more signals associated
with them). For example, one can imagine a database of known diseases
and their associated symptoms and a (admittedly not very sophisticated)
computer program which receives as input a patient’s symptoms and gives
as output the list of diseases in the database that manifest all those symp-
toms (although possibly more). The next step for a careful doctor would
be to research each of the reported possible diseases and eliminate as true
possibilities all those diseases that had extra symptoms not exhibited by the
patient.? This step, corresponding to the notion of knowledge derived from
information, will be the object of the next section. First we investigate the
properties satisfied by the information function.

Remark 2 The structures considered in this paper (which are common in
the game theory and economics literature) consist of a set of states 2 and
one or more functions (denoted by I for information, IC for knowledge and B
for belief) from Q) to the set of subsets of Q). These structures are equivalent
to Kripke structures (commonly used in computer science and philosophy)
where, instead of functions, one postulates binary relations on . Given a
function F : Q — 2%, the corresponding binary relation R is obtained as
follows: wRW" if and only if W' € F(w). Conversely, given a binary relation
R, the corresponding function F : Q — 22 is defined by: o' € F(w) if and
only if wRW'.

Remark 3 The information function does not necessarily satisfy reflexivity
(w € I(w)) nor euclideanness (if w' € Z(w) then Z(w) C Z(w')). The pos-
sible lack of reflexivity is illustrated by the following example: Q@ = {«a, B},
Qg ={B}, ¥ ={s}, o(a) = a(B) = {s}. Then Z(a) = {B}. A possible in-
terpretation is: « is the true, and as yet unknown, disease and it displays the

as well as the relationship between states and signals (the function o : Q — 2%).

4A referee pointed out that in the field of diagnosis further complexity arises in the
presence of combinations of diseases with interacting symptoms, e.g. symptons that cancel
each other out (see, for example, Stefik, 1995).



same symptom as the known disease 3. Thus one would be led to mistakenly
diagnose the patient as having disease (3. The possible lack of euclidean-
ness is shown in the following example: Q = Qg = {«a, B}, ¥ = {s1, $2},
o(a) ={s1}, o(B) = {s1,s2}. Then I(a) = {a, B} and Z(5) = {B}. A pos-
sible interpretation is: o and 3 are the two possible suspects whose footprints
match the ones found near the stable (signal s1). The actual thief is o who
is known to the dog. The dog did not bark; he would have (signal so) if the
thief had been (3.

Proposition 4 The information function satisfies the following properties:
(1) Secondary reflexivity: Yo, B € Q, if B € I(«) then B € Z(5).
(2) Transitivity: Yo, 3 € Q, if B € I(a) then Z(5) C Z(a).

Proof. (1) If 5 € Z(«) then § € Q. Thus, since o(3) 2 o(03), B € Z(5).
(2) Let 8 € Z(«) and choose an arbitrary v € Z(5). Then o(5) 2 o(«),
v € Qk and o(y) 2 o(F). Thus o(y) D o(a) and hence v € Z(«). =

The following proposition shows that every information function which is
secondary reflexive and transitive can be thought of as possibilities arising
from signals.

Proposition 5 Let 7 : Q — 29 be secondary reflexive and transitive. Then
there exists a subset Qi of Q, a set ¥ and a function o : Q — 2% such that

IT(w) ={w € Qg :0(W) D o(w)}.

Proof. To simplify the notation, we shall give a proof for the case where
Q is countable.” Let {wi,ws,...} be an enumeration of Q. Let Qr = {w €
Q:we (W) for some ' € Q}. Let ¥ = N (where N is the set of natural
numbers) and define o : Q — 2N as follows: o(w;) = {i} U{j € N: w; €
Z(w;)}. First we show that if w; € Z(w;) (hence w; € Q) then o(w;) 2
o(wj). By definition of o, j € o(w;). Two cases are possible: (1) o(w;) = {j}
and (2) o(w;) D {j}. In case (1) there is nothing to prove, since j € o(w;).
In case (2) fix an arbitrary n € o(w;) with n # j. By definition of o,
w; € Z(wy,). This, in conjunction with w; € Z(w,), yields, by transitivity of
7, w; € I(wy,). Hence, by definition of o, n € o(w;). Next we show that if

5The proof for the case where  is not countable is essentially the same, although
notationally more complex. First choose a set of signals X with cardinality at least that of
Q and let ¢ : @ — ¥ be a one-to-one index function. Then define o(w) = {i(w)} U {i(w’) :
w € Z(w')}. The proof then becomes a straightforward adaptation of the one given here.
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w; € Qx and o(w;) O o(w;) then w; € Z(w;). Two cases are possible: (1)
i=7,and (2) i # j. In case (1), since w; € Qg there exists an w, such that
w; € I(wy); hence, by secondary reflexivity of Z, w; € Z(w;). Now consider
case (2). By definition of o, j € o(w;). Thus, since o(w;) 2 o(w;), j € o(w;).
Hence, by definition of o, w; € Z(w;). m

Because of Proposition 5, from now on we shall take information functions
as primitives and refer to the underlying interpretation in terms of signals
only when needed to clarify matters.

3 Deriving knowledge from information

As the Sherlock Holmes example discussed in the Introduction shows, if in-
formation is thought of as possibilities consistent with signals received, a
rational individual forming beliefs based on the available information needs
to reason about not only the signals received but also those that might have
been received and were not. The Sherlock Holmes example can be illustrated
in the formalism of information functions as follows (for reasons that will be-
come clear later on, we increase the number of suspects from two to three).
Let Q = {a, 8,7}, where each state identifies a particular suspect, and let
I(a) = Z(B) = {a, 3,7} and Z(y) = {~}.% This is illustrated in Figure 1
where there is an arrow from w to ' if and only if W' € Z(w).

An alternative interpretation of this example is the following: a patient
reports headache and vomiting to the doctor. In the doctor’s experience,
these symptoms arise in case of food poisoning (a), stomach flu (3) and
meningitis (7). Suppose that, as a matter of fact, the patient suffers from
food poisoning («). Based on the symptoms, the possible illnesses are these
three: Z(a) = {«, 8,v}. However, further research or better recollection of
past cases, would reveal to the doctor that meningitis also has neck pain as
a symptom, leading to Z(y) = {7v}. Thus a careful doctor, noticing (and
confirming) the absence of neck pain, would have to narrow down the possi-
bilities to food poisoning and stomach flu. This inferential step corresponds

6 All three are suspects because of the signal (clue) represented by the footprints (they
match those of each of them). The dog did not bark. Suspects a and [ are known to the
dog, while 7 is not. If v had been the thief, a further signal would have been observed,
namely the dog’s barking. Formally, Qx = Q, 3 = {f, b}, where ‘f ’ stands for ‘footprints’
and ‘b’ for ‘barking’, and o : Q — X is given by o(«) = o(8) = {f}, o(vy) = {f,b}. Using
Definition 1 one obtains the above information function.



to the derivation of knowledge from information.

Figure 1

Let K : Q — 2% be the knowledge function. K(w) is interpreted as the set
of states that, based on what he knows, the individual cannot rule out when
the true state is w. We impose the following requirements:

(1) knowledge should be based on the information received,
(2) knowledge should reflect reasoning about the information, and

(3) knowledge should be derived ezclusively from the available information.

The first requirement is captured by the following condition:

Vw e Q, Kw) C I(w) (R.1)

which says that, according to the individual’s knowledge, a state is possible
only if it is one of the states compatible with the information received.

An individual who is wondering whether a particular state suggested by
the available information is a ‘true possibility’ should ask herself “if that
state were indeed the true state, what information would I be looking at?”.
If the answer to that question is “information different from the one I actually
have”, then she should rule out that state. Thus the second requirement is
captured by the following condition:

if W eK(w) then Z(J') =T(w). (R.2)

Applying (R.2) to the example of Figure 1, we get that v ¢ K(«), since
Z(y) # Z(«). This reflects Sherlock Holmes’ reasoning that the thief cannot
be v because more signals would have been available (the dog’s barking) if
he had been. However, (R.1) and (R.2) together are consistent with, for ex-
ample, K(a) = {3}, that is, with Sherlock Holmes’ concluding that the thief
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must have been 3. This seems to be an arbitrary conclusion, not justified
by the available information. We want knowledge to reflect all and only the
available information. This requirement is captured by the following prop-
erty, which requires that every state that is consistent with the information
and would have produced the same information be considered possible:

if w €Z(w)andI(w') =Z(w) then o' € K(w). (R.3)

Applying (R.1)-(R.3) to the above example we get: K(a) = K(8) =
{a, B} and K(7) = {~}-

The following proposition lists two important properties of the knowledge
function.

Proposition 6 Let K be a knowledge function derived from information ac-
cording to (R.1)-(R.3). Then KC satisfies the following properties:

(1) Transitivity: Yo, 8 € , if B € K(a) then K(5) C K(a);
(2) Euclideanness: Yo, 3 € Q, if € K(a) then K(a) C K().

Proof. (1) Let 5 € K(a) and choose an arbitrary v € K(3). By (R.2),
I(a) = Z(B) and Z(B) = Z(vy). Thus Z(y) = Z(«). By (R.1), 5 € Z(«) and
v € Z(B); hence, by transitivity of Z (cf. Proposition 4), v € Z(«). By (R.3),
this, together with Z(v) = Z(«a), yields v € K(a).

(2) Let 8 € K(«) and choose an arbitrary v € K(«). By (R.1), v € Z(«).
By secondary reflexivity of Z (cf. Proposition 4), v € Z(y). By (R.2) Z(«a) =
Z(B) and Z(«) = Z(y). Thus Z(5) = Z(y) and therefore v € Z(3). Hence,
by (R.3),y € K(5). m

Thus, in the analysis of this paper, the introspective properties of knowl-
edge are not postulated as primitives but are derived properties.

Remark 7 Since I in general is not reflexive (cf. Remark 3) it is clear that
IC need not be reflexive. For example, if Q = {a, 8} and Z(a) =Z(06) = {5},
then K(a) = {B}. Thus it is possible for somebody to “know” something
which is false (as illustrated in Footnote 2). This, however, happens only if
the information received is inaccurate, that is, only if T is not reflexive. It is
an immediate consequence of (R.3) that if T is reflexive, then so is K.



Remark 8 Another property which in general is not satisfied by K is seri-
ality (Vw € Q, K(w) # 0), as the following example shows: Q = {a, 3,7},
T(a) = {B,7}, T(8) = {8} and (1) = {1}. By (R.1), K(a) C {8,7} and
by (R.2) B ¢ K(a) and v ¢ K(«).” In order to guarantee seriality of K one
needs to require I to satisfy the following property (for which reflexivity is a
sufficient condition): ®

Vw e Q, 3" € Z(w) such that T(w') = Z(w). (R.4)

By Proposition 6, knowledge satisfies the K45 logic (cf. Chellas, 1984) and
if the information function satisfies (R.4) then knowledge obeys the KD45
logic. If information is always correct (Z is reflexive) then knowledge satisfies
the S5 logic, which is the logic usually identified with the notion of knowledge.
Thus, when 7 is reflexive, K gives rise to a partition of €2, although 7 itself
need not be a partition, as the following example shows: Q = {«, 3,7},
T(a) = {0 .1}, T(8) = I(7) = {f.7}. By (R1)-(R3) K(a) = {a} and
K(8) = K(v) = {B,~}. Thus K is a partition but Z is not (it is reflexive and
transitive but not euclidean).

That (R.1)-(R.3) capture the notion of knowledge as belief based exclu-
stvely on information is confirmed by the fact that when Z is euclidean, IC
coincides with Z.° Indeed, when 7 is euclidean there are no further infer-
ences that can be drawn by reasoning about the available information and
therefore knowledge and information coincide.

We conclude this section by interpreting knowledge as defined above in
terms of signals. Intuitively, it seems natural to require the individual to

TA possible interpretation of this example is the following: «, 3 and v are diseases, of
which only 8 and « are currently known. There are three symptoms: s1, so and s3; a’s
only symptom is s1, while § has symptoms s; and s; and v has symptoms s; and s3. If
the true disease is the as yet unknown disease «, then a rational doctor would be left in a
state of confusion, not having « in her database and having to rule out 8 because of the
missing symptom s, and y because of the missing symptom ss.

8Because of transitivity of Z, (R.4) is equivalent to the seemingly weaker condition:
Vw € Q, Jw’ € I(w) such that Z(w) C Z(w'). In terms of signals, a sufficient (but not
necessary) condition for (R.4) to hold is the following: Vw € €, Jw’ € Qi such that
o(w') =o(w).

9Since 7 is transitive, euclideanness implies that if 3 € Z(«) then Z(a) = Z(3). Thus,
by (R.3), Z(«) € K(«). Together with (R.1) this yields K(«) = Z(«).
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allow as possible states only those which would have produced ezactly the
signals that are actually observed.!’ The following proposition confirms this
conjecture in all those situations where among the known states there is at
least one with the same associated signals as the true state.

Proposition 9 Let the information function T be given as in Definition 1
and let the knowledge function IC be obtained from I according to (R.1)-
(R.3). Then, for every w € Q, if {' € Qk : o(W') = o(w)} # 0, then
Kw) ={w € Qx:0(W) =0c(w)}.

Proof. Fix an arbitrary w € Q and assume that {«' € Qf : o(w') =
o(w)} # 0. First we show that if & € K(w) then a € Qg and o(a) = o(w).
By (R.1), @ € Z(w). Thus, by Definition 1, o € Qk and o(a) 2 o(w). To
show that o(w) O o(«), fix an arbitrary o’ € Qg such that a(w’) = o(w)
(it exists because of our supposition). Then, by Definition 1, w" € Z(w).
Since a € K(w), by (R.2) Z(a) = Z(w). Thus o’ € Z(«) and, therefore, by
Definition 1, o(w') D o(a). Since o(w') = o(w), it follows that o(w) 2 o(«).
Next we show that if o € Qk and o(a) = o(w) then a € K(w). By Definition
1, « € Z(w) and Z(«) = Z(w). Thus, by (R.3), a € L(w). m

The condition postulated in Proposition 9, namely that there be a state
in the “known database” that produces the same signals as the true state
({w' € Qk : o(W') = 0a(w)} # 0) is trivially satisfied whenever Q = Qy, that
is, whenever all the states are in the database. It is also clear that 2 = Q
if and only if both Z and K are reflexive.

4 Remarks on the syntactic approach

In this section we investigate the axiomatization of some of the properties
of information and knowledge introduced in the previous two sections. First
some preliminaries. Consider a propositional language with two modal oper-
ators, I and K, whose intended interpretation is:

I¢:  “the individual is informed that ¢”.
K¢ : “the individual knows that ¢”.

10T am grateful to Pierpaolo Battigalli for making this point.
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The formal language is built in the familiar way from the following com-
ponents: a countable set S of sentence letters (representing atomic proposi-
tions), the connectives - and Vv (from which the other connectives A, — and
« are defined as usual) and the modal operators I and K.!!

A frame is a triple (Q, Z,K), where Z : Q — 2% and K : Q — 2. Given a
frame, one obtains a model based on it by adding a function V : S — 2% that
associates with every sentence letter p the set of states at which p is true.
For non-modal formulae, truth at a state in a model is defined as usual.'?
Validation for modal formulae is as follows:

wEI¢iff W | ¢ for all ' such that ' € Z(w)
wkE K¢ iff o | ¢ for all ' such that o' € K(w).

Given a model, we denote by ||¢|| the truth set of formula ¢, that is,
l|6]] = {w € Q:w E ¢}. A formula ¢ is valid in a model if ||¢]| = €; it is
valid in a frame if it is valid in every model based on it.

We say that an axiom corresponds to (or characterizes) a property of a
frame if the property is necessary and sufficient for the axiom to be valid
in the frame. For example, as is well known (cf. Chellas, 1984), the ax-
iom I(I¢p — ¢) characterizes secondary reflexivity of Z while I¢p — I1¢
corresponds to transitivity of Z. Property (R.1) corresponds to the axiom
I¢p — K¢ and, as the next proposition shows, (R.2) corresponds to the
conjunction of the following axioms:

I — KI¢ (A.2a)

and

I — K-Io. (A.2b)

U The set @ of formulae is thus obtained from the sentence letters by closing with
respect to negation, disjunction and the modal operators: (i) for every p € S, (p) € ®, (ii)
if ¢, 9 € ® then all of the following belong to ®: (—¢), (¢ V ¢), I and K.

12Given a model, we write w |= ¢ to denote that ¢ is true at state w and w ¥ ¢ to denote
that ¢ is false at w. If p is a sentence letter, w |= p iff w € V(p); furthermore, w | —¢ iff
wk ¢ and w = (¢ V) iff either w = ¢ or w = 1. It follows that w = (pAY) if w = ¢
and w = ¢, and w = (¢ — ¢) iff w | ¢ whenever w = ¢.

12



Proposition 10 The conjunction of (A.2a) and (A.2b) characterizes (R.2),
that is, if a frame satisfies (R.2) then (A.2a) and (A.2b) are valid in it and,

conversely, if (A.2a) and (A.2b) are valid in a frame then the frame satisfies
(R.2).

Proof. (R.2) is equivalent to the conjunction of (R.2a) and (R.2b) below:
(R.2a) if g € K(a) then Z(3) C Z(«)
(R.2b) if B € K(a) then Z(a)) C Z(5).

First we show that (A.2a) characterizes (R.2a). Fix a frame that satisfies
(R.2a), arbitrary a € Q and formula ¢ and suppose that o = I¢, that is,
Z(a) C ||¢|| (recall that ||¢|| denotes the truth set of ¢). Fix an arbitrary
B € K(a). By (R.2a), Z(8) C Z(«) and, therefore, Z(3) C ||¢||, that is,
B | 1¢. Hence a = K1¢. Conversely, take a frame that does not satisfy
(R.2a). Then there exist «, 3,y such that § € K(«), v € Z(5) and v ¢ I ().
Construct a model based on this frame where, for some atomic sentence p,
Ipll = Z(«). Then « |= Ip. Furthermore, since v € Z(5) and v ¢ ||pl,
B | —Ip; thus, since § € K(a), a | ~KIp.
Next we show that (A.2b) characterizes (R.2b). Fix a frame that satisfies
(R.2b), arbitrary a € € and formula ¢ and suppose that «a |= —I¢. Then
there exists a v € Z(«) such that v ¥ ¢. Fix an arbitrary § € K(«). By
(R.2b), Z(a) C Z(F) and therefore v € Z(3). Thus § = —~I¢ and, therefore,
since 5 € K(«) was chosen arbitrarily, a = K—1¢. Conversely, take a frame
that does not satisfy (R.2b). Then there exist «, 3, such that 8 € K(«),
v € Z(«) and v ¢ Z(3). Construct a model based on this frame where, for
some atomic sentence p, ||p|| = Z(8). Thus 8 = Ip and, since § € K(«),
a | ~K—Ip. Furthermore, since v € Z(«) and v ¢ ||p||, a = —-Ip. m

On the other hand — unlike (R.1) and (R.2) (and secondary reflexivity
and transitivity of Z) — property (R.3) is not characterizable in the above
modal language.'?

5 Belief and knowledge

We use the term “belief” for those beliefs that, while still based on infor-
mation, are not fully justifiable on the basis of it. Such beliefs are derived
from the available information but incorporate an element of arbitrariness,
e.g. intuition, a hunch, a guess, etc. Let B : Q — 2 be the belief function.

131 am grateful to Johan van Benthem for pointing this out.
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B(w) is interpreted as the set of states that the individual considers possible
when the true state is w. The interaction between knowledge and belief has
been studied extensively in the literature (see, for example, Battigalli and
Bonanno, 1997, Halpern, 1991, van der Hoek and Meyer, 1995, Kraus and
Lehmann, 1988, Lenzen, 1978). In this literature the relationship between
belief and knowledge is captured by the following properties (in brackets,
next to each property, is the characterizing modal axiom: B denotes the
belief operator associated with 5).

Vw e Q, Bw) C Kw) (Ké — Bg) (R.5)

if W e K(w)then Bw') C B(w) (B — KBo). (R.6)

(R.5) states that beliefs are based on knowledge, while (R.6) requires
that the individual know his own beliefs. Further rationality requirements
on beliefs are given by the introspection properties (positive introspection,
captured by transitivity, and negative introspection, captured by euclidean-
ness):

if W € B(w) then B(W') C B(w) (B¢ — BB¢) (R.7)

if W € B(w) then B(w)C B(w) (=B¢p — B-B9). (R.8)

It is also customary to require beliefs to be consistent (B to be serial:
Vw € Q, B(w) # 0). In our framework, however, since seriality of knowledge
cannot be guaranteed (cf. Remark 7) requiring seriality of B would be in
conflict with (R.5). Thus we can impose the weaker requirement that B be
serial when K is:

Vwe Q, if K(w)#0 then B(w) #0. (1)

Since (R.4) guarantees seriality of I, when (R.4) is satisfied (1) is equiv-
alent to seriality of B.!*

A possible belief that satisfies (R.5)-(R.8) (as well as seriality) in the
example of Figure 1 of Section 3 is the following: B(«a) = B(8) = {5},

M4 For this reason, in the list of properties given at the beginning of next section we
replace (1) with seriality of B.
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B(v) = {v} (thus — when « is the actual thief — although on the basis of
the available information « cannot be ruled out as a suspect, the investigator
somehow becomes mistakenly convinced that the thief was ).

Remark 11 [t follows from (R.6)-(R.8) that if § € K(«) and B(3) # 0 then
B(B) = B(a)."?

6 Updating knowledge and belief

We now turn to the intertemporal framework where information changes over
time and our objective is to investigate how knowledge and belief should be
updated in the face of new evidence. Let N be the set of natural numbers.
For every t € N let Z;, K; and B; denote the information, knowledge and
belief functions at date t. We shall assume that, for every t € N, Z;, K; and
B, satisfy properties (R.1)-(R.8) as well as seriality of B.1® That is, for all
teNand w,u € Q,

Ki(w) C Zi(w) (R.1)
if W e Ki(w) then Zy(W') = I (w) (R.2)
if W€ i(w) and Ty(w') = Tt (w) then ' € Ki(w) (R.3)
" € Ty(w) such that I,(w) = Z,(w") (R.4)
Bi(w) C Ki(w) (R.5)
if w e Ki(w)then Bi(w') C Bi(w) (R.6)
if W e Bi(w) then By(w') C By(w) (R.7)
if W € Bi(w) then By(w) C By(w') (R.8)
Bi(w) # 0. (R.9)

The topic of belief revision has received considerable attention in the
literature. The notion of rational belief revision is normally identified with
the “conservativity principle” which states that ‘When changing beliefs in

5Proof. Let 3 € K(a). By (R.6) B(3) € B(a). To show that B(a) C B(3), fix an
arbitrary v € B(8) (it exists by our supposition). By (R.7) B(vy) C B(8). Since v € B(f)
and B(8) C B(a), v € B(a). Thus, by (R.8), B(a) C B(y). Hence B(a) C B(3). m

16Some of the properties listed below are redundant, that is, they can be derived from
the others. For example, (R.7) can be derived from (R.5) and (R.6). We nevertheless list
them separately in order to highlight the role that each of them plays in the proofs.
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response to new evidence, you should continue to believe as many of the old
beliefs as possible’ (Harman, 1986, p. 46). This means that if an individual
gets new information which is not inconsistent with her previous beliefs, then
(1) she has to maintain all the beliefs she previously had and (2) the change
in her beliefs should be minimal in the sense that every new proposition that
she believes must be deducible from her old beliefs and the new information
(see, for example, Gérdenfors, 1988, Stalnaker, 1984). In the case where
information is identified with knowledge and the latter satisfies the S5 logic
(that is, K is reflexive, transitive and euclidean, thus a partition) then the
conservativity principle is fully captured by the following property, which is
the qualitative version of Bayes’ rule (cf. Battigalli and Bonanno, 1997):
Vte N, Yw € Q,

if Bi(w) N Kip1(w) # 0 then By (w) = Bi(w) N Ky (w). (C)

Condition (C) says that if what the individual knows now (at time ¢ + 1) is
compatible with what he believed before (at time ¢), then what he believes
now coincides with the intersection of what he believed before and what he
cannot rule out based on his current knowledge.

Since reflexivity is not satisfied in general by the information and knowl-
edge functions that we consider, and, furthermore, the information function
is not necessarily euclidean, we will investigate the extent to which in our
framework condition (C) applies to the relationship between information and
knowledge and between knowledge and belief.

Remark 12 Even when I (and thus K) is reflexive, condition (C) restated
i terms of T and K does not hold in general, that s, it is not the case
that ICi11(w) = Ki(w) N Ziya(w), as the following example shows: Q =
{a, 8,7}, Vw € Q, Ti(w) = {a, 8,7}, Zia(a) = {a, 8,7} and 11141 (6)
Tiia(y) = {B,7}. Then, Vw € Q, Ki(w) = {a, 8,7}, while K;11(a) = {a}
and Ki1(6) = Kipa(y) = {6,7}. Here we have that T, 1(a) N Ky(a)
{a, B,7}, while Kiiq(a) = {a}."

17 A story consistent with this example is the following: a patient suffers from symptoms
which are associated with either food poisoning («) or a bacterial infection (3) or a viral
infection (vy). Initially the doctor cannot tell which is the true illness. A day later the
patient reports no changes in his symptoms. The doctor concludes that it must be a case
of food poisoning («), because if it had been an infection (either bacterial or viral) then
the patient would have developed high fever.
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We now introduce a further property of the information function, which is
natural in our framework where information is defined as possibilities arising
from signals. According to Definition 1 (adding a time subscript) the infor-
mation function Z; :  — 2% is given by: Z;(w) = {w’ € QL : 04(w') D oy (w)},
where Q% C Q is the database of known states at date ¢. It is very plausible
to assume that the database can only expand over time, that is, that known
states are never forgotten (and possibly new states are learned). If one makes
this assumption, namely that Q% C Q4" then it follows from the definition
of Z;(w) that if w € Z;(w) then w € T, (w).'¥ We introduce this assumption
explicitly:

Vw e Q, if w e Ly(w) then w € T 1 (w). (R.10)

Note that (R.10) is much weaker than reflexivity of Z: in fact it is consistent
with (R.10) to have that, for some state w and for every date ¢, w ¢ Z;(w)
(and therefore w ¢ Ki(w))

The following proposition says that, when (R.10) is satisfied, the interac-
tion of knowledge and belief expressed by (C) is fully captured by the axiom
Bi¢p < BiBii1¢. In one direction (Bip — B;B;.1¢) the axiom says that
the individual must anticipate continuing to believe everything that she cur-
rently believes, while in the other direction (B;Byy1¢ — Bi¢) it says that if
the individual anticipates believing something in the future then she must
believe it now.

Proposition 13 Let Z, K and B satisfy (R.1)-(R.10). Then the following
are equivalent

(1) if Biyw)NKip1(w) # 0 then Biyi(w) = Bi(w) N Ky (w)
(2) the axiom By¢p < BiBi 10 is valid.

Proposition 13 generalizes Proposition 1 in Battigalli and Bonanno (1997)
to the case where K is not reflexive. Furthermore, in our framework (unlike

BIf w € Zy(w) then w € QF. Since Q% C QL' it follows that w € Q%' Hence, since
Or41(w) 2 041 (W), w € Tepa (w).

YThus in frames that satisfy (R.1)-(R.10) the axiom B¢ <+ B;B;41¢ characterizes the
qualitative rule of conditionalization (C). It follows that the plausibility of this axiom is
equivalent to the plausibility of the semantic rule of conditionalization.
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theirs) K is a derived concept rather than a primitive. The proof of Propo-
sition 13 is split into the following four lemmas. It can be seen from these
lemmas that (R.10) is required to prove the implication in one direction only.

Lemma 14 Assume (R.5)-(R.9). If Bi¢ — BiBii1¢ is valid then the fol-
lowing holds: Yw € Q, if Bi(w)NKi11(w) # 0 then By (w) C Bi(w) N1 (w).

Proof. Assume that B¢ — B;B; 1¢ is valid in the frame. Fix an
arbitrary w € Q and suppose that B(w) N K1 (w) # 0. By (R.5), Biy1(w) C
Ki11(w). Thus we only need to show that Biyi1(w) C Bi(w). Suppose not,
that is, suppose there exists an a € B;;1(w) such that o ¢ B;(w). Construct
a model where, for some atomic proposition p, ||p|| = Q\{a}. Then w = B;p.
Thus, by our hypothesis, w = B:B;1p. Let § € Bi(w) N K1 (w) (it exists by
our supposition). Since § € Bi(w) and w | B;Biy1p, B | Biyap , that is,

a ¢ B (6). (2)
By (R.9) B:11(8) # 0. Thus, by Remark 11, since 8 € Ky 1(w), Bi1(8) =
Bi1(w). Then, since a € Byy1(w), a € Biy1(0), contradicting (2). m

Lemma 15 Assume (R.5)-(R.9). If B;B;1¢ — B¢ is valid then the fol-
lowing holds: Yw € Q, By(w) N K1 (w) C Biyr(w).

Proof. Assume that B;B;1¢ — B¢ is valid in the frame. Fix an
arbitrary w € € and suppose it is not the case that By (w)NCi i1 (w) C Biyig(w),
that is, there exists an o € B,(w)NK¢y1(w) such that a ¢ B, 1(w). Construct
a model where, for some atomic proposition p, ||p|| = Q\{a}. Then, since
a € By(w),

w ¥ Byp. (3)

By (R.9) B:i1(a) # 0. Thus, by Remark 11, since « € Ky 1(w), Beyi(a) =
Bii1(w). It follows that, since o ¢ By (w),

a ¢ Bi(a). (4)
Next we show that

Vy € Bi(w), a & Ba(y). (5)
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Suppose not, that is, suppose there exists a v € By(w) such that a € B;1(7).
Then by (R.5) a € Ky11(7y) and, therefore, by Remark 11, By 1(a) = Bii1 (7).
Thus by (4) a ¢ B;1(7), yielding a contradiction. It follows from (5) that
w = ByBiy1p. Thus, by our supposition, w = B;p , contradicting (3). m

Remark 16 In general, in frames that satisfy (R.5)-(R.9) the converse of
Lemma 14 is not true, as the following example shows: Q = {a, 8}, Ti(a) =
Ki(a) = Bi(a) = {a}, Zi(B) = Ki(B) = Bi(B) = {B} and, Vw € Q, T (w) =
Kii1(w) = Bipi(w) = {B}. Here it is true at every state w that if By(w) N
Kis1(w) # 0 then Biii(w) C Bi(w) N Kipi(w) (the antecedent is false at
a). Yet it is not true that B;p — BiBiy1¢ is valid. In fact, consider a
model where, for some atomic sentence p, ||p|| = {a}. Then o = Bip but
a ¥ BB 1p since a € Bi(a) and 5 € Biyi(a) and B ¥ p.

The following lemma shows that in the presence of (R.10) the converse
of Lemma 14 does hold.

Lemma 17 Assume (R.1), (R.3), (R.5), (R.7), (R.8) and (R.10). Assume
also that, Yw € Q, if By(w) N K1 (w) # O then Biyr(w) C Bi(w) N Kipr(w).
Then By¢p — ByBii1¢ is valid.

Proof. Suppose not, that is, suppose that in some model, for some w and
¢ it is the case that w = B¢ and w ¥ B;B;1¢. Then there exist o € By(w)
and § € Byy1(«) such that g ¥ ¢. Thus

B ¢ By(w). (6)
Since a € Bi(w), by (R.7) and (R.8), Bi(a) = Bi(w). Thus

S Bt(a) (7)
and by (6)

B & Bi(). (8)
By (7), (R.5) and (R.1), a € Z;(«). Hence, by (R.10), o € ;11 (cv). It follows
from this and (R.3) that

o< ICt+1(Oé). (9)

By (7) and (9), Bi(a) N Kip1(a) # 0. Hence by our hypothesis B;1(a) C
Bi(a) N Kiy1 (). Hence, since § € Byii(a), we get that 8 € B,(«a), contra-
dicting (8). m

19



Remark 18 In general, in frames that satisfy (R.5)-(R.9) the converse of
Lemma 15 is not true, as the following example shows: Q = {«, f}, Vw € Q,
Li(w) = Ki(w) = Bi(w) = {a, 8} and Ty (w) = Kepr(w) = Bra(w) = {a}.
Here it is true at every state w that By(w) N K11 (w) C Biya(w). Yet it is not
true that BiBiy1¢ — B¢ is valid. In fact, consider a model where, for some
atomic sentence p, ||p|| = {a}. Then a = BiBi1p but o Byp.

The following lemma shows that in the presence of (R.10) the converse
of Lemma 15 does hold.

Lemma 19 Assume (R.1), (R.3), (R.5), (R.8) and (R.10). Assume also
that, Yw € Q, By(w) N Kiy1(w) C By (w). Then ByBii1¢p — Bio is valid.

Proof. Suppose not, that is, suppose that in some model, for some w
and ¢ it is the case that w = B;B;;1¢ and w ¥ B¢, that is, Va € Bi(w),
B:i1(a) C ||¢|| and there exists a 3 € Bi(w) such that 5 ¥ ¢. Then

B & Bi1(B). (10)
Since § € By(w), by (R.5) and (R.1), 8 € Z;(w). Hence by secondary reflex-
ivity of Z; (see Proposition 4), 8 € Z;(/3). Thus, by (R.10), 8 € Z;1(5) and
hence, by (R.3), 8 € Ki11(0). Since 8 € Bi(w), by (R.8) 8 € By(5). Thus
B € Bi(B) N Ki11(B). By our hypothesis, B;(3) N K1(8) C Biy1(B). Thus
B € Biy1(5), contradicting (10). m

It is easily seen that Proposition 13 is a corollary of the above four lemmas.

Remark 20 In Proposition 13, one cannot replace KC with T in (C'), that is,
(C) cannot be replaced by

if Bi(w)NZi(w) # 0 then Byt (w) = Bi(w) N T (w). (C")
In fact, while it is the case that (C") implies validity of Bi¢ < BiByy19,%

2Proof. First we show validity of By — B;B;y1¢. Suppose that « = B;¢, that is,
Bi(a) C ||¢]|. Fix an arbitrary 5 € Bi(a). We want to show that 8 = Biyi¢, that is,
Biy1(8) C ||#]|- By (R.7) and (R.8), Bi(c) = B,(5). Thus 8 € Bi(8) and by (R.5) and
(R-1) 3 € Tu(8). Thus, by (R.10), § € Try1(8). Hence, By() N o1 (8) £ 0 and by (C'),
Be1(B8) € Bi(8). Thus, since Bi(3) = Bi(c) C [[¢]], Be41(8) € |[4]]-

Next we show validity of B;By1¢ — Bip. Suppose that o |= ByBii1¢, that is, Vw €
B (a), Biy1(w) C ||¢]]. Fix an arbitrary 8 € B,(«). We want to show that 3 € [|¢]|. Since
B € Bi(w), it follows from (R.8) that 8 € B:(3) and by (R.5) and (R.1) 8 € Z;(3). Thus,
by (R.10), B € Zy41(08). It follows from (C’) that 8 € B.y1(83). Hence, since 8 € By(«),
Ge gl
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the converse is not true, as the following example shows: Q = {a, 3,7},
Vw € €, It(w) = Kt(w) = Bt(w) = {avﬁ: ’7}’ It-i-l(a) = {avﬁv ’7}7 It-i-l(ﬁ) =
Zin(v) = {8,7}, Kia(@) = Bia() = {a}, Kis1(8) = B (B) = Keya () =
Bii1(y) = {B,7}. For every w € Q, w = B¢ iff ||¢|| = Q; hence, Yw € 2
and for any such formula ¢, w |= By 1¢ and, therefore, w = B;By1¢. Thus
Bi¢p — BiBii1¢ is valid. However, By 1(a) = {a} # Bi(a) N i (a) =
{a,8,7}.2

The axiom considered in Proposition 13 is forward-looking, that is, it
involves beliefs about future beliefs. Consider now the similar, although
backward-looking, axiom: B;B; 1¢ <> B; 1¢. In one direction (B;B; 1¢ —
B: 1¢) the axiom says that the individual’s beliefs about her past beliefs are
always correct,?? while in the other direction (B;_1¢ — B;B;_1¢) it says that
the individual always remembers her past beliefs. The following proposition
shows that, when information is correct (Z is reflexive), the axiom charac-
terizes the following property of knowledge, which says that the individual’s
knowledge becomes more refined as time progresses:**

VieN, YVw e Q, Ki(w) C Kioq(w). (Rk)

Proposition 21 Assume (R.1)-(R.9). If T is reflexive, then the following
are equivalent:

(1) the axiom ByB;_1¢ < B;_1¢ is valid,

(2) property (Ri) is satisfied.

By (R.3), reflexivity of Z implies reflexivity of K. Thus the above proposi-
tion is a consequence of the following two lemmas. Note that the first lemma
does not require reflexivity of IC.

Lemma 22 Assume (R.5)-(R.9). If (Rk) holds, then the axiom B,By_1¢ <
B;_1¢ is valid.

21The crucial property that is missing here is the counterpart of (R.6) for information:
while the individual always knows his own beliefs, it is not the case that he is informed of
his own beliefs. In this example, 5 € Zy11(«) but Beyq(a) N By1(8) = 0.

22Recall that even if K is reflexive, B in general is not: mistaken beliefs are allowed
(and, indeed, quite common). While allowing for mistaken beliefs about facts, this axiom
rules out incorrect beliefs about one’s own past beliefs.

23R’ stands for “refinement of knowledge”.
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Proof. First we prove validity of B;B;_1¢ — B;_1¢. Let a = B;B;_1¢,
that is, Vw € Bi(«), Bi_1(w) C ||¢||. We want to show that « = B: 1¢, that
is, B, 1(a) C ||9||- By (R.9) there exists a 8 € Bi(a). Then B; 1(5) C ||9]|.
By (R.5) Bi(a) C Ki(a) and by hypothesis I;(a) € K; 1(«). Thus g €
Ki—1(a); furthermore, by (R.9) B;_1(5) # 0; thus, by Remark 11, B,_(5) =
B:_1(«). Hence B;_1(«) C ||¢]|. Next we prove validity of B;_1¢ — B;Bi_1¢.
Suppose «a |= B;_1¢, that is, B;_1(a) C ||¢||. Fix an arbitrary g € B;(a). We
need to show that B; 1(3) C ||¢||. By (R.5) B;(«) C Ki(«) and by hypothesis
Ki(a) € K;_1(a). Thus 8 € K; 1(a); furthermore, by (R.9) B, 1(8) # 0;
thus, by Remark 11, B;_1(8) = B;_1(«). Hence B;_1(3) C ||¢||. =

Lemma 23 Assume (R.1)-(R.3) and (R.5)-(R.9). If T (and thus K) is re-
flexive and the aziom B;B; 1¢ < B; 1¢ is valid, then (Rk ) is satisfied.

Proof. Suppose that Z (and thus K) is reflexive and (Rk) is violated.
Then there exist «, § such that 5 € K;(«) and 8 ¢ Ki—1(a). Then Ky () N
Ki—1(8) = 0 (recall that K is transitive and euclidean: cf. Proposition 6;
note: this is where reflexivity of K is plays a crucial role)?!. By (R.5),
Bt_l(Oé) g /Ct_1(0z) and Bt_1(ﬁ) Q Kt_l(ﬁ). Thus Bt_l(a) N Bt—l(ﬁ) = @
Construct a model where for some atomic sentence p, ||p|| = B;_1(«). Then
a = By 1p and B E By 1p. By (R.9), B:(3) # 0; thus, since 5 € Ki(a), by
Remark 11 B,(5) = Bi(«). Thus, for every formula ¢, a = B¢ if and only
if 6= Bip. If a |= ByB;_1p then 8 = B;B;_1p and the formula B;B; 1p —
B;_1p is false at 5. If a ¥ B;B;_1p then the formula B;_1p — B;B;_1p is
false at . In either case we get a contradiction with our hypothesis that the
axiom B;B;_1¢ < B;_1¢ is valid. =

Remark 24 The following frame, which satisfies (R.5)-(R.9), shows that in
Lemma 23 the hypothesis that T is reflexive is crucial: Q = {a, 8}, Yw € Q,
It (w) = K1 (w) = Bia(w) = {a}, Ti(w) = Ki(w) = {a, 8} and By(w) =
{a}. In any model based on this frame, for every formula ¢, BiBi_1¢ <
Bi_1¢ is valid but (Rk ) is violated.

One case which is of some interest is the case where the information
available at any date does not contradict the information available at earlier

2 Guppose v € Ki_1(a) N K;_1(B). By transitivity and euclideanness of K (cf. Propo-
sition 6), Ki—1(v) = Ki—1(e) and Ki—1(y) = Ki—1(6). Thus K;—1(a) = K,—1(8). By
reflexivity of IC, 5 € Ky—1(83). Thus § € K;_1(«), a contradiction.
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dates, that is, the individual becomes more informed as time progresses. This
is expressed by the following property:2

VteN, YweQ, T(w)C T (w). (Ry)

Remark 25 From the facts that knowledge is based on information (R.1)
and that new information never contradicts past information (Ry) one might
be led to conclude that what the individual knows at a date t should be a
refinement of what he knew at date t — 1, that is, that (Ry) should hold.
The following example shows that this is not the case. Let Q = {«, 3,7,6},
Ti1(a) = Tia(y) = Zi—1(6) = {B,7,0} and I,_1(B) = {B}. Then (R.1)-
(R.3) imply that KK;—1(a) = Ki—1(y) = Ki—1(6) = {~, 6} and K,—1(B) = {5}.
Suppose now that Zy(a) = Zy(B) = {6} and Zi(y) = Z,(6) = {~,6}. Then,
by (R.1)-(R.3), Ki(a) = Ki(B) = {8} and Ki(vy) = Ki(6) = {v,6}. In this
example (Ry) is satisfied and yet Ki(a) N Ki—1(a) = 0, that is, what the
idividual knows at date t is inconsistent with what she knew at date t — 1.

The following proposition shows that when information is correct (Z is
reflexive), property (R;) is transferred to knowledge, that is, (Rk) holds.
Thus if information is always correct and new information never contradicts
past information, then it is never the case that the individual knew something
in the past which she does not know now.

Proposition 26 Let Z and K satisfy (R.1)-(R.3) and (Ryr). If, in addition,
T is reflexive then (Rx ) holds.*®

Proof. Fix arbitrary ¢t € N and a, 8 € Q and suppose that § € Ki(a).
We want to show that 5 € Ki—1(a). By (R.1), 8 € Zi(a). Thus, by (Ry),
B € I;_1(«). Suppose that § ¢ K;_1(a). Then, since 8 € Z;_1(«), it follows
from (R.3) that Z, 1(8) # Z:_1(«). Hence, by transitivity of Z (Proposition
4), a ¢ I, 1(B).2" Since B € Ki(a), by (R.2), Z;(8) = Zi(a). By reflexivity
of Z, o € Ty(a). Thus o € Z;(B). Hence, by (Ry), a € Z;_1(5), yielding a
contradiction. m

25R;’ stands for “refinement of information”.

26Note that, even if 7 is reflexive, the converse is not true, that is, (Rx) does not imply
(Rr), as the following example shows: Q = {«, 8,7}, Zi—1(a) = Zt—1(0) = Kim1(a) =
K1 (8) = {0, B}, Ter (1) = Keer (9) = {7}, Ta(@) = Tu(8) = Lo, 6,7}, Kala) = Kel(8) =
{a, 8}, Ti(v) = Ki(y) = {v}. Here (Rg) is satisfied but not (Ry).

2By transitivity of Z, since 3 € Zy_1(a), Zy_1(8) C I;_1(a). If it were the case that
o € Iy 1(0), then — again by transitivity of Z — we would have that Z; ;(«) C Z; 1 (0)
and therefore Z; 1(8) =Z;_1(«).
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7 Conclusion

We modeled information as possibilities consistent with signals received from
the environment. Knowledge was then defined as belief obtained from the
available information by reasoning about the signals received as well as those
that could have been received, but were not. We required knowledge to
be fully justifiable on the basis of the available information. The term ‘be-
lief’, on the other hand, was used to refer to those beliefs that are based on
information but not necessarily only on information. We investigated the
relationship between information, knowledge and belief, as well as the issue
of updating knowledge and belief in response to changes in information.
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