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The Logical Representation
of Extensive Games
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Abstract: Given an extensive form G, we associate with every choice an atomic sentence and
with every information set a set of well-formed formulas (wffs) of propositional calculus. The
set of such wffs is denoted by I'(G). Using the so-called topological semantics for proposition-
al calculus (which differs from the standard one based on truth tables), we show that the
extensive form yields a topological model of I'(G), that is, every wff in I'(G), is “true in G”.
We also show that, within the standard truth-table semantics for propositional calculus, there
is a one-to-one and onto correspondence between the set of plays of G and the set of valua-
tions that satisfy all the wffs in I'(G).

1 Introduction

A number of recent papers? have been concerned with applying the methods of logic
to the analsis of games. A pre-condition for this is that there be a rigorous and
unambiguous way of translating any given game into a set of well-formed formulas
of propositional calculus. Consider, for example, the extensive form with perfect
information shown in Figure 13, Let 4, stand for the proposition “player I selects
choice a”, Cy; stand for the proposition “payer II selects choice ¢”, etc. Then one
could use the following propositions to describe the game of Figure 1.

I S

Fig. 1.

1 I am very grateful to two anonymous referees for their detailed and constructive comments
on the first version of this paper.

2 See, for example, Anderlini (1990), Bacharach (1987), Bonanno (1991), Canning (1992), Ka-
neko and Nagashima (1991), Kramarz (1992), Vilks (1992).

? The precise definition of extensive form will be given later (in section 3, for the case of
perfect information, and in section 4, for the general case).
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(1) AvB, (“either player I selects choice a or she selects choice b”),
(2) 1ANBY) (“it is not the case that player I selects both choice a and

choice b™),

(3) (CyVDy) @ B; (“either player II selects choice ¢ or he selects choice D, if

and only if player I selects choice b”),

(4) 1(CuADy) (“it is not the case that player II selects both choice ¢ and

choice d”).

Although the above propositions seem to be intuitively acceptable as a logical
description of the extensive form of Figure 1, there are a number of questions that
can be raised:

®
(ii)

Is there a precise sense in which propositions (1)-(4) are true for the exten-
sive form of Figure 1?

What does it mean for a player to “select” a choice? Does it mean that the
player actually makes that choice or could it mean that the player plans to
make that choice? If the latter is the case, then proposition (3) does not
seem to be necessarily true: player II can plan to choose ¢ even if player I
does not choose b*. Thus maybe proposition (3) should be replaced by

(3b) (CuVvDy).
Which of the two (3 or 3b) is true for the game of Figure 17

(iii} Can we be sure that - whatever method we use to translate extensive forms

into a set of propositions - two “essentially different” extensive forms will
have different logical representations? This important point was raised in a
recent note by Arnis Vilks (1992b) (see also Bonanno, 1992a). He gave the
following example, reproduced (with slight modifications) in Figure 2.

I I

1 2 Fig. 2.

Vilks argues that (using the same symbolism as before) extensive form G, has
the following propositional representation:

(A VBIATI(AIABIA(A 12 Ci)A (B & Dyy)

4 Kramarz (1992) puts forward the point of view that (3) should be replaced by (3b).
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while extensive form G, has the following propositional representation:
(CaVD)ATHCHADIIN(C = A I)»A(DII e B).

It is easy to check that the two formulas are logically equivalent (one implies the
other). Thus - Vilks argues - the two extensive forms have the same propositional
representation. However, a suitable choice of payoffs may make “gc” the rational
play of G, and “db” the rational play of G,, so that G, and G, can be viewed as
essentially different extensive forms.

The questions raised above show the need for a rigorous approach to the ques-
tion of how, and if, one can translate any given extensive form (a precise definition
of extensive form will be given below, in sections 3 and 4) into a set of well-formed
formulas of propositional calculus that are “true” for the extensive form. This is the
object of this paper, which is organized as follows®. In section 2 we give a brief
review of propositional calculus and of the so-called topological interpretation (or
semantics), which is different from the standard one based on truth tables. In sec-
tion 3 we describe how to obtain the logical description of an extensive form with
perfect information and prove that such a description is “true” for the extensive
form in terms of the topological semantics of section 2. We also establish - using the
standard truth-table semantics — a relationship between the set of propositions that
describe an extensive form and the set of plays in the extensive form. In section 4 we
extend the analysis to general extensive games. The reason for a separate section on
games with perfect information is that the symbolism needed is less complex and the
analysis more straight-forward: having gone through the case of perfect-information
games, it becomes easier to see through the more complex notation needed to deal
with general extensive forms. Section 5 contains some concluding remarks.

2 The Topological Interpretation of Propositional Calculus

In this section we briefly review the definition of propositional calculus and the so-
called topological interpretation, or semantics, of it®.

Let S be a countable set (finite or infinite). The elements of S will be called
atomic sentences and will be denoted by A, B, ... (with or without subscript and/or
superscript). A propositional calculus based on S consists of the following ele-
ments:

(1) An alphabet &7, which is the union of the set of atomic sentences S, the set
of connectives {1, A, V, =, &} and the set of parentheses {(,)}. A finite
string of elements of ¢ is called a word.

5 Section 4 of Bonanno (1991b) sketches some of the ideas developed in this paper.
6 See Rasiowa and Sikorski (1968). (I am grateful to the referees for pointing out this refer-
ence to me.)



156 G. Bonanno

(2) A set of “meaningful words”, called well-formed formulas (wffs), which is
. the smallest set W of words satisfying the following properties:
(i) If Pis an atomic sentence then (P)e W,
(ii) if W then (1 D)eW,
(iii) if @, PeW then (D v V)eW, (D A P)eW,
(2=P)eW, and (P=P)eW.
(3) A set of wffs, called axioms, which is the union of the following sets (called
axiom schemes)’:
Axiom Scheme 1: {® v &= D| P is a wff}.
Axiom Scheme 2; {®= dVV¥|P and ¥ are wifs}.
Axiom Scheme 3: {(&= ¥)=(OVD)=(OVYF))| ®, ¥ and O are wifs}.
(4) The rule of inference Modus Ponens which, for any wffs @ and ¥, allows
one to infer ¥ from & and &= ¥.

Throughout the paper we shall use P (with or without subscript) as a placehold-
er for atomic sentences and @, ¥, @, A (with or without subscript) as placeholders
for wffs.

If @ is a wff, a proof of @ is a finite sequence &,, ..., &,, of wffs such that:

(1) ¢m = ¢,
(2) for each j=1, ..., m either
() @, is an axiom, or
(ii) there are i</ and k< such that @&; is inferred by Modus Ponens from
¢,’ and D,.

A theorem is a wff which has a proof. We shall write + @ to denote that @ is a
theorem®. We say that @ logically implies ¥ if (@ = ¥) and that two wffs & and ¥
are logically equivalent if (P V).

We now define the notion of topological semantics for propositional calculus
(cf. Rasiowa and Sikorski, 1968).

Definition: An topological interpretation (for the propositional calculus based on
the set S) is a pair (2, f), where Q is a non-empty set and f:S— P(Q) is a function
from the set of atomic sentences S into the set of subsets of Q. Given a topological
interpretation (Q, f}, by induction on the construction of wffs (cf. Lightstone, 1978,
p. 27) the following rules define a unique extension #: W— () of f to the set of
wifs:

(1) F(P)]=fIP] if P is an atomic sentence; _
2) Fl( D)= F[P] (where, for every set V@, V denotes the complement
of V with respect to 2, i.e. V=02\V);

7 A proof that axiom schemes 1-3 are sufficient for propositional calculus can be found in
Lightstone (1978, pp. 37ff.).
8 Note that ‘' is a symbol of the metalanguage, not a symbol of the object language.
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3) FUSVP)]=F[S1U F¥];

@) FUBAP)]= FISIN F¥];

(5) FUP=P)]=FBIUF[¥];

6) Fl(Pe¥)]=(FBINF[PDU(FPIN F¥).

Definition: A topological interpretation (€2, f) is said to be a model of ®, where @ is
a wif, if F[®]=Q. In this case we also say that @ is true in the interpretation
(L, f).

The following theorems are well-known among logicians and will be stated
without proof (proofs can be found in Rasiowa and Sikorski, 1968, and Bonanno,
1992b).

Soundness Theorem: If — @ (that is, if the wif & is a theorem of propositional cal-
culus), then .7 [®] =2 for every topological interpetation (£2, f).

Completeness Theorem: 1If @ is a wff such that .7 [®]=Q for every topological in-
terpretation (2, f), then +— @.

3 The Logical Representation of an Extensive Form with
Perfect Information

In this section we show how to associate with every extensive form with perfect in-
formation a set of wffs that are true for the extensive form, that is, for which the
extensive form itself yields a topological model®. First we remind the reader of the
definition of extensive form with perfect information.

A directed graph (or digraph) is a pair (T, —) where T is a finite set of nodes
and — is an irreflexive binary relation on 7. If xe T, yeT and x—y we say that x is
an immediate predecessor of y and y is an immediate successor of x; furthermore,
we call the ordered pair xy an arc [as is customary in graph theory, we use the nota-
tion xy rather than (x, »)]. If y=xy is an arc, we say that # is incident from x and
incident to y. The indegree of a node ¢ is the number of immediate predecessors of 7.
The outdegree of a node ¢ is the number of immediate successors of /. A node is a
source if it has positive outdegree and zero indegree. A node is a terminal node if it
has positive indegree and zero outdegree. Let #7; = x; ¥, and 7, =x,), be two arcs. We
say that 7, is adjacent to n, if y,=x>. Let (ny=X1 Y1, ..., 1m=XnYm) be a finite se-
quence of arcs (m=2). If, for every k=1, ..., m—1, 1, is adjacent to #,,,, then we
call the sequence a path from x, to ¥,,. A digraph (7, —) is a tree from a point if it
has exactly one source and every other node has indegree one. It can be shown that
in a tree from a point there is a unique path from the source to any other node.

® We shall assume throughout the paper that the extensive form has no chance moves. How-
ever, Nature can be treated just like any other player. The only difference is that one needs
to add atomic sentences that describe the probabilities attached to Nature’s choices.
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Let (T, —) be a tree from a point. We shall denote by ZC T the set of terminal
nodes (it can be shown that Z+# &) and we shall call the nodes in T\Z decision
nodes. By a play we shall mean a path from the source to a terminal node.

An extensive form with perfect information is a triple G=((T, =), N, 1)
where:

(i) (T, —)is a tree from a point,

(ii) MNVis a finite set of players (Roman numerals will be used for, and only for,
players), and

(iii) ::T\Z—N is an onto function that associates a player with every decision
node'®,

Given an extensive form with perfect information G we construct the associated
set of atomic sentences S(G) as follows. Label the nodes of the tree as
Xo, X1, X2, .. ., Xy in such a way that if x;—x; then j <k (thus x, is the source)*!. With
€Very arc x;x, we associate an atomic sentence denoted by A, .« The set S(G) con-
sists of all and only such symbols. The intended interpretation of A, .k IS “player
i1(x;) [the player who moves at node x;] takes the action that leads from the imme-
diate predecessor of node x; to node x;”. For example, in the extensive form of
Figure 3 each element of S(G) is written next to the corresponding arc.

X

6 Fig. 3.

Given an extensive form with perfect information and the associated set of
atomic sentences S(G), consider the propositional calculus based on S(G). We now
associate with every decision node a wff of this propositional calculus as follows
[from now on in every wff we shall omit the outermost brackets, so that, for exam-
ple, we shall write A v B rather than (4 v B)]:

(1) Let XoXi,, XoX,, - --» XoXx, be the arcs incident from x, (the source) and
P =1(x,) the player assigned to the source. Then the following wffs are asso-
ciated with the source:

Ap'leAp’kzv e VAp‘km
—I(A‘,,,ki/\Ap,kj) foralli, j=1,2,...,m, with i#j.

1° If we add to an extensive form with perfect information a payoff function n;: Z—R, for
every player ie N (where & denotes the set of real numbers), we obtain an exfensive game
with perfect information. In this paper we shall be concerned with extensive forms rather
than extensive games.

' Such a labeling is possible: see Harary et al. (1965, Corollary 10.1.a, p. 269).
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(2) If x, is a decision node different from the source (that is, k #0), p=1(xx) is
the player assigned to node x;, x; is the immediate predecessor of xg,
g =1(x;) is the player assigned to node x;, and x;X,,, XX, ..., XX, are the
arcs incident from x, then the following wffs are associated with node x;:

Agxe(Ap  NAL N .. VAL, )
Ap, . AAp,:) forall s,¢=1,2,...,n with s#1.

Example: For the extensive form of Figure 3, we have:

(1) wffs associated with the source: A; VA2, ~ (A1, 1AA4L,2)
(2) wffs associated with node x;: Ay, 1 ©(An,3VAN, 4), (A, 37 Am,4)
(3) wffs associated with node x;: 41,29 (A, sVAm,e)» WA, sA4m,e)-

Let I'(G) be the set of wffs associated with the decision nodes of G. We now
want to show that there is a precisé sense in which the wffs of I'(G) are true
for G.

Let E be the set of arcs. Above we constructed a one-to-one map from E onto
the set of atomic sentences S(G). Let A be the inverse of this map, that is,
h:S(G)—E is the map that associates with every atomic sentence in S(G) the arc
from which it was obtained. Finally, let A: E— 94 Z) be the map that associates with
every arc the set of ferminal nodes that are reached by plays that contain that
arc'?,.

Proposition 3.1: Let G an extensive form with perfect information. Let I'(G) be the
set of wffs associated with the decision nodes of G. Then the topological interpreta-
tion (Q, f) where Q=Z and f=A°h is a model for I'(G), that is, it is a model for
every wff in I'(G).

For a rigorous proof we refer the reader to the Appendix. Here we shall give
an illustration based on the extensive form of Figure 3, for which I'(G)=
§A1,1VAL2, TI(A1,1AAy2), Ay 19(Aq, VAL ), WA, 3A1n,4), Ay 20 (Am,sVALL,e),
WA, sA4me)}. We want to show that for every del(G), (A°h)(D)=Z, where
Z= {x:;, Xay X5, XG} .

@) (Aoh) (A 1VAL)=(A°h) (A1, )V (A oh)(AL,2) =4 (XX:) U A (xox2) = {X3, Xa}
U {xS, x6} = Z.

(i) (Aoh) (WA AAL2)=(A°R) (AL 1AAL) = (A °h) (A ) N(A°h)(Ar2)
=1 (0x) NA(Xox2) = {X3, x4} N {xs, x5} =d =Z.

12 For example, in the extensive form of Figure 3, A(xox:)={x3, Xa}, 4(x%x2)= {xs, Xs},
A0ax3) = {x3}, A0ax) = {xs}, A0Ce2x5)= {xs}, 4 .(xzxe) = {xs}.
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(iii) (Aoh) (A, e (A, VAL L)) =((A°h) (A )N (AoR) (An,3VAL U
(A h)(Ay,,) e
N(A°oh) (A, 3VALL4) = (A (Xox1) N A (X x3) UL (xy x2)) U (A (XoX1)
N (A G x3) UA (X)) = ({x5, X6} N {x5’7x76})u({x31x4} N{x;, x.})=Z2.

(iv) (4 Ofl_) (T1(Aq,3AA L) = (Ao h) (Au,.a_fﬁAn,cL) =(A°h) (A )NAoh)(Ay s)
=A0x:)NAx)={x:}N{x )} =T =2Z.

(V) (Aoh) (A1 29(Am.sVAmLe) =((A°h) (A1) N(A°h) (A, sVALe))
U((Aoh) (Ar2)N(ACh) (An,sv A i1,6)) = (A (o X2) N A (O2.x5) U A (2 X6))
U (4 (xox2) N (A (r2x5) U A (32 %4))) = ( {x3, x4} N {x3, X4})
U({xs, X} N {x5, X6})=Z.

(V) (A°h) (WA, sAAm,e)) = (A ) (A, sA A e)
=(th)(Am,s)ﬂ;{Oh)(Am_s)_ e M.
=A00Xxs)NA0GX)={x:}N{x} =T =Z

The next proposition shows that there is another sense in which the wffs in I'(G)
are true for G: the valuations that satisfy e// the wifs in I'(G) are in one-to-one
correspondence with the plays of G'. First we recall the definition of valuation.
Given a propositional calculus based on the set S of atomic sentences, a valuation is
a function v:S—{T, F} (where T strands for “true” and F for “false”). By induction

on the construction of wffs the following rules define a unique extension
V:W-{T, F} of v to the set of wffs'*:

(a) V[(P)]=v[P] for every atomic sentence P;
T if V[¥]=F
Ol B Mo
T if V[¥P]=Tor V[@]=T
S Fu=RE= {F if V{i V[@]z[F]
Proposition 3.2: Let G be an extensive form with perfect information and S(G) be
the associated set of atomic sentences. Let I'(G) be the set of wffs associated with

the decision nodes of G. Let 7 be the set of valuations that satisfy all the wffs of
I'(G), this is,

7={v:S(G)~{T, F} | V(®)=T for all el'(G)}.

Then there is a one-to-one and onto map between the set 7" and the set of plays
of G,

Again, a rigorous proof is given in the Appendix. Here we give an illustration
based on Figure 3. Let @ be the conjunction of the wffs in I'(G), that is,
P = (A1, 1 VALINHALAAL DA AL 1 2 (A VA DACTI(An sAA L DNAL
(A, sVAuL)ANW(Am, sAAme)). Each row in the following table corresponds to
a valuation v such that V(@) =T (it is easy to check that these are the only valuations

'* Cf. the remark in Bonanno (1991a), page 42.
'* Using (a)-(c) one then shows that V[(¥A@)] =T if and only if V[¥]=V[O]=T, etc.
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that satisfy this property). The last column in the table shows the corresponding play
[for sample, when A4 ; and Ay 4 are given thruth value T (second row), we pick the
corresponding arcs, namely xox; and x, Xa, Tespectively, and we obtain the play from
X tO X4]:

Table 1.

Ax Ay Ayl A Ay s Ams b PLAY
from x, to

T F T F F F T X3

T F F T F F T X4

F T F F T F T Xs

F T F F F T T Xe

We can now use the analysis of this section to discuss the examples of Figures 1
and 2. Concerning the extensive form of Figure 1, it is easy to check that - according
to the topological interpretation suggested in this paper — propositon (3) rather than
proposition (3b) of section 1 is true for the extensive form'. Thus propositions (1)-(4)
of section 1 give indeed a correct description of the extensive form of Figure 1 (to be
entirely rigorous, one would have to change the notation used in (1)-(4) to match the
symbolism introduced in this section). Turning now to Figure 2, the two extensive
forms G, and G, have the same tree and differ only in the function that assigns
players to decision nodes. Let us choose a labeling of the nodes of the common tree,
as shown in Figure 4. We can then construct the sets of atomic sentences as de-
scribed above and obtain the sets S(G,) and S(G,) respectively, where the elements
of S(G,) are written next to the arcs of G, in Figure 4 and similarly for S(G.). It is
clear that the two sets S(G,) and S(G>) are different: they are even disjoint. In other
words, the alphabet used to describe extensive form G, is different from the alpha-
bet used to describe extensive form G,. It follows that the description of the two
extensive forms are not logically equivalent. It could be objected that it is not fair to
compare Figures 2 and 4: for example, in Figure 4 the label ‘A ,’ occurs only in G,
while its counterpart in Figure 2 - the label ‘@’ - appears both in G, and G,. How-
ever, it should be noted that a labeling of the arcs, although useful, is not part of the
definition of extenesive form. Thus whenever one adds such a labeling, one intro-
duces an element of arbitrariness. We have put forward a rule that can be used to
label unambiguously the arcs of any extensive form (with perfect information). Us-
ing this rule, games G, and G, are labeled differently and therefore do not have the
same logical representation.

5 This does not imply that there cannot be a different interpretation {or semantics), on the
basis of which (3b) would be true while (3) would not.
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Fig. 4.

4 The Logical Description of a General Extensive Form

We now consider general extensive forms, that is, extensive forms with perfect or
imperfect information.

An extensive form is a tuple G={(T, =), N, 1, (#)ien, &) where:

(i) (T, —)is atree from a point,
(ii)) N is a finite set of players,
(iii) 7: T\Z— N is an onto function that associates a player with every decision
node,
(iv) for every player ieN, #;is a partition of the decision nodes of player ¢ into
information sets of player i satisfying the following properties:
(a) if he #, xeh and yeh, then the outdegree of x is equal to the outde-
gree of y, and
(b) if he #Z, xeh and yeh, then there is no path from x to y or from y to
x’ .
(v) & is a partition of the arcs of (7, —) into choices satisfying the following
properties. If xyece % and x belongs to information set 4, then:
(a) every arc in c is incident from a node in A, and
(b) for every node w in A, there is one and only one arc indicent from w
that belongs to c!®.

An extensive form has perfect information if every information set (and there-

fore every choice) is a singleton. In such a case the definition can be simplified to the
one given in section 3. An extensive form has imperfect information if at least one
information set contains at least two nodes.

16 As we remarked before, it we add to an extensive form a payoff function n;: Z—-R, for
every player ie N, we obtain an exfensive game.
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Given an extensive form G we construct the associated set of atomic sentences
S(G) as follows. As before, label the nodes of the tree as xo, X1, X2, .. s Xm in such a
way that if x;—x, then j<k (thus x, is the source). Fix an arbitrary choice
o= {X; Xe,s X}, Xk« o» X5, %k} - Then {x;,%.,...,%,} is an information set of a
player, say player i. Let k=min {k;, k5, ..., k.}. Associate with every arc in ¢ the
atomic sentence A, ;. The set S(G) consists of all and only such symbols.

Example: Consider the extensive form of Figure 5. In this case there are four infor-
mation sets (represented by rectangles): {xo}, {x:}, {x2, x5} and {x4, xs}. Let the
choices be as follows: {xox:}, {xox2}, {XoXs}, {xixe}, {x1%s}, {X2Xs, X3x12},
{X2Xy1, X3X13}, {XaX7, XsXo}, {XsXs, Xsx10}. The atomic sentences for this game are
shown in Figure 5 next to the corresponding arcs.

x, |1

A L1
/ 12 \
I | = {
A ":/ All 11 y \
x A A ILS .

6 m4

X
11

X4 11 Xs

A
N N
17 X 19 ) 4

Given an extensive form and the associated set of atomic sentences, consider the
propositional calculus based on S(G). We now associate with every information set
a wif of this propositional calculus as follows:

Fig. 5.

(1) Let XoXx,, XoXk,s - - -» XoXi,, b€ the arcs incident from x, (the source) and
p =1(x,) the player assigned to the source. Then the following wifs are asso-
ciated with the source:

Ap x VAp &,V .. NAp ke,
“UAp, x, NAp, i) for all i, j=1,2, ..., m, with i#j

() Let h={y,¥s....¥n} be an information set such that
Xo@{Y1, Y2 ..., ¥m}, and p be the corresponding player. Let there be r
choices at h. Let A, « , Ap,,» - - -» Ap,x, be the atomic sentences associated
with the choices at 4. Then the following wffs arc associated with informa-
tion set h:

“HAp, &, NAp k) foralli,j=1,2,...,r, withi#j.
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Furthermore, for every node y,eh, let B*!, ..., B*" be the atomic sen-
tences associated with the arcs that form the path from the source to y;.
Then the following wff is associated with h:

Ap, e VAL &V .. VA, )& (BY A .. .AB" W(B*'A...AB*>")
V...V(B™!A...AB™"m)

Example: For the extensive form of Figure 5, we have:

(1) wifs associated with the source: Ay VA 2VA; 3, ~HA 1 AAL2),
T(A1,1AAL3), TI(Ag2AAL3);
(2) wffs associated with {x;}: ~W(Auy sAAne), A 19 (A, sVAmLe);
(3) wffs associated with {x», x3}: —(Ay sAA 1), (A, sVAL1)S(AL2VALS);
(4) wffs associated with {x,, xs}: 7(An,7AAns),
(A1, 7VALE)© (A1, 1A A1, ) V(AL 2AA L, 5)).

Let I'(G) be the set of wffs associated with the information sets of G. We now
show that there is a precise sense in which the wffs of I'(G) are true for G. Let % be
the set of choices. Above we constructed a one-to-one map from % onto the set of
atomic sentences S(G). Let / be the inverse of this map, that is, A#:S(G)— %is the
map that associates with every atomic sentence in S(G) the choice from which it was
obtained. Finally, let i: Z— SAZ) be the map that associates with every choice the
set of terminal nodes that are reached by plays that contain an arc that belongs to
that choice!’.

Proposition 4.1: Fix an extensive form G. Let I'(G) be the set of wffs associated
with the information sets of G. Then the topological interpretation (Q, )} where
Q=2Z and f=Xch is a model for I'(G), that is, it is a model for every wff in
raG).

As before, we have relegated the rigorous proof to the Appendix. Here we shall
give an illustration based on Figure 5. However, in order to economize on space, we
shall show that (Lo A)(®)=Z = {xs, X7, X5, X, X10, X11, X12, X13} only for the wffs &
associated with information set {x,, x3}.

() (AR (A, sA A1) = (Ao h) (A, sA Ay, 1) = (Ao k) (A, 5)N (Ioﬁ)ﬁ‘ln,u)
:I({xzxs, xsxlz})n):({xzxu, X3X13}) = {Xo, X105 X12} N {X11, X13} =D =Z.
(i1) (}:O";)((AII.SVAH.11)"’(A1,2VA1,3))=((Io’;)(AII,SVAII,u)
N (Lo AY(A1,2vAL ) U (Lo h) (An, sVAL 1) N (A0 ) (A1, 2VAL,3))
=(E({x2x5, XX DU A ({22511, X3 %13 D NA({ X022 U A ({x0x3}))
U(( ({x2Xs, x3x12})U L ({2011, x3213 ) V(A ({x0x DU L ({0, %33)))
=({Xo, X10, X12} U {11, X¥13} N {Xo, X10, X11} U {x12, X13}) U (({ X0, X10, X12}
U {x11, xi1 )N ({xs, X10, X11} U {X12, X13})) = {Xo, X10, X115 X12, X13}
U {xo, X10, X11, X12, X13} = Z.

' For example, in the extensive form of Figure 5, A({xox:}) = { X6, X7, Xs},
i({xzxs, X3X12}) = {Xo, X10, X12}, A({X2X11, X3X13})= {X11, X13}, etc.
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Proposition 4.2: Let G be an extensive form and S(G) be the associated set of
atomic sentences. Let I'(G) be the set of wffs associated with the information sets of
G. Let 7" be the set of valuations that satisfy all the wffs of I'(G), that is,

7'={v:S(G)~{T, F} | V(®)=T for all pel'(G)}.

Then there is a one-to-one and onto map between the set 7" and the set of plays
of G.

Proof: Again, for a rigorous proof the reader is referred to the Appendix. Here we
shall give an illustration based on Figure 5. Let @ be the conjunction of the wffs in
I'(G), where I'(G) is the set of wffs given in (1)-(4) of the example preceding propo-
sition 4.1. Each row in the following table corresponds to a valuation v such that
V(®)=T (it is easy to check that these are the only valuations that satify this prop-
erty). For greater clarity we have only written the truth-value T (thus every empty
cell corresponds to truth-value F). The last column in the table shows the corre-
sponding play [for example, when A, ;, Am,4 and Ay s are given truth value T (third
row), we pick the corresponding arcs, namely xox;, x; X, and x;xs, respectively, and
obtain the play from X, to x;z]:

Table 2.
A1,1 AI,Z A1,3 AII,S An, 11 Am,s Am,4 AII,‘I An,s @ PLAY
from x, to
T T T x
T T T T x
T T T T xs
T T T T Xo
T T T T X10
T T T x4
T T T Xi12
T T T x5

5 Concluding Remarks

We showed how to associate with every extensive form G a set I'(G) of well-formed
formulas of propositional calculus that are true for the extensive form. In other
words, the extensive form yields a topological model of I'(G).

The step from extensive forms to extensive games is a simple one. An extensive
game is obtained from an extensive form by adding a payoff function z;: Z—R for
each player ieN (recall that Z is the set of terminal nodes and R is the set of real
numbers). Given an extensive game of perfect information with n players, we extend
the set of atomic sentences S(G) by associating with each terminal node z&€Z the n
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sentences ‘m;=m;(z)’ (ieN) whose intended interpretation is “player i’s payoff is the
number 7;(z)”. Finally, we extend I"(G) by adding for every arc x;x, incident to a
terminal node (thus x; € Z) the following » wffs: (Auxp, &= ;= 7;(x)) (i€ N). Similar-
ly, given a general extensive game, for every terminal node zeZ we would add the
following n wffs: (B'AB>A...AB"= m;=n;(x))), where B!, B?, ..., B” are the atomic
sentences associated with the arcs that form the play from the source to z.

Appendix

In this appendix we prove propositions 3.1, 3.2, 4.1 and 4.2.
Proof of Proposition 3. 1: First we establish the following facts.

Fact 1: Since in a tree from a point there is a path from the source to any other
node, the set of termina_l nodes can be reached from the source. Thus if xox;,,
XoXk,s «+ s XoXx_ are the arcs incident from xo,

}-(XQXkI)UA(xOxkz)U ‘e UA(XQX];M)=Z (A.I)

Fact 2: Since in a tree from a point for every node x # x, there is a unique path from
Xo to x, if x;x, and x;x, are two different arcs incident from node x; (thus r#s),

Ax)NA(xx) =D (A.2)

Fact 3: By definition of path, the set of terminal nodes that can be reached starting
from node x; following arc x;xx, is equal to the set of terminal nodes that can be
reached from node x;. Thus if xxx, , X X,,, ..., XX, are the arcs incident from x,

AQgx) = A (ex, )UAGGx, YU ... UA (X, ) (A.3)

Now, proposition 3.1 is an immediate consequence of (A.1)-{A.3). In fact, let
XoXk,s XoXi,s +++s XoXi, be the arcs incident from the source and let

A,,,klvAp,kzv vas VA_,,, k,,
Ay, kA Ap ) for all i, j=1,2, ..., m, with i#

be the wffs associated with the source. Then

(Aoh)(Ap « VAL (V... Ap k)
=(A°N(Ap : DU (Ao B (Ap e DV ... V(Ao h)(Ap, i)
=4 (xoxkl)U}. (xoxkz) U...Ui (Xkam) =Z [by (A. 1)].
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Similarly, for every i, j=1, ..., m with i+,

(Aom) (WA, ,NAp,i))=(Aoh)(Ap, i, NAp, k)
=@ Ap, k) NAOM)(Ap, 1) = A (XX ) NA Oto X ) = D = z [by (A.2)].

Let x,# X, be a decision node, x; be the immediate predecessor of x. and xix, ,
XkXr,, + -+, XiX,, be the arcs incident from x, and let

Aq,kﬁ(Ap,rIVAp, ,2V [N VAP, ,n)
—WAp,, AAp,,) for alls, t=1,2,...,n, with s#¢

be the wffs associated with node x,. Then

(Aoh)(Ag xo(Ap  NA, V.. VA, )
=(@oh) (A, dN@A°h) (A, VAp,, V...VA, )
U(Aoh) (Ag )N h) (A, V...VA, )
=(Ax)NAax, )UA X, YU ... Ur(xex,,))
U@ 0gx) V(A Geex, JUA QG )U ... Ud(ax, ) = [by (A.3)]
=A(xx)UA (xjx)=Z. O

Proof of Proposition 3.2: Fix an extensive form with perfect information G. First
we show that if v is a valuation that satisfies all the wffs in 7'(G) then there is a
unique play in G associated with it. Let E(v) be the set of arcs of G whose corre-
sponding atomic sentences are assigned truth value T by v. First of all, there must be
in E(v) an arc incident from the source, otherwise the following wff of I'(G) would
have truth value F (where XoXi,, XoXk,s - - -5 XoXs,, are the arcs incident from the
source):

Ay e VA, i,V -+ - VAo, k,,

Furthermore, if x;x; € E(v), x; is a decision node and xxx, , XxX,,, ..., X¢ X, are the
arcs incident from xi, then there must be an se {1, 2, ..., n} such that x,x, €E(v),
otherwise the following wff of I'(G) would have truth value F:

At(xj) kﬁ(Al(xk) erAt(xk) ro VAt(xk) I )

Finally, if x;x;€E(v) and x,x,€E(v), with k#s, then j+#r, otherwise the wif
WA, kA xp,s) Would have truth value F.

Now we show the converse, namely that with every play in G we can associate a
unique valuation v that satisfies all the wffs in I'(G). Fix an arbitrary play (xox,
X1X2s « ey Xm—1Xm) (thus x,,€Z). For each k=1, ..., m, let B* be the atomic sentence
associated with arc x,_x. Let v be the valuation that assigns truth value 7 to each
B* (k=1, ..., m) and truth value F to every other atomic sentence in S(G). Then this
valuation assigns truth value T to all the wffs in I'(G). O

Proof of Proposition 4.1: The proof of this proposition is very similar to that of
proposition 3.1. First of all, from the definition of extensive form one can deduce
the following. Let g= {y,, ..., ¥} be an information set such that x,¢g, and p the
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corresponding player. For every i=1, ..., m let x;, be the immediate predecessor of
node y,. Finally, let ¢, ¢,, ..., ¢, be the choices at g. Then:

AeVA (U ... UL (e) =200, y)UA (e, y2) U ... Ud (% Vim) (A.4)

(where A is the function - defined in section 3 - that associates with every arc # the
set of terminal nodes reached by plays that contain #, and 1 is the function - defined
in section 4 — that associates with every choice ¢ the set of terminal nodes reached by
plays that have an arc in common with ¢), and

A)Ni(c)=3, forall i, j=1,...,7, i#j (AS).
Furthermore, if (xow,, w,w,, ..., ws_, W) is a path from the source to w,, then
A.(xO W])nﬂ,(wl Wz)n e nl(ws__l Ws)=A(ws_1 Ws) (A.6).

Now, let G be an extensive form., The proof that the wffs associated with the
source are true in (2, f) is the same as for proposition 3.1 (since a choice at the
source is necessarily a single arc). Let g={y1, ..., ¥»} be an information set such
that xo¢g, and p the corresponding player. Let A, «,, Ay «,» - - -» Ap, x, b€ the atomic
sentences associated with the r choices at g. Then the fact that, for all
Lj=1,2,...,r, with i#j

(Lo R)(TAAp, (A A, kD=2

follows from (A.5), while the fact that
(Loh)(®)=2,

where & is the following wff associated with g (see section 4)
(Apk,V...VA, ;Y& (B AL ABY" WV . V(B™ AL .. AB™" ),

follows from (A.4) and (A.6). In fact, for every ie{l,...,m}, (Aoh)
(B“'A...AB"")=A(xyy), where x, is the immediate predecessor of ;. O

Proof of Proposition 4.2: The proof of this proposition mimics that of proposition
3.2. First we show that if v is a valuation that satisfies all the wffs in I"(G) then there
is a unique play in G associated with it. Let %{(v) be the set of choices of G whose
corresponding atomic sentences are assigned truth value T by v. First of all, one
choice at the source must be assigned truth-value 7, otherwise the wff
(Ap,« VAL ¢V .. .VAL i ), Where X, Xi,, ..., Xz, are the immediate successors of
the source, would have truth-value F. Now let g be an arbitrary information set, p
the corresponding player and c; and ¢, two different choices at g. Let 4, k1=ﬂ e
and A, kj=ﬁ ~!(c;) be the corresponding atomic sentences. Then it cannot be that
v(Ape)=T and v(Api)=T otherwise the wif —(Ap « A4y ), which belongs to
I'(G), would have truth value F. Thus at most one choice at each information set is
such that its corresponding wff is assigned truth-value T by v. Let v(4, x)=T and
let node x,, belong to information set g. Then one choice at g must be such that the
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corresponding atomic sentence has truth-value T, otherwise the following wff asso-
ciated with g would have truth-value F:

(Ap,y VAL V.. VAL ) A ¢,

where A, , ..., Ap,, are the atomic sentences associated with the choices at g.
Thus following - at node x,,€g - the choice whose corrsponding atomic sentence has
truth value T we reach a new node (and a new information set) and the same argu-
ment can be repeated, until a unique terminal node is reached.

Now we show the converse, namely that with every play in G we can associate a
unique valuation v that satisfies all the wffs in I'(G). Fix an arbitrary play (xox;,
X1X2y « ey Xm—1Xm) (thus x,,€Z). For each k=1, ..., m, let B* be the atomic sentence
associated with the choice to which arc x,_,x; belongs. Let v be the valuation that
assigns truth value T to each B* (k=1, ..., m) and truth value F to every other
atomic sentence in S(G). Then it is easy to see that this valuation assigns truth value
T to all the wffs in I'(G). O
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