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Abstract

Two views of game theory are discussed: (1) game theory as a de-
scription of the behavior of rational individuals who recognize each other’s
rationality and reasoning abilities, and (2) game theory as an internally
consistent recommendation to individuals on how to act in interactive situ-
ations. It is shown that the same mathematical tool, namely modal logic,
can be used to explicitly model both views.

1. Introduction

Game theory can be thought of as being composed of two separate modules. The
first module consists of a formal language for the description of interactive situ-
ations, that is, situations where several individuals take actions that affect each

*T am grateful for the comments of two anonymous referees, Pierpaolo Battigalli and the par-
ticipants in the conference on Strategic Rationality in Economics (Sant’Arcangelo di Romagna,
August 1999), where a first draft of this paper was presented.



other. This language provides alternative descriptions, from the more detailed
one of extensive forms to the more condensed notions of strategic form and coali-
tional form. The language of game theory has proved to be useful in such diverse
fields as economics, political science, military science, evolutionary biology, com-
puter science, mathematical logic, experimental psychology, sociology and social
philosophy. The unifying role of the game-theoretic language has been a major
achievement in itself.

The second module is represented by the collection of solution concepts. Each
solution concept associates with every game in a given class an outcome or set
of outcomes. Most of the debate in game theory has centered on this module, in
particular on the rationale for, and interpretation of, various solution concepts.
From a broader point of view, the issue of debate is what the role and aims of
game theory are (or should be). In this respect one can distinguish at least four
different views of game theory:

1. Game theory as a description of how rational individuals behave:

“Briefly put, game and economic theory are concerned with the in-
teractive behavior of Homo rationalis - rational man. Homo rationalis
is the species that always acts both purposefully and logically, has
well-defined goals, is motivated solely by the desire to approach these
goals as closely as possible, and has the calculating ability required to
do so”. (Aumann, 1985, p. 35)

2. Game theory as a prescription or advice to players on how to act.

3. Experimental game theory, whose aim is to describe the actual behavior of
individuals.!

4. Evolutionary game theory, where outcomes are explained in terms of dy-
namic processes of natural selection.

In this paper we focus on the first two views of game theory and argue that
the same tool, namely modal logic, can be used to model explicitly both of them.
The recent literature on the logical foundations of game-theoretic solution con-
cepts has been concerned with the first view, namely game theory as a description

'In other words, experimental game theory tries to elucidate how Homo sapiens behaves
(rather than Homo rationalis, to the extent that there is a difference between the two).



of the interactive behavior of Homo rationalis.> The relevance of modal logic is

apparent from the fact that most papers in this literature make use, often only
implicitly, of epistemic logic (that is, the logic of knowledge and belief) and try
to determine what assumptions on the beliefs and reasoning of the players are
implicit in various solution concepts. The task of this research program is to iden-
tify for any game the strategies that might be chosen by rational and intelligent
players who know the structure of the game and the preferences of their opponents
and who recognize each other’s rationality and reasoning abilities. The main issue
has been the relationship between the notion of common belief in rationality and
non-cooperative solution concepts such as rationalizability and Nash equilibrium.

The second view of game theory, namely as a theory that advises players on
how to behave in interactive situations, has been much less investigated. The
objective here is not to capture the reasoning of rational players but rather to
determine “what recommendations will be accepted, or followed, by free ratio-
nal individuals” (Greenberg, 1990, p. 2). To put it differently, what consistency
properties should be satisfied by a theory that purports to capture in its recom-
mendations the players’ incentives and goals?

It has long been recognized that solution concepts, such as Nash equilibrium,
can be interpreted not as the outcome of players’ reasoning but rather as game
theory’s recommendation:

“The modern game-theoretical interpretation of equilibrium points in
the sense of Nash (1951) ... is based on the idea that a rational theory
should not be a self-destroying prophecy which creates an incentive to
deviate for those who believe in it”. (Selten, 1985, p. 79)

The notion that a recommendation should be consistent in the sense that it should
not be a ”self-destroying prophecy” was first introduced within cooperative game
theory by von Neumann and Morgenstern (1947) and subsequently applied by
Joseph Greenberg (1990) in his unifying theory of social situation. We will show
in Section 4 that modal logic can be used to model explicitly also this second view
of game-theoretic solution concepts.

The paper is organized as follows. In Section 2 we give a brief overview of modal
logic. In Section 3 we discuss the epistemic interpretation of modal logic and give
a flavor of the type of results proved within view (1) of game theory. In Section

2Extensive surveys of this literature are given in Battigalli and Bonanno (1999) and Dekel
and Gul (1997).



4 we turn to a different interpretation of modal logic and use it to characterize
one of the most frequently used solution concepts — namely backward induction
in perfect information games — as a recommendation, thus reflecting view (2) of
game theory. Section 5 concludes with a discussion of the advantages of using
(modal) logic in the analysis of games.

2. Brief review of modal logic

Modal logic has two components: semantic and syntactic. The semantic compo-
nent consists of a frame F = (), Ry, ..., R,;,), where Q is a set of states (or possible
worlds) and each R; (j =1,...,m) is a binary relation on Q. If «R;3 we say that
state B is R;-accessible from state o. Depending on the context, the accessibility
relations may be required to satisfy one or more properties, such as the following
(for simplicity we drop the subscript of R):

e Seriality: Va € 2,38 € Q : aRp.

Reflexivity: Va € ), aRa.

Transitivity: if a RS and SR~y then aRy.

Euclideanness: if aRfS and aRy then SRy.
e Asymmetry: if aRf then not SRa.

e Backward linearity: if aRvy and SR~ then either a = 3 or aRf or SRa.

Furthermore, properties linking two relations might also be imposed (e.g. one
might want to require Ry to be a subrelation of R;: if aRyf then aR;f3).

Subsets of € are called events. Events represent propositions. The interpre-
tation of events as propositions is obtained by means of the second component
of modal logic: the syntaxr or formal language. The alphabet of the language
consists of: (1) a finite or countable set A of atomic propositions (such as “the
earth is flat”), (2) the connectives — (for “not”), v (for “or”), (3) the bracket sym-
bols ( and ) and m modal operators [y, O, ..., (,,.> The connectives and the

3As is customary, we shall often omit the outermost brackets, e.g. we shall write AV B
instead of (AV B), and use the following (metalinguistic) abbreviations: AA B for =(—A V —B)
(the symbol A stands for “and”), A — B for (=A) V B (the symbol — stands for “if ... then
.7y and A~ Bfor (A— B)A(B — A) (the symbol « stands for “if and only if”).
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modal operators are used to form more complex sentences or formulae. The set
[F of formulae is obtained from the atomic propositions by closing with respect to
negation, disjunction and the modal operators. That is, I is obtained recursively
as follows: (i) for every atomic proposition a € A, (a) € F, (ii) if A, B € F then
(mA) € F, (AV B) € F and, for every j =1,...,m, (;A) € F. The interpretation
of the modal formula [JA depends on the context. Possible interpretations are:
“the individual believes that A”, “the individual knows that A”, “it is always (i.e.
at every possible future moment) going to be the case that A”, etc.

The link between semantics and syntax is provided by the notion of model.
Given a frame (Q, Ry, ..., R,,), a model M based on it is obtained by adding a
valuation V : A — 29 (where 2 denotes the set of subsets of Q) that associates
with every atomic proposition a the set of states at which a is true. M,w = A
denotes that formula A is true at state w in model M and M,w ¥ A denotes that
A is false at w. For an atomic proposition a, M,w |= a if and only if w € V(a);
furthermore, M,w = —A if and only if M,w ¥ A and M,w = (AV B) if and
only if either M,w | A or M,w = B. * Truth for the modal formula [J;4 is
defined as follows:

M, o |=0;A if and only if, for all 8 such that aR;3, M, = A.

Thus ;A is true at state a if and only if A is true at every state which is Rj-
accessible from «.

A formula A is valid in model M if it is true at every state, that is, if M, w | A
for all w € €.

Remark 1. (a) If A is valid in model M then, for every modal operator [;, the
formula U; A is valid in M;

(b) If A — B is valid in model M then, for every modal operator [;, the
formula ;A — 0O, B is valid in M.

Often properties of the accessibility relation correspond to modal formulae.
Examples of this correspondence are given in the following remark (cf. Chellas,
1984, p. 164; to simplify the notation we have dropped the subscript).

41t follows that M,w = (A A B) if and only if M,w = A and M,w = B, and M,w = (A —
B) if and only if M,w = B whenever M,w = A.



Remark 2. (a) Seriality of R corresponds to JA — —[0—-A , that is, the following
are equivalent: (1) R is serial, (2) for every model M and for every formula A,
the formula JA — —[0-A is valid in M.

(b) Reflexivity of R corresponds to [JA — A.

(c) Transitivity of R corresponds to JA — OOA.

(d) Euclideanness of R corresponds to -[JA — O-0A

The modal logician is mainly concerned with proving soundness and complete-
ness of a formal system with respect to the semantics. However, the focus of this
paper is mainly on the validity of general claims about games and we shall ignore
issues of completeness.

3. Epistemic logic and solution concepts

The view of game theory as a description of how Homo rationalis behaves in in-
teractive situations has led to a large literature trying to identify for any game the
strategies that might be chosen by rational and intelligent players who recognize
each other’s rationality and reasoning abilities. In this literature players’ knowl-
edge and beliefs play a central role. The “mutual recognition” of each other’s
rationality is modelled by means of the notion of common belief. Since this liter-
ature has been reviewed extensively (cf. Footnote 2), in this section we will just
give a flavor of the type of results that have been proved.

The class of frames considered here are frames of the form (2, Ry, ..., R,,, R.)
where {1, ..,n} is the set of players and the (n + 1)th relation R, is the transitive
closure of Ry U...UR,, °.

The intended interpretation of the modal formula [;A (i = 1, ...,n) is “player i
believes that A” while the interpretation of (J, A (where [J, is the modal operator
associated with R,) is “it is common belief that A”. It is standard to require each
R; (i = 1,..,n) to be serial, transitive and euclidean, thus requiring individual
beliefs to be consistent (if the individual believes A then she does not believe
—A: cf. Remark 2) and satisfy positive introspection (if the individual believes
A then she believes that she believes A) as well as negative introspection (if the
individual does not believe A then she believes that she does not believe A). Any

>That is, for all o, 8 € Q, aR.f if and only if there is a sequence (i1, ,im) € {1,...,n}
(the set of players) and a sequence (19,71, , M, in © (the set of states) such that: (i) n, =
a, (ii) n,, = B and (iii) for every k =0,....,m — 1, . R;, ., (Np11)-



model based on such a frame validates also the following formulae, which capture
the notion of common belief:

0.4 — 00,4
(A=D1 AN . AOA) — (AN AO,A - O,A).

We shall restrict attention to finite non-cooperative games in strategic form?,
which are tuples G = (N, {S;}ien, {ti}ien), where N = {1,2,... n} is the set
of players, S; is the finite set of strategies for player i and u; : S — R (where
S =051 x...%x S5, and R is the set of real numbers) is player i’s von Neumann
Morgenstern payoff (or utility) function. This definition provides only a partial
description of the interactive situation, in that it determines the choices that are
available to the players and their preferences, but does not specify the players’
beliefs about each other or their actual choices. The notion of model of a game
provides a way of completing the description.

Since the objective of this literature is to consider the implications of com-
mon belief of rationality, the formal language we consider needs to include atomic
propositions such as “player ¢ is rational”. Furthermore, we need atomic propo-
sitions that refer to properties of strategy profiles. Given that the purpose of
this section is merely to illustrate the type of results obtained in this literature,
we will limit ourselves to the property of survival of iterative deletion of strictly
dominated strategies. Recall that a probability distribution over S; is called a
mized strategy of player ¢, whereas the elements of S; are called player ¢’s pure
strategies. If v; € A(S;) (where A(S;) denotes the set of probability distributions
over S;) and s; € S;, we denote by v;(s;) the probability assigned to s; by v;. Let
S =081 X ... x Si_1 X Siy1 X ... x 8, denote the set of pure-strategy profiles of
the players other than ¢. A pure strategy s; € 5; of player ¢ is strictly dominated
by vi € A(S;) if, for all s_; € S_;, > vi(x) wi(z,s-;) > wi(s;,5-;). Given a

TES;

game G, let G° = G and, for k& > 1, let G* be the game obtained by deleting

6From 0, A — 0O;A one obtains (cf. Remark 1) 0,0, A — 0;0;A. From this and 0,4 —
00,0, A one obtains (by standard propositional logic) the validity of 0,A — [0;00;A. This
argument can be repeated any number of times to yield the conclusion that if A is common
belief then everybody believes that everybody believes ... (any number of times) that everybody
believes that A. The converse can also be proved. See, for example, Bonanno (1996), Lismont
(1993) and Lismont and Mongin (1994).

"The epistemic analysis of solution concepts for extensive games has also been carried out:
see, for example, Battigalli and Siniscalchi (1999).
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all the pure strategies of all the players that are strictly dominated in G*~!. Let
G*> = Nr—, G* be the game obtained by applying this iterative elimination pro-
cedure (by finiteness of S, there is some m such that G* = G™). Let S* be set
of strategy profiles in G* (that is, the set of strategy profiles of G that survive
the iterative deletion of strictly dominated strategies).

By a game language we mean a language that contains the following atomic
propositions:

Symbol Intended interpretation
i player ¢ is rational
5% the strategy profile played belongs to the set S°°.

Let r denote the formula r; A ... A r,, whose interpretation is “all the players are
rational”.

A probabilistic frame is a tuple (2, Ry, ..., Ry, Ry, Py, ..., P,) where:

e () is a finite set of states,

e cach relation R; (i = 1,...,n) is serial, transitive and euclidean, and R, is
the transitive closure of R; U...U R,,, and

e P, is a full-support probability distribution on €2 (that is, P;j(w) > 0, Vw €

The introduction of a full-support probability distribution P; is just a nota-
tionally convenient way of assigning probabilistic beliefs to each player. P; in itself
is of no significance; what matters is player i’s belief at each state «, denoted by
Di.a» Which is obtained by conditioning P; on R;(a) = {w € Q : aRw}:

% if we Ri(a)
pi,Oz(W) - w/€R;(a)
0 if wé Ri(a).

As explained in the previous section, in general a model is obtained by adding
to a frame a valuation V' that associates with every atomic proposition the set of
states at which the proposition is true. In order to obtain a model of a particular
game G, besides the valuation V' we also need to add a function o = (04, ...,0,) :
) — S that associates with every state the pure strategy profile played at that
state. We call the pair (V, o) a G-valuation and the model so obtained a G-model
if the valuation (V, o) satisfies the following restrictions (which realize the intended
interpretation of r; and s let 0_; = (01, ..., 04-1,Fi11y -, On)):

8



1. a € V(ry) if and only if: (a) player 7 has no uncertainty as to the strategy
he himself is playing, that is,

if aR;B then oB)=o0i(a)

and (b) o;(a) (player i’s strategy at ) maximizes i’s expected utility given
his beliefs, that is,

> ui(oi(a),0.i(w) pialw) > Y wi(w,03(w)) pialw), Vr€ S

WER;(a) wER; ()

2. a € V(s*)if and only if () € S, that is, if and only if the strategy profile
played at « survives the iterative deletion of strictly dominated strategies.

As usual, the formula [J;A is true at state a (M, o = [0;A) if and only if A is
true at every state 3 such that aR;5. Thus, in this context, the interpretation of
;A is “player i believes (with probability 1) that A”. Similarly, M, « = O, A if
and only if M, 5 = A for every 3 such that aR.( and the interpretation of [, A
is “it is common belief that A”.

The following result provides an epistemic characterization of the procedure
of iterative deletion of strictly dominated strategies. The essence of this result is
due to Bernheim (1984) and Pearce (1984), although they did not make use of the
apparatus of epistemic logic. The first epistemic characterization was provided by
Tan and Werlang (1988) using a universal type space (rather than modal logic).
The formulation which is closest to the one given below is that of Stalnaker (1994),
but it was implicit in Brandenburger and Dekel (1987).

Proposition 3.1. Let G be a finite strategic form game. Then the following
formula is valid in every model of G:

O.r — s*°.

That is, if there is common belief that all the players are rational, then the strat-
egy profile actually played is one that survives the iterative deletion of strictly
dominated strategies.



The literature on the epistemic foundations of game theory has dealt with sev-
eral other solution concepts: Nash equilibrium, correlated equilibrium, backward
and forward induction, etc. Since this literature has been reviewed elsewhere (see
Footnote 2), we shall turn to the alternative view of solution concepts, namely
solutions as recommendations to the players.

4. Solutions as consistent recommendations

Although the main focus of this section will be extensive (or dynamic) games, to
maintain continuity with the previous section we shall start with finite strategic-
form games and provide a (straightforward) interpretation of Nash equilibrium
as a recommendation. As before, a frame is a tuple (0, Ry, ..., R, R.), where €
is a set of states and the index ¢ = 1,...,n refers to the players. However, the
interpretation that we want to establish for aR;3 is no longer “for player ¢ state
3 is epistemically accessible from (or an epistemic alternative to) state a” but
rather “from state « player ¢ can unilaterally bring about state 5”. Thus R; does
not capture the reasoning or epistemic state of player ¢ but rather the notion of
what player i is able to do. Let R' be the transitive closure of | J;, R;. Thus if
aRT 3 then from state « the players can collectively bring about state 3 by a series
of individual actions. The relation R, is now assumed to be a subrelation of RT.
It is no longer meant to capture the epistemic notion of common belief; instead
it will be interpreted as expressing the theory’s recommendation to the players.
Thus the intended interpretation of a R, is “at state « it is recommended that
state [ be reached”.

As before, the formal language needs to contain atomic propositions that can
be interpreted as statements about the game. We include the following atomic
propositions (p;, ¢; € Q, where Q is the set of rational numbers):

symbol intended interpretation

(u; = pi) “player i’s utility (or payoff) is p;”

(¢ <p) “the rational number ¢ is less than or equal to the rational number p”
Nash “the pure strategy profile played is a Nash equilibrium”®.

As in the previous section, given a strategic-form game G, a G-valuation is a
pair (V, o) where the function V' associates with every atomic proposition a the
set of states where a is true and o is a function that associates with every state

8 A strategy profile s € S is a Nash equilibrium if Vi = 1,...,n, Yo € S;, u;(s) > u;(z,5_;).
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a profile of pure strategies. The valuation is now assumed to satisfy the following
requirements:

1. aR;f if and only if 0_;(5) = o_;(«) (this requirement captures the notion
of “bringing about unilaterally”);

2. if a is an atomic proposition of the form (¢ < p) with p, ¢ € Q then V' (a) = Q
if ¢ <pand V(a) = 0 otherwise;

3. a € V(u; = p;) if and only if u;(o()) = p;;

4. a € V(Nash) if and only if o(«) is a Nash equilibrium of G.

In this context, the interpretation of [1;A is “no matter what unilateral action
player i takes, A is true” whereas [, A can be interpreted as “it is recommended
that A”.

To simplify the notation, we shall write »(u; = p;) for (u; = p1)A...A(u, = pn)
and ;A for AN ... A0, A.

The following lemma is a straightforward translation of the definition of Nash
equilibrium in the formal language.

Lemma 4.1. Let G be a finite strategic-form game. Then the following formula
is valid in every model of G:

awi =pi) N AOi((wi = @) = (@ <pi)) < Alwi =p;) A Nash.

That is, if player i’s payoff is p; and, no matter what unilateral action player ¢
takes, it is the case that if his payoff is ¢; then ¢; is not greater than p;, then the
strategy profile actually played is a Nash equilibrium and wice versa.

Using the above lemma it is easy to prove the following.

Proposition 4.2. Let G be a finite strategic-form game. Then the following
formula is valid in every model of G:
O (A(u; = pi) = AOi((wi = @) — (¢ <p;)) — O(Nash).

That is, if it is recommended that the game be played in such a way that whenever
player 7’s payoff is p; then, no matter what unilateral action player i takes, it is the
case that if his payoff is ¢; then ¢; is not greater than p;, then the recommendation
is that a Nash equilibrium be played.

11



We now turn to the more interesting case of extensive-form games. We shall
restrict attention to games with perfect information and our purpose is to pro-
vide a characterization of backward induction in terms of the notion of internal
consistency of a recommendation.

Recall that a rooted tree is a pair (€2, —) where € is a set of nodes and — is
a binary relation on Q (if w — ' we say that w immediately precedes w' or that
w' immediately succeeds w) satisfying the following properties:

1. there is a unique node wy with no immediate predecessors; it is called the
T001;

2. for every node w € Q\{wp} there is a unique path from wy to w, that is,
there is a unique sequence (1, ..., T,,) in Q with =7 = wyg, x,, = w, and, for
every j =1,..m—1, x; — x;41.

Given a rooted tree (2, —), a terminal node is an w € €2 which has no imme-
diate successors. Let Z C ) denote the set of terminal nodes. If € is finite then

7 0.

Definition 4.3. A finite extensive form with perfect information is a tuple
(Q,—, N,1) where (Q,—) is a finite rooted tree, N = {1,...,n} is the set of
players and « : Q\Z — N is a function that associates with every non-terminal
or decision node the player who moves at that node. If i = 1(w) and w — w' we
say that the pair (w,w’) is a choice of player i at node w. Given a finite extensive
form with perfect information one obtains a perfect information game by adding,
for every i € N, a payoff or utility function u; : Z — Q (where Z is the set of
terminal nodes and Q is the set of rational numbers).

12



o
Wo
(O (V)
Z 22 Z3 Z4
4 1 2 O Player 1's payoff
0 1 1 1 Player 2's payoff

Figure 1

Figure 1 shows a perfect information game with two players. The vector
(x1, z2) written next to a terminal node z represents the payoff vector (u;(2), uz(2))
and there is an arrow from w to ' if and only if w — w’. For every decision node
w, the corresponding player ¢(w) is written next to it.

A well-known procedure for solving a perfect information game is the backward
induction algorithm first used by Zermelo (1913) for the game of chess. The
algorithm starts at the end of the game and proceeds backwards towards the root:

1. Start from a decision node w whose immediate successors are only terminal
nodes (e.g. node w; in Figure 1) and select one choice that maximizes the
utility of player ¢(w) (in the example of Figure 1, at w; player 2 should make
the choice that leads to node z, since it gives her a payoff of 1 rather than
0, which is the payoff that she would get if the play proceeded to node z7).
Turn w into a terminal node by deleting the immediate successors of w and
assigning to w the payoff vector associated with the selected choice.

2. Repeat until all the decision nodes have been exhausted.

13



YAl Y4 Z3 Zs
4 1 2 (O Player 1's payoff
0 1 1 1 Player 2's payoff

Figure 2

Figure 2 shows a possible outcome of the backward induction algorithm for
the game of Figure 1. The choices selected by the algorithm are shown as dotted
lines next to the corresponding arrows.

The backward induction algorithm may yield more than one solution. Multi-
plicity may arise if there are players who have more than one utility-maximizing
choice. For example, in the game of Figure 1 at ws both choices are optimal for
Player 2. The selection of choice (ws, 23) leads to the solution shown in Figure 2,

while the selection of choice (ws, z4) leads to a different solution shown in Figure
3.

14



W2
Z 22 Z3 Z4
4 1 2 (O Player 1's payoff
0 1 1 1 Player 2's payoff

Figure 3

Definition 4.4. A perfect information game is generic if no player is indifferent
between any two terminal nodes, that is, Vi € N, Vz, 2" € Z if u;(z) = u;(2') then
z=2.

Remark 3. In a generic game the backward induction algorithm yields a unique
solution.

For simplicity, in the following discussion we shall restrict attention to generic
games.

The relationship between an extensive form with perfect information and a
perfect information game is similar to the relationship between a frame and a
model. Indeed an extensive form can be viewed as a frame, as follows. First of
all, recall that a frame is a tuple (Q, Ry, ..., R,, R.), where 2 is a set of states
and the remaining objects are binary relations on 2. In this section the intended
interpretation of aR;3 is “at node « player i can bring about node 5", while the
relation R, is intended to represent the theory’s recommendation to the players:

15



aR, [ is interpreted as “at node « it is recommended that the sequence of actions
be taken that leads from « to 5.

Definition 4.5. Given a finite extensive form with perfect information (2, —, N, ¢},
we say that (0, Ry, ..., Ry, R.) is a compatible frame if:

1. For all i € N and w,w’ € , wRw' if and only if i = ¢(w) and w — W';

2. R, is a subrelation of R” (the transitive closure of | J;_, R;)? satisfying the
following properties:

(a) R, is transitive,
(b) if w is a decision node then wR,w' for some w’,

(c) if wiRws, wiRTwy and wyRTws then wiR,ws and wyR,ws.

Property (a) requires the recommendation to be “forward-consistent”, in the
sense that if the recommendation is to go from w; to wy and, once ws is reached, the
recommendation is then to go to w3, then going to ws must be a recommendation
at the initial node w;. Property (b) requires that, as long as a node has a successor,
then some recommendation be made. Note, however, that this is not a stringent
requirement, since it does not rule out the recommendation “do anything”, that is,
it does not rule out the case where wR,w' if and only if wR?w’. Finally, property
(c) is a requirement of coherence of the recommendation with the tree structure
of the game: if a recommended path of the game leads from node w; to node w3
(w1 R.w3) and ws is a node that belongs to that path (w; RTwy and weRTws3) then
a recommendation at w; must be that wy be reached and a recommendation at
wo must be that ws be reached. This is a natural requirement, since in a tree the
path from w; to w3 is unique and therefore one must go through node ws when
following the recommended path from w; to ws.

For example, for the extensive form of Figure 1, the following is a compatible
frame: Ry = {(wo,w1), (wo,w2)}, R2 = {(w1, 21), (w1, 22), (w2, 23), (W2, 24) }, R =
{(wo,w1), (w1, 21), (w1, 22), (wo, 21), (W0, 22), (w2, 23)}. This example illustrates the
fact that Definition 4.5 does not require the recommendation to select a unique
path to a terminal node out of every decision node. It is quite possible for R, to
select multiple paths, in which case the recommendation would be “do either this
or that”. The extreme case is where R, = R”, that is, every path out of every

9Thus aRT 3 if and only if there is a path in the tree from node o to node 3. Note that,
besides transitivity, the relation R”satisfies asymmetry and backward linearity (cf. Section 2).
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decision node is recommended, so that the recommendation is “do anything”.
Another example of a frame which is compatible with the extensive form of Figure
1 is Ry and Ry as above and R, = {(wq,w1), (w1, 22), (wo, 22), (w2, z4)}, which is
the transitive closure of the the backward-induction relation shown in Figure 3 as
dotted lines.

Definition 4.6. Given a generic extensive game with perfect information, the
backward-induction algorithm determines for every decision node a unique im-
mediate successor, thus giving rise to a relation on the set of nodes ). Call it
the backward-induction relation. We say that the relation R, is the backward-
induction recommendation if it is the transitive closure of the backward-induction
relation. It is easy to check that the backward-induction recommendation satisfies
properties (a)-(c) of Definition 4.5.

As explained before, to view a perfect information game as a model all we
need to do is include in the set of atomic propositions sentences of the form
(u; = p;) whose intended interpretation is “player i’s utility (or payoff) is p;”;
furthermore we need to add the standard ordering of the rational numbers by
means of sentences of the form (¢ < p) whose intended interpretation is “the
rational number ¢ is less than or equal to the rational number p”. A game language
is a language obtained as explained in Section 2 from a set A of atomic propositions
that includes sentences of the form (u; = p;) and (¢ < p).

Definition 4.7. Let G be a perfect information game and F be a compatible
frame (cf. Definition 4.5). A game model is a model based on F (cf. Section 2)
obtained in a game language by adding to F a valuation V : A — 2% satisfying
the following properties:

e if a € A is of the form (¢ < p) with p,q € Q then V(a) = Q if ¢ < p and
V(a) = () otherwise

e if a € A is of the form (u; = p;) then V(a) = {z € Z : u;(z) = p;}.

Thus if M is a game model then, Yw € Q, M,w = (¢ < p) if ¢ is less than or
equal to p and M, w = —(q < p) otherwise; furthermore, M,w = (u; = p;) if w is
a terminal node with u;(w) = p; and M,w = —(u; = p;) if w is either a decision
node or a terminal node with w;(w) # p;. The valuation of the other formulae is
as explained in Section 2.
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In this context, the interpretation of the modal formula [J; A is “no matter what
action player i takes, it will be the case that A” whereas [J, A can be interpreted
as “if the recommendation is followed then it will be the case that A”. Hence
—[J,—A is interpreted as “it is possible, according to the recommendation, that
A

Consider the following axiom scheme:

0= (u; = pi) — O (g = @) V00 (ui = ¢)) — ¢ < pi)- (IC)

(IC) says that if, according to the recommendation, it is possible that player 7’s
payoff is p;, then, no matter what action player i takes, it will be the case that if
player i’s payoff is, or is recommended to be, ¢; then ¢; is not greater than p;. In
other words, (IC) says that if the recommendation is that the game be played in
such a way that player i gets a payoff of p; then it is not possible for player i to take
an action after which either his payoff is greater than p; or the recommendation
is that the game be played in such a way that player ¢ gets a payoff greater than
pi- Thus (IC) can be viewed as expressing a notion of internal consistency (hence
the name IC) of a recommendation, in the sense that no player can increase his
payoft by deviating from the recommendation, using the recommendation itself to
predict his future payoff after the deviation.

The following proposition is an adaptation of a result proved in Bonanno
(2001Db).10

Proposition 4.8. Let G be a generic perfect information game and F = (2, R, ...
a compatible frame (cf. Definition 4.5). Then the following are equivalent:

(1) R, is the backward induction recommendation,

(2) axiom (IC) is valid in every model of G based on F (cf. Definition 4.7).

While the recent debate on backward induction has focused entirely on whether
backward induction can be validly derived from the hypothesis of common belief
in rationality, the above proposition shows that there are also characterizations
of it that are independent both of the notion of (Bayesian) rationality and of
epistemic hypotheses about the players.

1Bonanno (2001b) applies to extensive games the notion of prediction developed in Bonanno
(2001a) within the context of temporal modal logic.
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5. Conclusion

The main purpose of this paper was not to introduce new results but to show
that the same formal tool, namely the apparatus of modal logic, can be used to
model two conceptually very different views of game theory. One is the view that
game-theoretic solution concepts capture the reasoning of rational players, that
is, how Homo rationalis reaches a decision on how to play the game. The other
view is that solution concepts are not descriptive but normative: they provide
advice to the players on how to play the game. The advice acknowledges the
goals of the players, as represented by their payoffs, and it does so in a way which
is not self-defeating. While the first view has been investigated extensively in the
literature, little attention has been devoted to the second view of game theory.

Since this paper was entirely concerned with the use of modal logic in the
analysis of games, it seems appropriate to conclude with a discussion of the use-
fulness of this approach. The most important advantages of using modal logic are
the following.

1. The tools of modal logic have enriched the game-theoretic language by mak-
ing it possible to express concepts that were previously either informally or
vaguely claimed to be captured by a solution concept. A good example
of this is the notion of common belief in rationality and its relationship to
the procedure of iterative deletion of strictly dominated strategies (Proposi-
tion 3.1). Another example is given by the relationship between the notion
of internal consistency and the backward-induction algorithm (Proposition
4.8).

2. Once concepts, such as common belief, are modeled explicitly, new questions
arise in a natural way. For example, the fundamental difference between
knowledge and belief is that, while knowledge is veridical (only true facts can
be known), beliefs can be mistaken (it is possible to believe something which
is false). Thus one can ask whether by ruling out, at some level, incorrect
beliefs one can further restrict the strategy profiles that are compatible with
common belief in rationality. This question led Stalnaker (1994) to uncover a
new solution concept, “strong rationalizability”. The strongly rationalizable
strategies are a proper subset of the ones that survive the iterative deletion of
strictly dominated strategies and are those that are consistent with common
belief in rationality when (i) it is common belief that no player has incorrect
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beliefs and (ii) collectively players are in fact correct in their beliefs (see
Bonanno and Nehring, 1998).

3. As Bacharach (1994, p. 21) notes,

“Game theory is full of deep puzzles, and there is often disagreement
about proposed solutions to them. The puzzlement and disagreement
are neither empirical nor mathematical but, rather, concern the mean-
ings of fundamental concepts (‘solution’, ‘rational’,‘complete informa-
tion’) and the soundness of certain arguments (that solutions must be
Nash equilibria, that rational players defect in Prisoner’s Dilemmas,
that players should consider what would happen in eventualities which
they regard as impossible). Logic appears to be an appropriate tool for
game theory both because these conceptual obscurities involve notions
such as reasoning, knowledge and counterfactuality which are part of
the stock-in-trade of logic, and because it is a prime function of logic
to establish the validity or invalidity of disputed arguments”.

A good example of a disputed argument in game theory is whether backward
induction in perfect-information games can be derived from the hypothesis of
common belief in (or knowledge of) rationality. There are those (e.g. Aumann,
1995) who claim that the answer is positive and those (e.g. Stalnaker, 1998) who
claim the opposite. In a recent contribution Halpern (2001) attempts to clarify
the debate by highlighting a difference in the interpretation of the counterfactuals
involved in evaluating players’ rationality at unreached nodes in the game tree.

The main purpose of this paper was to point out that the same clarifying
role that modal logic has played in the rationality-based interpretation of solution
concepts can also be played in the alternative interpretation based on the notion
of recommendation. The epistemic logic approach is in a sense “internal” to
the players, in that it tries to capture explicitly their reasoning and their mutual
recognition of each other’s Bayesian rationality. The approach discussed in Section
4, on the other hand, is “external” to the players: it deals entirely with the notion
of what it means for a recommendation to acknowledge the goals of the players (as
expressed by their payoffs) in a consistent way. The notion of internal consistency
used in Proposition 4.8 to characterize backward induction captures in an explicit
way the informal notion that a recommendation “should not be a self-destroying
prophecy which creates an incentive to deviate for those who believe in it” (Selten,
1985, p. 79). Given the conceptually very different nature of the two approaches,
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one could not easily deduce from the usefulness of modal logic in the epistemic
approach that modal logic would prove to be the appropriate tool of analysis also
in the normative interpretation of game theory.
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