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Abstract

We propose a dynamic framework where the rationality of a player’s choice is judged on the basis
of the actual beliefs that he has at the time he makes that choice. The set of “possible worlds” is
given by state-instant pairs (ω, t), where each state specifies the entire play of the game. At every
(ω, t) the beliefs of the active player provide an answer to the question “what will happen if I
take action a?”, for every available action a. A player is rational at (ω, t) if either he is not active
or the action he takes is optimal given his beliefs. We characterize backward induction in terms
of the following event: the first mover (i) is rational and has correct beliefs, (ii) believes that the
active player at date 1 is rational and has correct beliefs, (iii) believes that the active player at
date 1 believes that the active player at date 2 is rational and has correct beliefs, etc.

Keywords: perfect-information game, backward induction, dynamic interactive beliefs,
rationality, Kripke frame

1. Introduction

The analysis of rational play in dynamic games is usually done within a static framework
that specifies, for every player, his initial beliefs as well as his disposition to revise those beliefs
conditional on hypothetical states of information that the player might find himself in. This
is done by means of interactive structures which model a rather complex web of beliefs: for
example, Player 2 might initially believe that Player 1 will end the game right away and yet have
very detailed beliefs about what Player 1 would believe about Player 2’s revised beliefs if Player
1 were instead to give the move to Player 2. In these models each player is assumed to have not
only a disposition to revise his own beliefs, should he be faced with unexpected information, but
also to have (conditional) beliefs about the disposition of the other players to revise their beliefs.
This seems to constitute a rather “heavy” approach to modeling the players’ states of mind in

II am grateful to two anonymous referees and the Advisory Editor for helpful comments and suggestions. A first draft
of this paper was presented at the First CSLI Workshop on Logic, Rationality and Interaction, Stanford University, June
2012 and at the Tenth Conference on Logic and the Foundations of Game and Decision Theory (LOFT10), University of
Sevilla, June 2012.

Email address: gfbonanno@ucdavis.edu (Giacomo Bonanno)
URL: http://www.econ.ucdavis.edu/faculty/bonanno/ (Giacomo Bonanno)

Preprint submitted to Games and Economic Behavior December 10, 2012



a dynamic game. It is shown in this literature [6, 7, 8, 25, 30] that common initial belief of
rationality does not imply a backward induction outcome in perfect-information games.

In this paper we suggest an alternative and “lighter” approach, where the rationality of a
player’s choice is judged on the basis of the actual beliefs that the player has at the time he
makes that choice. We propose a dynamic analysis of perfect-information games where the set
of “possible worlds” is given by state-instant pairs (ω, t). Each state ω specifies the entire play
of the game and, for every instant t, (ω, t) specifies the history that is reached at that instant (in
state ω). A player is said to be active at (ω, t) if the history reached in state ω at time t is a
decision history of his. At every state-instant pair (ω, t) the beliefs of the active player provide
an answer to the question “what will/might happen if I take action a?”, for every available action
a. A player is said to be rational at (ω, t) if either he is not active there or the action he ends up
taking at state ω is optimal given his beliefs at (ω, t). We provide a characterization of backward
induction in terms of the following event: the first mover (i) is rational and has correct beliefs,
(ii) believes that the active player at date 1 is rational and has correct beliefs, (iii) believes that the
active player at date 1 believes that the active player at date 2 is rational and has correct beliefs,
etc.

This can be stated more precisely as follows. First we define a time-t belief operator Bt which
captures the beliefs of the active player and enables us to express a player’s belief that the next
player will respond rationally to his choice. Let Tt be the set of states where the active player at
date t (if there is any) has correct beliefs and let Rt be the set of states where the choice of the
active player at date t is rational. In keeping with the literature, we focus on perfect-information
games with no relevant ties where there is a unique backward-induction solution. We prove
the following characterization. For every m greater than or equal to the depth of the game, if
ω ∈ (T0 ∩ R0)∩ B0 (T1 ∩ R1)∩ B0B1 (T2 ∩ R2)∩ ...∩ B0B1...Bm−2 (Tm−1 ∩ Rm−1) then the play
associated with ω is the backward-induction play. Conversely, if z is the backward-induction
play then there is a model of the game and a state ω such that ω ∈ (T0 ∩ R0) ∩ B0 (T1 ∩ R1) ∩
... ∩ B0B1...Bm−2 (Tm−1 ∩ Rm−1) and the play associated with ω is z.

Thus we provide an epistemic characterization of backward induction that does not rely on
(objective or subjective) counterfactuals or on dispositional belief revision. Furthermore, strate-
gies do not play any role in our framework.

The analysis is developed in Sections 2 and 3, while Section 4 is devoted to a discussion of
conceptual aspects of the proposed approach and of related literature. The proofs are given in the
Appendix.

2. Perfect-information games and models

We use the history-based definition of extensive-form game. If A is a set, we denote by A∗

the set of finite sequences in A. If h = 〈a1, ..., ak〉 ∈ A∗ and 1 ≤ j ≤ k, the sequence
〈
a1, ..., a j

〉
is

called a prefix of h. If h = 〈a1, ..., ak〉 ∈ A∗ and a ∈ A, we denote the sequence 〈a1, ..., ak, a〉 ∈ A∗

by ha.
A finite extensive form with perfect information (without chance moves) is a tuple 〈A,H,N, ι〉

whose elements are:

• A finite set of actions A.

• A finite set of histories H ⊆ A∗ which is closed under prefixes (that is, if h ∈ H and h′ ∈ A∗

is a prefix of h, then h′ ∈ H). The null history 〈〉 , denoted by ∅, is an element of H and is
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a prefix of every history. A history h ∈ H such that, for every a ∈ A, ha < H, is called a
terminal history. The set of terminal histories is denoted by Z. D = H\Z denotes the set
of non-terminal or decision histories. For every history h ∈ D, we denote by A(h) the set
of actions available at h, that is, A(h) = {a ∈ A : ha ∈ H}.

• A finite set N of players.

• A function ι : D→ N that assigns a player to each decision history. Thus ι(h) is the player
who moves at history h. For every i ∈ N, let Di = ι−1(i) be the set of histories assigned to
player i.

Given an extensive form, one obtains an extensive game by adding, for every player i ∈ N, a
utility (or payoff ) function Ui : Z → R (where R denotes the set of real numbers; recall that Z is
the set of terminal histories).

Given a history h ∈ H, we denoted by `(h) the length of h, which is defined recursively as
follows: `(∅) = 0 and if h ∈ D and a ∈ A(h) then `(ha) = `(h) + 1. Thus `(h) is equal to the
number of actions that appear in h; for example, if h = 〈∅, a1, a2, a3〉 then `(h) = 3. We denote by
`max the length of the maximal histories in H: `max = maxh∈H{`(h)}. Clearly, if `(h) = `max then
h ∈ Z. Given a history h ∈ H and an integer t with 0 ≤ t ≤ `max, we denote by ht the prefix of h
of length t. For example, if h = 〈∅, a, b, c, d〉, then h0 = ∅, h2 = 〈∅, a, b〉 , etc.

From now on histories will be denoted more succinctly by listing the corresponding actions,
without angled brackets and without commas: thus instead of writing 〈∅, a1, a2, a3, a4〉 we will
simply write a1a2a3a4.

Let Ω be a set of states and T = {0, 1, . . .m} a set of instants or dates. We call Ω×T the set of
state-instant pairs. If E ⊆ Ω×T and t ∈ T , we denote by Et the set of states {ω ∈ Ω : (ω, t) ∈ E}.

Definition 1. Given an extensive form with perfect information G = 〈A,H,N, ι〉, a state-time
representation of G is a triple 〈Ω,T, ζ〉 where Ω is a set of states, T = {0, 1, ...,m} with m ≥ `max

(recall that `max is the depth of the game) and ζ : Ω → Z is a function that assigns to every state
a terminal history. Given a state-instant pair (ω, t) ∈ Ω × T , let

ζt(ω) =

 the prefix of ζ(ω) of length t if t < `(ζ(ω))
ζ(ω) if t ≥ `(ζ(ω)).

Interpretation: the play of the game unfolds over time; the first move is made at date 0, the
second move at date 1, etc. A state ω ∈ Ω specifies a particular play of the game (that is, a
complete sequence of moves leading to terminal history ζ(ω)); ζt(ω) denotes the “state of play at
time t” in state ω, that is, the partial history of the play up to date t [if t is less than the length of
ζ(ω), otherwise - once the play is completed - the state of the system remains at ζ(ω)].

Figure 1 shows an extensive form with perfect information and a state-time representation of
it. For every ω ∈ Ω = {α, β, γ} and t ∈ T = {0, 1, 2, 3} we have indicated the (partial) history
ζt(ω) (recall that ∅ denotes the empty history). For example, ζ2(α) = a1a2, ζ2(β) = d1, etc.
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Figure 1: An extensive form with perfect information and a state-time representation of it.

We want to define the notion of rational behavior in a game and examine its implications.
Player i chooses rationally at a decision history of his if the choice he makes there is optimal
given the beliefs that he holds at the time at which he makes that choice. These beliefs might
be different from his initial beliefs about what would happen in the game and thus might be
revised beliefs in light of the information he has at the moment. However, his prior beliefs are
not relevant in assessing the rationality of his choice: what counts is what he believes at the time
he makes the decision. The beliefs (prior or revised) of the other players are also not relevant.
Thus in order to assess the rationality of the actual behavior of the players all we need to specify,
at every state-instant pair (ω, t), are the actual beliefs of the active player. This can be done
within a state-time representation of the game, as follows. Given a state ω and an instant t, there
will be a unique player who makes a decision at (ω, t) (unless the play of the game has already
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reached a terminal history, in which case there are no decisions to be made). If ζt(ω) is a decision
history, the active player is ι (ζt(ω)); denote ζt(ω) by h and ι (ζt(ω)) by i. Then player i has to
choose an action from the set A(h). In order to make this choice he will form some beliefs about
what will happen if he chooses action a, for every a ∈ A(h). These beliefs will be used to assess
the rationality of the choice that the player ends up making at state ω. We will describe a player’s
beliefs about the consequences of taking alternative actions by means of an accessibility relation.
Thus we use Kripke frames and represent qualitative, rather than probabilistic, beliefs. In order
to simplify the notation, we will assign beliefs also to the non-active players, but in a trivial way
by making those players believe everything.

We recall the following facts about Kripke frames. If Ω is a set of states and Bi ⊆ Ω × Ω

a binary relation on Ω (representing the beliefs of individual i), for every ω ∈ Ω we denote by
Bi(ω) the set of states that are reachable from ω using Bi, that is, Bi(ω) = {ω′ ∈ Ω : ωBiω

′}. Bi

is serial if Bi(ω) , ∅, for every ω ∈ Ω; it is transitive if ω′ ∈ Bi(ω) implies Bi(ω′) ⊆ Bi(ω) and
it is euclidean if ω′ ∈ Bi(ω) implies Bi(ω) ⊆ Bi(ω′). Subsets of Ω are called events. If E ⊆ Ω

is an event, we say that at ω ∈ Ω individual i believes E if and only if Bi(ω) ⊆ E. Thus one
can define a belief operator Bi : 2Ω → 2Ω as follows: BiE = {ω ∈ Ω : Bi(ω) ⊆ E}. Hence
BiE is the event that individual i believes E. It is well known that seriality of Bi corresponds
to consistency of beliefs (if the individual believes E then it is not the case that he believes not
E : BiE ⊆ ¬Bi¬E, where, for every event F, ¬F denotes the complement of F in Ω), transitivity
corresponds to positive introspection (if the individual believes E then he believes that he believes
E : BiE ⊆ BiBiE) and euclideanness corresponds to negative introspection (if the individual does
not believe E then he believes that he does not believe E : ¬BiE ⊆ Bi¬BiE). 1

Definition 2. Given an extensive form with perfect information G, a model of G is a tuple〈
Ω,T, ζ,

{
Bi,t

}
i∈N,t∈T

〉
where 〈Ω,T, ζ〉 is a state-time representation of G (see Definition 1) and,

for every player i ∈ N and instant t ∈ T , Bi,t ⊆ Ω × Ω is a binary relation on the set of states
(representing the beliefs of player i at time t) that satisfies the following properties: ∀ω ∈ Ω,

1. If i , ι(ζt(ω)), that is, if ζt(ω) is not a decision history of player i, then Bi,t(ω) = ∅.

2. If i = ι(ζt(ω)), that is, if ζt(ω) is a decision history of player i, then
2.1. Bi,t is locally serial, transitive and euclidean

(that is, Bi,t(ω) , ∅ and if ω′ ∈ Bi,t(ω) then Bi,t(ω′) = Bi,t(ω)).
2.2. If ω′ ∈ Bi,t(ω) then ζt(ω′) = ζt(ω).
2.3. For every a ∈ A(ζt(ω)) there exists an ω′ ∈ Bi,t(ω) such that ζt+1(ω′) = ζt(ω′)a.

Condition 1 says that a player has trivial beliefs (that is, he believes everything) at all the state-
instant pairs where he is not active. We impose this condition only for notational convenience,
to eliminate the need to keep track, at every state-instant pair, of who the active player is.2 To
understand Condition 2, fix a state-instant pair (ω, t), let h = ζt(ω) and suppose that h is a
decision history of player i (thus i = ι(ζt(ω))) where he has to choose an action from the set A(h).

1For more details see [5]. We have restricted attention to qualitative, or non-probabilistic, beliefs (represented by
binary relations) since they are sufficient for obtaining an epistemic characterization of backward-induction in perfect-
information games. In a probabilistic setting the interpretation of the event BiE would be “the set of states where player
i attaches probability 1 to event E”.

2As explained below, by defining Bt =
⋃

i∈N Bi,t , we can take the relation Bt to be a description of the beliefs of the
active player at date t (whose identity can change from state to state).
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Condition 2.1 says that player i has beliefs with standard properties; note that these properties
(consistency, positive and negative introspection) are only assumed to hold locally, that is, at
state ω.3 Condition 2.2 says that every state ω′ which is accessible from ω by Bi,t (that is, every
state that player i considers possible at state ω and instant t) is such that the history associated
with (ω′, t) is still h; in other words, player i at time t knows that his decision history h has been
reached. Condition 2.3 says that for every action a available at h, there is a state ω′ that player i
considers possible (ω′ ∈ Bi,t(ω)) where he takes action a; that is, the truncation of ζ(ω′) at time
t + 1 (namely ζt+1(ω′)) is equal to ha (recall that, by Condition 2.2, ζt(ω′) = h). This means that,
for every available action, player i has a belief about what will (or might) happen if he chooses
that action.

Remark 1. It is worth noting that this way of modeling beliefs is a departure from the standard
approach in the literature, where it is assumed that if a player takes a particular action at a state
then he knows that he takes that action. The standard approach thus requires the use of either
objective or subjective counterfactuals in order to represent a player’s beliefs about the conse-
quences of taking alternative actions. In our approach a player’s beliefs refer to the deliberation
or pre-choice stage, where the player considers the consequences of all his actions, without pre-
judging his subsequent decision.4 Since the state encodes the player’s actual choice, that choice
can be judged to be rational or irrational by relating it to the player’s pre-choice beliefs. Thus
it is possible for a player to have the same beliefs in two different states, say α and β, and be
labeled as rational at state α and irrational at state β, because the action he ends up taking at state
α is optimal given those beliefs, while the action he ends up taking at state β is not optimal given
those same beliefs.

Figure 2 shows a perfect information game and Figure 3 a model of it. We represent a belief
relation B as follows: for any two states ω and ω′, ω′ ∈ B(ω) if and only if either ω and ω′

are enclosed in the same rounded rectangle or there is an arrow from ω to the rounded rectangle
containing ω′.5 The relations shown in Figure 3 are those of the active players: the relation at
date 0 is that of Player 1 (B1,0), the relation at date 1 for states α, β and γ is that of Player 2 (B2,1),
the relation at date 1 for states δ, ε and η is that of Player 3 (B3,1) and the relation at date 2 for
states α and β is that of Player 3 (B3,2).6 Consider a state, say α. Then α describes the following
beliefs: at date 0 Player 1 believes that if she takes action a1 then Player 2 will follow (at date
1) with b2 (state γ) and if she takes action b1 then Player 3 will follow (at date 1) with either c2
(state δ) or d2 (state ε); at date 1 Player 2 (knows that Player 1 played a1 and) believes that if he
takes action a2 then Player 3 will follow (at date 2) with b3 (and if he takes action b2 the game
will end). At state α Player 1 ends up playing a1, Player 2 ends up playing a2 and Player 3 ends
up playing a3.

3Note that local transitivity and euclideanness (positive and negative introspection) are not needed for our results.
We have imposed these properties because they are considered in the literature to be necessary properties of “rational”
beliefs and because they simplify the graphical representation of beliefs.

4Further discussion of this point can be found in Section 4.
5In other words, for any two states ω and ω′ that are enclosed in a rounded rectangle,

{(ω,ω), (ω,ω′), (ω′, ω), (ω′, ω′)} ⊆ B (that is, the relation is total on the set of states contained in the rectangle)
and if there is an arrow from a state ω to a rounded rectangle then, for every ω′ in the rectangle, (ω,ω′) ∈ B.

6Thus B1,0(ω) = {γ, δ, ε} for every ω ∈ Ω, B2,1(ω) = {β, γ} for every ω ∈ {α, β, γ}, B3,1(ω) = {δ, ε, η} for every
ω ∈ {δ, ε, η} and B3,2(ω) = {α, β} for every ω ∈ {α, β}. For any remaining state ω and date t, Bi,t(ω) = ∅, for every player
i (thus, for example, B1,1(ω) = B1,2(ω) = B1,3(ω) = ∅, for every state ω).
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It is worth noting that the notion of model that we are using allows for erroneous beliefs
(since we have not imposed reflexivity of the belief relations). Indeed, in the model of Figure
3, at state α Player 1 has incorrect beliefs about the subsequent move of Player 2 if she herself
plays a1 (she believes that Player 2 will follow with b2 while, in fact, he will play a2).

1a

2e2a
2c

2d

1b
32

1

3
2b

3b3a

2
2
2

0
0
0

0
0
2

3
0
1

1
0
0

1
1
1

Player 1's payoff
Player 2's payoff
Player 3's payoff

Figure 2: A perfect-information game.
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Figure 3: A model of the game of Figure 2.
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3. Rationality and backward induction

We shall use a very weak notion of rationality, which has been referred to in the literature as
“material rationality” (see, for example, [1, 2, 6, 25]). We say that at a state-instant pair (ω, t)
a player is rational if either she is not active at ζt(ω) (that is, ζt(ω) is not a decision history of
hers) or the action that she ends up choosing at ω is “optimal” given her beliefs at date t, in the
sense that it is not the case that - according to her beliefs - there is another action of hers that
guarantees higher utility. Thus a player is irrational at a state-instant pair (ω, t) if she is active at
history ζt(ω), she ends up taking action a at ω and she believes that her maximum utility if she
takes action a is less than the minimum utility that she gets if she takes some other action a′.

Note that rationality in the traditional sense of expected utility maximization implies ratio-
nality in our sense; thus anything that is implied by our weak notion will also be implied by the
stronger notion of expected utility maximization.

Definition 3. Fix an arbitrary player i and an arbitrary state-instant pair (ω, t). We say that player
i is rational at (ω, t) if either

(1) ζt(ω) is not a decision history of player i, or

(2) ζt(ω) is a decision history of player i and if a is the action chosen by player i at ω (that
is, ζt+1(ω) = ζt(ω)a) then, for every a′ ∈ A(ζt(ω)), it is not the case that minω′∈A′ {Ui(ζ(ω′))} >
maxω′∈A{Ui(ζ(ω′))} where A′ = {ω′ ∈ Bi,t(ω) : ζt+1(ω′) = ζt(ω′)a′} and A = {ω′ ∈ Bi,t(ω) :
ζt+1(ω′) = ζt(ω′)a} (recall that Ui : Z → R is player i’s utility function on the set of terminal
histories).

For example, in the model of Figure 3, Player 1 is rational at state α and date 0, because she
believes that if she takes action a1 then her payoff will be 1 (she believes that Player 2 will follow
with b2) and if she takes action b1 then her payoff will be either 3 or 0 (she believes that Player
3 will follow with either c2 or d2) and she actually ends up taking action a1. Similarly, Player 2
is rational at state α and date 1 and Player 3 is rational at state α and date 2. On the other hand,
Player 2 is not rational at state γ and date 1 (he believes that if he takes action a2 his payoff will
be 1 and if he takes action b2 his payoff will be 0 and yet he ends up taking action b2). Thus,
since γ ∈ B1,0(α), at state α and date 0 it is not the case that Player 1 believes that Player 2 will
choose rationally at date 1.

We denote by Rt ⊆ Ω the event that (that is, the set of states at which) the active player (if
there is one) is rational at date t.7 Thus ω ∈ Rt if and only if either ζt(ω) is a terminal history
(that is, ζt(ω) = ζ(ω)) or ζt(ω) is a decision history and the active player at ζt(ω) is rational at
(ω, t). Of course, the identity of the active player can vary across states, that is, the active player
at (ω, t) can be different from the active player at (ω′, t). In the model of Figure 3 we have that
R0 = Ω, R1 = {α, β, ε}, R2 = {α, γ, δ, ε, η} and R3 = Ω.

Let Bi,t : 2Ω → 2Ω be the belief operator of player i at date t. Thus, for every event E ⊆ Ω,
Bi,tE = {ω ∈ Ω : Bi,t(ω) ⊆ E}. By Condition 1 of Definition 2, if player i is not active at (ω, t)
then Bi,t(ω) = ∅ and thus ω ∈ Bi,tE for every event E. Let Bt : 2Ω → 2Ω be the operator defined
by BtE =

⋂
i∈N Bi,tE (thus ω ∈ BtE if and only if

⋃
i∈N Bi,t(ω) ⊆ E). Then BtE is the event that

“the active player believes E at time t” (which is trivially equivalent to the event that “everybody
believes E at time t”). We summarize this in the following remark.

7By Definition 3 inactive players are always rational; thus Rt can also be described as the event that “every player is
rational at date t”.
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Remark 2. For every ω ∈ Ω and t ∈ T , define Bt(ω) =
⋃

i∈N Bi,t(ω) and Bt : 2Ω → 2Ω by
BtE =

⋂
i∈N Bi,tE (thus ω ∈ Bt(E) if and only if Bt(ω) ⊆ E.) It follows that if j is the active

player at ζt(ω), then Bt(ω) = B j,t(ω) and, for every event E, ω ∈ Bt(E) if and only if B j,t(ω) ⊆ E.

For example, in the model of Figure 3, we have that α < B0R1 (since γ ∈ B0(α) and γ < R1),
that is, it is not the case that the active player at date 0 (Player 1) believes that the active player
at date 1 will choose rationally. Indeed, at date 0 Player 1 believes that if she plays a1 then the
active player at date 1 (Player 2) will not choose rationally and if she plays b1 then the active
player at date 1 (Player 3) might or might not choose rationally (Player 3 chooses rationally at ε
but not at δ).

Note that the models we are considering allow for the possibility that a player may ascribe
to a future mover beliefs that are different from the beliefs that that player will actually have.
In other words, a player may have erroneous beliefs about the future beliefs of other players (or
even about her own future beliefs).

Let Tt be the set of states where the beliefs of the active player (if there is one) are correct:
Tt = {ω ∈ Ω : i f Bt(ω) , ∅ then ω ∈ Bt(ω)}.8 For example, in the model of Figure 3 we have
that T0 = {γ, δ, ε}, T1 = {β, γ, δ, ε, η} and T2 = T3 = Ω. Thus if ω ∈ Tt and ζt(ω) is a decision
history, then, for every event E ⊆ Ω, if the active player believes E (that is, if Bt(ω) ⊆ E) then E
is indeed true (that is, ω ∈ E).

In keeping with the literature, we restrict attention to games without relevant ties.

Definition 4. A perfect-information game has no relevant ties if, ∀i ∈ N, ∀h ∈ Di, ∀a, a′ ∈ A(h)
with a , a′, ∀z, z′ ∈ Z, if ha is a prefix of z and ha′ is a prefix of z′ then Ui(z) , Ui(z′).

For example, the game shown in Figure 2 has no relevant ties. If a game has no relevant ties,
then it has a unique backward-induction solution.9

The following two propositions (which are proved in the Appendix) provide a characteriza-
tion of backward induction in terms of the following event (where m = `max is the depth of the
game, that is, the length of its maximal histories):

(T0 ∩ R0) ∩ B0 (T1 ∩ R1) ∩ B0B1 (T2 ∩ R2) ∩ ... ∩ B0B1...Bm−2 (Tm−1 ∩ Rm−1) (1)

The interpretation of (1) is: the set of states where the active player at time zero (i) is rational
and has correct beliefs and (ii) believes that the active player at time 1 is rational and has correct
beliefs and (iii) believes that the active player at time 1 believes that the active player at time 2 is
rational and has correct beliefs, and so on. 10

8Thus an active player has correct beliefs whenever the true (or actual) state is among those that he considers possible.
On the other hand, by definition, inactive players always have correct beliefs. The expression “correct beliefs” is common
in the literature. An alternative expression is “non-deluded beliefs”. In a probabilistic setting a player has correct beliefs
at state ω if he attaches positive probability to ω.

9The definition of backward-induction solution is reviewed in the Appendix.
10In a probabilistic setting (1) would be interpreted as the event that the active player at time zero (i) is rational and has

correct beliefs and (ii) assigns probability 1 to the event that the active player at time 1 is rational and has correct beliefs
and (iii) assigns probability 1 to the event that the active player at time 1 assigns probability 1 to the event that the active
player at time 2 is rational and has correct beliefs, etc.
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Proposition 1. Fix a perfect-information game G without relevant ties and let m be its depth.
Fix an arbitrary model of G and an arbitrary state ω. If ω ∈ (T0 ∩ R0) ∩ B0 (T1 ∩ R1) ∩
B0B1 (T2 ∩ R2)∩ ...∩ B0B1...Bm−2 (Tm−1 ∩ Rm−1) then ζ(ω) is the backward-induction terminal
history.

Proposition 2. Fix a perfect-information game G without relevant ties and let m be its depth.
Let z be the backward-induction terminal history. Then there is a model of G and a state ω such
that (1) ζ(ω) = z and (2) ω ∈ (T0 ∩ R0) ∩ B0 (T1 ∩ R1) ∩ ... ∩ B0B1...Bm−2 (Tm−1 ∩ Rm−1) .

Remark 3. An apparent shortcoming of the above characterization of backward-induction is that
it is stated in terms of the depth of the game and is thus based on a condition that differs across
games. However, implicit in the above characterization is a criterion that is uniform across all
games. To see this, note that - in any model of a game - for every state ω and for every date t with
t ≥ `max (recall that `max is the depth of the game), it is trivially the case that Tt = Rt = Ω and thus
B0B1...Bt−1 (Tt ∩ Rt) = Ω. It follows that the characterization given in the above propositions is
equivalent to a characterization in terms of the following event S∞, which provides a uniform
condition across all games:

S∞ = (T0 ∩ R0) ∩ B0 (T1 ∩ R1) ∩ B0B1 (T2 ∩ R2) ∩ ... ∩ B0B1...Bt−1 (Tt ∩ Rt) ∩ ...

Thus the characterization of backward induction given in Propositions 1 and 2 can be restated as
follows, considering now models in which T = N (where N denotes the set of natural numbers):
(1) Let G be a perfect-information game without relevant ties and fix an arbitrary model of it and
an arbitrary state ω. If ω ∈ S∞ then ζ(ω) is the backward-induction terminal history.
(2) Given a perfect-information game G without relevant ties, let z be the backward-induction
terminal history. Then there is a model of G and a state ω such that ζ(ω) = z and ω ∈ S∞.

The condition in Proposition 1 that beliefs be locally correct is essential. For example, if
ω < T0 then it may happen that ζ(ω) is not the backward-induction terminal history even if the
other conditions hold. This is shown in Figure 4, where R0 = {α, β}, R1 = {β, γ}, T0 = {β, γ},
T1 = Ω, B0R1 = B0T1 = Ω. Hence α ∈ R0 ∩ B0 (T1 ∩ R1) (in this game `max = 2) and
yet ζ(α) = a1a2 which is not the backward-induction play. At state α Player 1 is rational,
believes that after her move Player 2 will be rational and will have correct beliefs and yet the
play associated with α is not the backward-induction play (because Player 1 is wrong in her
belief that Player 2 will play rationally at date 1). Similar examples can be constructed to show
that in Proposition 1 the condition ω ∈ B0T1 is necessary and so is ω ∈ B0B1T2, etc.

One may wonder if the following is the case. Consider a state ω where the active player at
time 0 chooses rationally, believes at time 0 that the active player at time 1 chooses rationally,
believes at time 0 that the active player at time 1 believes that the active player at time 2 chooses
rationally, and so on (that is, ω ∈ R0 ∩ B0R1 ∩ B0B1R2 ∩ . . .); is it true that, at state ω, the
active player at time 0 believes that after each of her possible actions the opponents will choose
in accordance with backward induction?11 The answer is negative, as shown in Figure 5. Here
we have that R0 = Ω,R1 = {γ, δ, ε},R2 = {β, γ, ε}, B0R1 = B1R2 = B0B1R2 = Ω. Hence
ε ∈ R0 ∩ B0R1 ∩ B0B1R2 (in this game `max = 3) and yet at state ε it is not the case that the
active player at time 0 (Player 1) believes that after playing a1 Players 2 and 3 will follow with
the choices prescribed by the backward-induction solution: δ ∈ B0(ε) and ζ(δ) = a1a2a3 while
the backward-induction choices after a1 are a2 and b3.12

11This point was raised by a referee.
12Note that in this model we also have that ε ∈ R1 ∩ R2 ∩ T0 ∩ T1 ∩ T2 ∩ B0B1T2; thus ε ∈ (T0 ∩ R0) ∩ B0R1 ∩

10



1 2a a 1b

α β γ

time:

1a

1 2a b

state:

ζ :

1a

0

1

2

1

2
1a

2a 2b

1b

1
0

3
1

1 2a a 1b
1 2a b

1b

2
1

∅           ∅           ∅ 

Figure 4: A perfect-information game and a model of it.

B0B1(T2 ∩ R2). However, ε < B0T1.
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4. Discussion and related literature

We have provided a characterization of backward induction in a framework where players’
beliefs are modeled as “pre-choice” or “deliberation-stage” beliefs. When it is his turn to move,
a player considers the consequences of all his actions, without pre-judging his subsequent deci-
sion; in other words, the beliefs of the active player at a state-instant pair are truly open to the
possibility of taking any of the available actions. As noted in Remark 1, this constitutes a depar-
ture from the standard approach in the literature where it is assumed that if, at a state, a player
takes action a, then she knows that she takes action a. As pointed out by several authors, it is
the essence of deliberation that one cannot reason towards a choice if one already knows what
that choice will be. For instance, Shackle [26, p. 21] remarks that if an agent could predict the
option he will choose, his decision problem would be “empty”, Ginet [14, p. 50] claims that “it
is conceptually impossible for a person to know what a decision of his is going to be before he
makes it”, Goldman [15, p. 194] writes that “deliberation implies some doubt as to whether the
act will be done”, Levi states that “the deliberating agent cannot, before choice, predict how he
will choose” [18, p. 65] and coins the phrase “deliberation crowds out prediction” [19, p. 81].13

While the standard approach in the literature is to model a player’s beliefs after she has made
her choice, we have chosen to model pre-choice beliefs. A potential objection to the proposed
approach arises in games where a player chooses more than once along a given play. Consider a
model of such a game, a state ω and two instants t1 and t2, with t1 < t2, such that player i moves
at both t1 and t2 along the play associated with ω. The proposed approach then requires player i
at time t1 to have “open” beliefs about his choice at the decision history associated with (ω, t1),
while allowing him to have beliefs about (or be certain of) what choice he will make at the later
time t2 (that is, at the history associated with (ω, t2)).14 This is an issue that has been addressed
in the literature and several authors have maintained that there is no inconsistency between the
principle that one should not attribute to a player beliefs about his current choice and the claim
that, on the other hand, one can attribute to the player beliefs about later choices. For example,
Gilboa writes:

“[. . . ] we are generally happier with a model in which one cannot be said to
have beliefs about (let alone knowledge of) one’s own choice while making this
choice. [. . . ] One may legitimately ask: Can you truly claim you have no beliefs
about your own future choices? Can you honestly contend you do not believe - or
even know - that you will not choose to jump out of the window? [. . . ] The answer
to these questions is probably a resounding “No”. But the emphasis should be on
timing: when one considers one’s choice tomorrow, one may indeed be quite sure
that one will not decide to jump out of the window. However, a future decision
should actually be viewed as a decision by a different “agent” of the same decision
maker. [. . . ] It is only at the time of choice, within an “atom of decision”, that we
wish to preclude beliefs about it.” [13, pp. 171-172]

In a similar vein, Levi [19, p. 81] writes that “agent X may coherently assign unconditional
credal probabilities to hypotheses as to what he will do when some future opportunity for choice
arises. Such probability judgments can have no meaningful role, however, when the opportunity

13Similar observations were made by several other authors. For a list of relevant references see [17].
14A referee found this possibility a weakness of the proposed approach.
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of choice becomes the current one.” Similarly, Spohn [27, p. 114] states the principle that “any
adequate quantitative decision model must not explicitly or implicitly contain any subjective
probabilities for acts” and then adds [28, pp. 44-45] that in the case of sequential decision mak-
ing, the decision maker can ascribe subjective probabilities to his future (but not to his present)
actions. We share the point of view expressed by these authors. If a player moves sequentially at
times t1 and t2, with t1 < t2, then at time t1 he has full control over his immediate choices (those
available at t1) but not over his later choices (those available at t2). The agent can predict - or
form an intention about - his future behavior, but he cannot irrevocably decide it, just as he can
predict - but not decide - how other players will behave after his current choice.15

There is a large literature on the epistemic foundations of backward induction, which was
recently reviewed in [9, 21]. In what follows we shall try to highlight the important differences
between our approach and the existing literature.

We have focused on a purely behavioral framework where, at each state of the world and at
each instant, only the actions actually taken and the beliefs actually held by the active player are
specified. Thus, contrary to a well-established literature [1, 2, 3, 7, 8, 16, 20, 22, 23, 24, 29, 30],
strategies (or plans of action) do not play any role in our analysis. Indeed the use of strategies in
models of dynamic games involves the implicit use of counterfactuals.16 Methodologically, this
is not satisfactory: if it is necessary to specify what a player would do in situations that do not
arise in the state under consideration, then one should model the counterfactual explicitly.

The purely behavioral point of view that we have adopted (consisting in associating with
every state a play of the game rather than a strategy profile) was first introduced by Samet [25].
Unlike the other papers that take a purely behavioral point of view [4, 6, 7, 25], our analysis does
not make use of subjective counterfactuals. The use of subjective counterfactuals or dispositional
belief revision is made necessary in that literature by two characteristics of the models used. First
of all, the static nature of the framework makes it impossible to model explicitly the beliefs of the
players at the time of choice; one thus needs to do so indirectly by representing simultaneously
a player’s initial beliefs and his disposition to revise those beliefs subject to conceivable items
of information that he might receive during the play of the game. This is done either proba-
bilistically using conditional probability systems [6, 7] or by means of qualitative belief revision
structures [4, 29, 30]. As pointed out by Stalnaker,

”It should be noted that even with the addition of the belief revision structure to
the epistemic models ..., they remain static models. A model of this kind represents
only the agent’s beliefs at a fixed time, together with the policies or dispositions to
revise her beliefs that she has at that time. The model does not represent any actual
revisions that are made when new information is actually received.” [31, p. 198].17

15An implication of this point of view is that, since - at the time of deliberation - the agent does not know what choice
he is going to make, he cannot know that his forthcoming choice is rational. For example, as the Advisory Editor pointed
out, in the event which characterizes backward induction (given by (1)), at time t the active player doesn’t know that she
is rational, even though she believes that every future player (and possibly her future self) is rational. This is unavoidable
if one wants to model pre-choice or deliberation-stage beliefs. This issue has been discussed at length in the philosophical
literature (see, for example, [18, 19]).

16While in a simultaneous game the association of a strategy of player i to a state can be interpreted as a description
of player i’s behavior at that state, in the case of dynamic games this interpretation is no longer valid, since one ends up
describing not only the actual behavior of player i but also his counterfactual behavior at decision histories that are not
reached in the actual state.

17The author goes on to say that “The models can be enriched by adding a temporal dimension to represent the
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The second characteristic of the models that use subjective counterfactuals is that they impose
the constraint that, if at a state a player takes action a, then she knows that she takes action a
(that is, at every state that the player considers possible, she takes action a); thus one needs to
use counterfactuals in order to represent a player’s beliefs about the consequences of taking an
action different from a.

The characterization of backward induction that we have provided is in terms of the forward
beliefs of the first mover: she believes in the rationality and correct beliefs of future movers and
believes that they, too, will believe in the rationality and correct beliefs of future movers. That
this type of condition (belief in future movers’ rationality) is central to backward induction is now
well understood [3, 4, 10, 11, 12, 23, 30]. The novelty of our approach lies in (i) the switch to a
dynamic framework with “pre-choice” beliefs, (ii) showing that the notion of backward induction
does not require the use of (objective or subjective) counterfactuals and (iii) pointing out the need
for what could be called “local knowledge”, that is, locally correct beliefs (as captured by the
events Tt).18

Since the literature on the epistemic foundations of backward induction has been thoroughly
reviewed by Perea [21] it is unnecessary to go into the details of each contribution. We shall
therefore close with a few comments on important differences between our characterization of
backward induction and those that appear to be conceptually closest, namely [3, 25]. Balkenborg
and Winter [3] define a condition that they call “forward knowledge of rationality” at the root
of the tree and show that it is sufficient for backward induction. Their condition is conceptually
very close to ours, but the framework that they use differs in many crucial respects. First of all,
they use Aumann’s [1] framework, which is static and partitional (so that players’ beliefs are
assumed to be necessarily correct: see Footnote 18).19 Secondly, their analysis relies heavily on
counterfactuals: they describe states in terms of strategy profiles (so that a state specifies players’
behavior also at nodes that are not reached in that state) and use a stronger notion of rationality
than ours, namely Aumann’s [1] notion of “substantive” rationality, according to which a player
can be irrational at a state even if she is not active at that state (that is, even if none of her decision
nodes is reached at that state). Finally, it should be noted that the authors restrict attention to
games where each player has only one decision node.

The behavior-based model (which does not describe states in term of strategies) was intro-
duced by Samet [25]. His analysis relies on subjective counterfactuals, expressed in terms of

dynamics, but doing so requires that the knowledge and belief operators be time indexed.” In our models the belief
operators are indeed time indexed and represent the actual beliefs of the players when actually informed that it is their
turn to move.

18A strand in the literature [1, 2, 3] assumes that each belief relation is reflexive everywhere, so that it gives rise to a
partition of the set of states. In such cases it is common to speak of knowledge rather than belief. As Stalnaker points out,
it is methodologically preferable to carry out the analysis in terms of (possibly erroneous) beliefs and then - if desired
- add further conditions (such as the local correctness of beliefs, that is, local reflexivity of the belief relations). The
reason why one should not start with the assumption of necessarily correct beliefs (that is, global reflexivity of the belief
relations) is that such an assumption has strong intersubjective implications:

“The assumption that Alice believes (with probability one) that Bert believes (with probability one)
that the cat ate the canary tells us nothing about what Alice believes about the cat and the canary them-
selves. But if we assume instead that Alice knows that Bert knows that the cat ate the canary, it follows,
not only that the cat in fact ate the canary, but that Alice knows it, and therefore believes it as well.” [29,
p. 153].

19Quesada [24] shows that the assumptions on beliefs (reflexivity, transitivity and euclideanness) can be relaxed,
provided that one strengthens the forward rationality condition by assuming it to hold not only at the root of the tree but
also at every other node.
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hypothetical knowledge operators.20 The characterization of backward induction that he pro-
vides is in terms of the condition of common hypothesis of node rationality, which turns out
to have some similarity with our condition.21 However, Samet’s framework differs substantially
from ours: his approach is static (“time is absent from the model - we analyze the game at a point
in time before it is played” [25, p.233]), it assumes knowledge, rather than belief (see Footnote
18), it imposes the condition that if at a state a player considers it possible that he takes an action
at a decision history then he knows that, if that decision history is reached, he takes that action
and, finally - as noted above - he makes essential use of subjective counterfactuals, in the form
of conditional knowledge operators.

We conclude by noting that the notion of belief in forward rationality has also been extended
beyond games with perfect information [20, 22, 23].22 This is done in a static framework that
describes states in terms of strategies (or plans of action).

Appendix A. Proofs

We give below the proofs of Propositions 1 and 2. First we recall the definition of backward
induction solution. The backward induction solution of a perfect-information game without rel-
evant ties is unique and is given by the output of the following algorithm:

1. Start at a decision history h whose immediate successors are only terminal histories, that
is, for every a ∈ A(h), ha ∈ Z (e.g. history b1 in the game of Figure 2) and select the
choice that maximizes the utility of player ι(h) (in the game of Figure 2, at b1 player 3’s
utility-maximizing choice is d2). Delete the successors of h, thus turning h into a terminal
history, and assign to h the payoff vector associated with the selected choice.

2. Repeat Step 1 in the reduced game until all the decision histories have been exhausted.

The output of the backward-induction algorithm can be written in terms of a profile of strate-
gies, where a strategy of player i is defined as a list of choices, one for each decision history of
player i. For example, the backward induction solution of the game of Figure 2 can be written as
(a1, a2, (a3, d2)).

In order to prove Proposition 1 we need the following definition.

Definition 5. Fix a perfect-information game and a model of it. Let α, β ∈ Ω. We say that β is
reachable from αwith s steps (s ≥ 1) if there is a sequence of state-instant pairs 〈(ω0, 0), (ω1, 1), ..., (ωs, s)〉
such that:

20A hypothetical knowledge operator Ki(H, E) assigns to each pair of events, H (the hypothesis) and E, the set of states
where player i hypothesizes that if H were true, then he would know E.

21As the author explains,

[. . . ] a common hypothesis of node rationality depends only on the hypotheses of the root player. The
reason [. . . ] is as follows. Clearly, only the hypotheses of the root player, and nothing else, determine his
action at the root. What he hypothesizes about the consequence of his actual action at the root is knowl-
edge since the antecedent is true and, moreover, as the root player knows his action, the consequences
are indeed true. But among these consequences are the hypotheses of the next player about what is true
if his node is reached. Since the next player’s node is indeed reached, his hypotheses are knowledge and
so on. [25, p. 244]

22Perea [22, 23] characterizes the notion of common belief in future rationality in terms of an iterative procedure
of elimination of strategies that are dominated at information sets. In a similar vein, Penta [20] relates the notion of
“common certainty of future rationality at every history” to a procedure that he calls “backward rationalizability”.
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1. ω0 = α,
2. ωs = β,
3. ∀k = 1, ..., s, ωk ∈ Bk−1(ωk−1).

For example, in the model of Figure 3, β is reachable from η with 2 steps with the sequence
〈(η, 0), (γ, 1), (β, 2)〉.23

Remark 4. Let E be an event, α a state and suppose that α ∈ B0B1...Bs−1E. Then for every
β ∈ Ω, if β is reachable from α with s steps then β ∈ E. 24

Proof of Proposition 1. Fix a perfect-information game with no relevant ties, so that there
is a unique backward induction (BI) solution. Let fBI : H → Z be the following function: if h
is a decision history then fBI(h) is the terminal history that is reached from h by following the
backward-induction choices and if z is a terminal history then fBI(z) = z.25 Recall that if z ∈ Z
and t ∈ T , we denote by zt the prefix of z of length t. Fix a model of the game and suppose that α is
a state such that α ∈ (T0 ∩ R0)∩B0 (T1 ∩ R1)∩B0B1 (T2 ∩ R2)∩...∩ B0B1...Bm−2 (Tm−1 ∩ Rm−1)
(where m = `max is the depth of the game). We need to show that ζ(α) = fBI(∅) (recall that ∅
denotes the empty history). First we show that,

For every t with 1 ≤ t ≤ m − 1 and for every β ∈ Ω,
if β is reachable from α with t steps then ζ(β) = fBI(ζt(β)). (A.1)

We prove this by induction.
Base step: t = m − 1. Fix an arbitrary β which is reachable from α with m − 1 steps. If

ζm−1(β) is a terminal history, then ζm−1(β) = ζ(β) (see Definition 1) and, by definition of fBI(·),
fBI(ζ(β)) = ζ(β). Thus ζ(β) = fBI(ζm−1(β)). Suppose, therefore, that ζm−1(β) is a decision history.
Let i be the active player, that is, the player who moves at ζm−1(β). Fix an arbitraryω ∈ Bm−1(β).26

Then, by Definition 2, ζm−1(ω) = ζm−1(β). Since the depth of the game is m, after player i’s move
at ζm−1(ω) the game ends and thus ζm(ω) = ζ(ω).27 Since α ∈ B0B1...Bm−2Rm−1, by Remark 4
β ∈ Rm−1, that is, player i is rational at state β and time m − 1. Hence, the choice made by player
i at state β and time m − 1 is the payoff-maximizing choice there, that is, ζ(β) = fBI(ζm−1(β)).

Induction step: suppose that (A.1) is true for t = k with 1 < k ≤ m − 1. We want to show that
it is true for t = k − 1. Fix an arbitrary β which is reachable from α with k − 1 steps.

First we show that,

∀ω ∈ Bk−1(β), ζ(ω) = fBI(ζk(ω)). (A.2)

23Note that, if β is reachable from α with s steps, then ζs−1(β) is a decision history. In fact, we have that β =

ωs ∈ Bs−1(ωs−1) and thusBs−1(ωs−1) , ∅, so that ζs−1(ωs−1) is a decision history. By Definition 2, ζs−1(β) = ζs−1(ωs−1).
24Proof. Let 〈(ω0, 0), (ω1, 1), ..., (ωs, s)〉 be a sequence that satisfies the properties of Definition 5. Then, since α ∈

B0B1B2...Bs−1E, B0(α) ⊆ B1B2...Bs−1E; thus, since ω1 ∈ B0(α), ω1 ∈ B1B2...Bs−1E. Thus B1(ω1) ⊆ B2...Bs−1E, etc.
Thus Bs−1(ωs−1) ⊆ E and hence, since β = ωs and ωs ∈ Bs−1(ωs−1), β ∈ E.

25For example, in the game of Figure 2, fBI (∅) = fBI (a1) = fBI (a1a2) = a1a2a3, fBI (b1) = b1d2 and, for every terminal
history z, fBI (z) = z,

26Note that Bm−1(β) , ∅, since, by Definition 2, Bi,m−1(β) , ∅ and by Remark 2, Bm−1(β) = Bi,m−1(β), where i is the
active player at ζm−1(β).

27Recall also that, by Definition 2, for every action a ∈ A(ζm−1(β)), there is an ω′ ∈ Bm−1(β) such that ζm(ω′) =

ζm−1(ω′)a.
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If ζk−1(β) is a terminal history, there is nothing to prove, since Bk−1(β) = ∅. Suppose, therefore,
that ζk−1(β) is a decision history. Let i be the active player, that is, the player who moves at
ζk−1(β). Fix an arbitrary ω ∈ Bk−1(β) (by Definition 2, Bk−1(β) , ∅). Then ω is reachable from
α with k steps (since, by hypothesis, β is reachable from α with k − 1 steps). By the induction
hypothesis ζ(ω) = fBI(ζk(ω)). Thus (A.2) holds. Since α ∈ B0B1...Bk−2Tk−1, by Remark 4
β ∈ Tk−1; thus, since Bk−1(β) , ∅,

β ∈ Bk−1(β). (A.3)

Thus, by (A.2),
ζ(β) = fBI(ζk(β)). (A.4)

Since α ∈ B0B1...Bk−2Rk−1, by Remark 4 β ∈ Rk−1, that is, player i is rational at state β and
time k − 1. By (A.2) at state β and time k − 1 player i believes that after his move the play will
continue according to the BI solution. Hence the action chosen by i at ζk−1(β) is the optimal
action there given those beliefs (i.e. the action dictated by the BI solution), that is, the truncation
of fBI(ζk−1(β)) at date k is equal to ζk(β):

ζk(β) = fBI(ζk−1(β))k. (A.5)

It follows from (A.4) and (A.5) that ζ(β) = fBI(ζk−1(β)). This completes the proof of (A.1).
Next we show that

∀ω ∈ B0(α), ζ(ω) = fBI(ζ1(ω)). (A.6)

Fix an arbitrary ω ∈ B0(α). Then ω is reachable from α with 1 step and thus, by (A.1), ζ(ω) =

fBI(ζ1(ω)). Thus the active player at state α and date 0 believes that after her move the play will
continue according to the BI solution. Since a ∈ R0, it follows that the action chosen by the
active player at ζ0(α) = ∅ is the optimal action there given those beliefs, that is, the truncation of
fBI(∅) at date 1 is equal to ζ1(α):

ζ1(α) = fBI(∅)1. (A.7)

Since B0(α) , ∅ and α ∈ T0, α ∈ B0(α). Thus, by (A.6), ζ(α) = fBI(ζ1(α)). It follows from this
and (A.7) then ζ(α) = fBI(∅).

Proof of Proposition 2. Fix a perfect-information game G and define the following model
of it: Ω = Z (recall that Z is the set of terminal histories), T = {0, 1, ...,m = `max} (recall that
`max is the depth of the game, that is, the length of its maximal histories) and ζ is the identity
function (that is, ζ(z) = z, for every z ∈ Z). Let fBI : H → Z be the function defined in the proof
of Proposition 1. Fix an arbitrary player i, an arbitrary z ∈ Z and an arbitrary t ∈ T . If zt is not a
decision history of player i, then we set Bi,t(z) = ∅; if zt is a decision history of player i then we
set Bi,t(z) =

{
z′ ∈ Z : z′t = zt and z′ = fBI(z′t+1)

}
, that is, Bi,t(z) is the set of terminal histories that

(i) coincide with z up to date t and (ii) are reached by following the backward-induction choices
from date t + 1. For example, for the game of Figure 2 (whose backward-induction solution is
(a1, a2, (a3, d2)) with corresponding terminal history a1a2a3) the model just described is shown
in Figure A.6.

By construction of the belief relations and by definition of backward-induction solution, at
any state z and date t, if player i is active at zt then he is rational there if and only if the action he
takes there is the one prescribed by the backward-induction solution, that is, z ∈ Rt if and only
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if zt+1 = ( fBI(zt))t+1.28 Let ẑ be the terminal history reached by the backward-induction solution,
that is, ẑ = fBI(∅). Then we have that ẑ ∈ Bt(ẑ) for every date t ∈ T such that Bt(ẑ) , ∅ and
thus ẑ ∈ Tt (that is, for every date t, the beliefs of the active player at ẑ are locally correct). Thus
ẑ ∈ (T0 ∩ R0) ∩ B0 (T1 ∩ R1) ∩ B0B1 (T2 ∩ R2) ∩ ... ∩ B0B1...Bm−2 (Tm−1 ∩ Rm−1).

1 2 3a a a1 2a b

1a

1 2b d 1 2b e1 2a b

∅           ∅           ∅           ∅           ∅           ∅ 

time:

1a
1b

1 2a a 1 2a a
1 2b c

1 2 3a a b 1 2b c1 2b d 1 2b e

0

1

2

3

1b1b1a

ζ :

1 2b d 1 2b e1 2a b 1 2 3a a a1 2 3a a b 1 2b c

1 2 3a a a1 2a b1 2 3a a b 1 2b c1 2b d 1 2b estate:

Figure A.6: The model described in the proof of Proposition 2 for the game of Figure 2.
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