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Abstract

We provide a general notion of perfect Bayesian equilibrium which can be applied to ar-
bitrary extensive-form games and is intermediate between subgame-perfect equilibrium and
sequential equilibrium. The essential ingredient of the proposed definition is the qualitative
notion of AGM-consistency, which has an epistemic justification based on the theory of belief
revision introduced by Alchourrén, Gérdenfors and Makinson. AGM-consistency is a general-
ization of the notion of consistency introduced by Kreps and Wilson as part of the definition
of sequential equilibrium.

Keywords: belief revision, plausibility order, consistency, subgame-perfect equilibrium, sequen-
tial equilibrium, Bayesian updating.

1 Introduction

Attempts to refine the notion of Nash equilibrium in extensive-form (or dynamic) games must deal
with the issue of belief revision: how should a player revise her beliefs when informed that she has
to make a choice at an information set to which she initially assigned zero probability? Kreps and
Wilson [14] suggested the notion of assessment as a way of expressing the players’ beliefs during
an arbitrary play of the game. An assessment is a pair (o, ) where o is a strategy profile and p
a “system of beliefs”, defined as a collection of probability distributions, one for every information
set, over the nodes in that information set. The system of beliefs p specifies a player’s beliefs about
past moves, while the strategy profile o provides the initial beliefs as well as beliefs about future
moves conditional on every node. Given the separate roles played by o and p in specifying players’
beliefs, it is necessary to impose some requirement of compatibility between the two. Kreps and

*I am grateful to two anonymous reviewers for helpful comments. A first draft of this paper was presented at the
ninth conference on Logic and the Foundations of the Theory of Games and Decision (LOFT9), Toulouse, July 2010
and at the Workshop on Epistemic Game Theory, SUNY Stony Brook, July 2010.



Wilson proposed the notion of “consistency”, which we will call KW-consistency. An assessment
(o, ) is KW-consistent if there is an infinite sequence <01, A > of completely mixed strategy
profiles such that, letting 4™ be the unique system of beliefs obtained from ¢™ by applying Bayes’
rule, limy, oo (0™, u™) = (o, 1).! A number of authors have tried to shed light on this topological
notion by relating it to more intuitive concepts,? such as (convex) structural consistency ([15]), gen-
erally reasonable extended assessment ([10]), stochastic independence ([4, 13]).?. In applications,
checking the KW-consistency requirement has proved to be rather complex and simpler notions of
equilibrium have been sought. A drastic simplification is the notion of weak sequential equilibrium
([16], p. 170), which is defined as a sequentially rational assessment (o, ) where the beliefs ex-
pressed by p are obtained using Bayes’ rule at all the information sets that are reached by o with
positive probability (while no restrictions are imposed on the beliefs at information sets that are not
reached by o). However, this notion is too weak in the sense that (o, ) can be a weak sequential
equilibrium without o being a subgame-perfect equilibrium.* Thus attempts have been made to find
an intermediate notion between subgame-perfect equilibrium and sequential equilibrium, incorpo-
rating a simpler requirement than KW-consistency. Such an intermediate notion was proposed by
Fudenberg and Tirole [10] and called perfect Bayesian equilibrium. Unfortunately this new notion
was defined only for a small subset of extensive-form games (namely the class of multi-stage games
with observed actions) and extending it to arbitrary games proved to be problematic.’

In this paper we propose a new intermediate notion between subgame-perfect equilibrium and
sequential equilibrium, which - in order to avoid introducing a new expression - we will also call
perfect Bayesian equilibrium. The advantages of this equilibrium concept are that (1) it is a
general notion that can be applied to arbitrary extensive-form games and (2) its main ingredient
is a purely qualitative condition - we call it “AGM-consistency” - which is simple, easy to verify
and a generalization of KW-consistency. An assessment (o, 1) is AGM-consistent if there is a total
pre-order - which we call a plausibility order - on the set of histories such that: (1) for every
information set I the histories that are assigned positive probability by p are precisely those that
are most plausible in I and (2) at every information set I the choices that are assigned positive

1Kreps and Wilson then proceeded to define a sequential equilibrium as an assessment which is KW-consistent and
sequentially rational. All the definitions will be spelled out in the next section. Sequential rationality requires that,
at every information set, the choice(s) prescribed by the relevant component of o be optimal, given the corresponding
player’s beliefs at that information set and the hypothesis that future behavior of the other players is as specified by
o.

2Kreps and Wilson themselves ([14], p. 872) remark that the “definition of consistency is not completely intuitive
on its own” and proceed to offer a more intuitive interpretation in terms of the notion of structural consistency and
a refinement of it, which they call lezicographic consistency. However, Keps and Ramey [15] later showed that the
attempted justification of consistency was incorrect. In particular, they produce an example where every sequential
equilibrium violates structural consistency. Kreps and Ramey derive the following conclusion from their analysis
([15], p. 1333): “We believe we strengthen the doubts expressed by Kreps and Wilson concerning consistency of
beliefs; consistency itself does not encompass all the properties it was orginally thought to, and no single alternate
notion of "consistent beliefs" seems ideal.”

3Perea et al [19] offer an algebraic characterization of KW-consistency.

1A strategy profile o is a subgame-perfect equilibrium if, for every subgame, the restriction of o to the subgame
yields a Nash equilibrium of the subgame. The notion of subgame-perfect equilibrium was introduced by Selten [21].

5Battigalli [4] introduced a notion of perfect Bayesian equilibrium that can be applied to general extensive-form
games (although he only considered games without chance moves). However, his proposed definition is in terms of a
more complex object, namely a “tree-extended assessment” (v, o, u) where v is a conditional probability system on
the set of terminal nodes.

In a different direction, some authors have sought a coarsening, rather than a refinement, of Nash equilibrium
in extensive-form games. For example, [22] provides a definition of correlated equilibrium which can be applied to
arbitrary extensive-form games.



probability by o are precisely those that “preserve plausibility”, in the sense that if A is a history
in I and a is a choice at h then ha is as plausible as h. An attractive feature of the notion of
AGM-consistency is that it has an independent justification based on the so called AGM theory of
belief revision introduced by Alchourrén, Gérdenfors and Makinson [1]. The epistemic foundations
of AGM-consistency are developed in [9].

We define an assessment (o, i) to be a perfect Bayesian equilibrium if it is AGM-consistent, se-
quentially rational and the probabilities specified by i are compatible with Bayes’ rule “throughout
the game”. We show that if (o, ) is a perfect Bayesian equilibrium then o is a subgame-perfect
equilibrium and that the set of sequential equilibria is a subset of the set of perfect Bayesian equilib-
ria. We also show that the proposed notion of perfect Bayesian equilibrium yields a strict refinement
of subgame-perfect equilibrium and, in general, is weaker than sequential equilibrium.

2 Extensive forms, assessments and KW-consistency

We shall use the history-based definition of extensive-form game (see, for example, [18]). If A is a
set, we denote by A* the set of finite sequences in A. If h = (ay,...,a;) € A* and 1 < j < kK, the
sequence h' = (ai, ...,a;) is called a prefix of h. If h = (a1, ...,ar) € A* and a € A, we denote the
sequence {(aj, ...,ax,a) € A* by ha.

A finite extensive form is a tuple <A, H N, {%i}i€N> whose elements are:

e A finite set of actions A.

e A finite set of histories H C A* which is closed under prefixes (that is, if h € H and b/ € A*
is a prefix of h, then h’ € H). The null history (), denoted by (), is an element of H and is
a prefix of every history. A history h € H such that, for every a € A, ha ¢ H, is called a
terminal history. The set of terminal histories is denoted by Z. D = H\Z denotes the set
of non-terminal or decision histories. For every history h € H, we denote by A(h) the set of
actions available at h, that is, A(h) ={a € A: ha € H}. Thus A(h) # @ if and only if h € D.
We assume that A = (J,.p A(h) (that is, we restrict attention to actions that are available
at some decision history).

e A finite set N = {1,...,n} of players. In some cases there is also an additional, fictitious,
player called chance.

e A function ¢ : D — N U {chance} that assigns a player to each decision history. Thus ¢(h) is
the player who moves at history h. A game is said to be without chance moves if 1(h) € N for
every h € D. For every i € N U {chance}, let D; = :71(i) be the histories assigned to player
i. Thus {Dchance, D1, ..., Dn} is a partition of D. If history h is assigned to chance, then a
probability distribution over A(h) is given that assigns positive probability to every a € A(h).

e For every player ¢ € N, ~; is an equivalence relation on D;. The interpretation of h ~; h'
is that, when choosing an action at history h € D;, player i does not know whether she is
moving at h or at h'. The equivalence class of h € D; is denoted by I;(h) and is called an
information set of player i; thus I;(h) = {h' € D; : h ~; h'}. The following restriction
applies: if ' € I;(h) then A(h') = A(h), that is, the set of actions available to a player is the
same at any two histories that belong to the same information set of that player.



e The following property, known as perfect recall, is assumed: for every player i € N, if hq, hy €
D;, a € A(h1) and hya is a prefix of hy then for every h’ € I;(hg) there exists an h € I;(hq)
such that ha is a prefix of h'. Intuitively, perfect recall requires a player to remember what
she knew in the past and what actions she took previously.®

Given an extensive form, one obtains an extensive game by adding, for every player i € N, a
utility (or payoff) function U; : Z — R (where R denotes the set of real numbers; recall that 7 is
the set of terminal histories).

g
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An extensive form without chance moves
Figure 1

Figure 1 shows an extensive form without chance moves where
A ={a,b,s,¢c,d,e, f,g,h,m,n}, H= DU Z with (to simplify the notation we write a instead of
(B, a), ac instead of (D, a,c), etc.) D ={0,a,b,ac,ad,acf,ade,adf }, Z = {s,ace,acfg,acfh,adeg,
adeh, adfm, adfn,bm,bn}, A(0) = {a,b,s}, A(a) = {c,d}, A(ac) = A(ad) = {e, [}, A(acf) =
A(ade) = {g,h}, Aladf) = A(b) = {m,n}, N = {1,2,3,4}, 1(0) = 1, v(a) = 2, 1(ac) = t(ad) = 3,
Wacf) = tlade) = (adf) = o(b) = 4, =~ = {00} =~ = {(ea}, » =
{(ac, ac), (ac,ad), (ad, ac), (ad,ad)} and =4 = {(acf,acf), (acf,ade), (ade,acf), (ade, ade),
(adf,adf), (adf,b), (b,adf), (b,b)}. The information sets containing more than one history (for ex-
ample, I4(b) = {adf,b}) are shown as rounded rectangles. The root of the tree represents the null
history 0.

Notation 1 If h and ' are decision histories not assigned to chance, we write b’ € I(h) as a
short-hand for h' € I,,y(h). Thus h' € I(h) means that h and h' belong to the same information
set (of the player who moves at h). If h is a history assigned to chance, we use the convention that

I(h) = {h}.

Remark 2 In order to simplify the notation in the proofs, we shall assume that no action is
available at more than one information set: Vh,h' € H¥a € A, ifa € A(h)NA(K') then b’ € I(h).

6For an investigation of the conceptual content of the property of perfect recall see [6].



Given an extensive form, a pure strategy of player ¢ € N is a function that associates with every
information set of player ¢ an action at that information set, that is, a function s; : D; — A such
that (1) s;(h) € A(h) and (2) if A’ € I;(h) then s;(h’) = s;(h). For example, one of the pure
strategies of Player 4 in the extensive form illustrated in Figure 1 is ss(acf) = ss(ade) = g and
sa(adf) = s4(b) = m. A behavior strategy of player i is a collection of probability distributions,
one for each information set, over the actions available at that information set; that is, a function
o; : Di — A(A) (where A(A) denotes the set of probability distributions over A) such that (1) o;(h)
is a probability distribution over A(h) and (2) if i’ € I;(h) then o;(h') = o;(h). If the game does
not have chance moves, we define a behavior strategy profile as an n-tuple o = (071, ...,0,,) where,
for every i € N, 0; is a behavior strategy of player ¢. If the game has chance moves then we use the
convention that a behavior strategy profile is an (n+ 1)-tuple o = (071, ..., On, Ochance) Where, if h is
a history assigned to chance and a € A(h) then ochance(h)(a) is the probability associated with a.
Given our assumption that no action is available at more than one information set, without risking
ambiguity we shall denote by o(a) the probability assigned to action a by the relevant component of
the strategy profile 0.7 Note that a pure strategy is a special case of a behavior strategy where each
probability distribution is degenerate. A behavior strategy is completely mized at history h € D if,
for every a € A(h), o(a) > 0.

For example, in the extensive form of Figure 1 a possible behavior strategy for Player 1 is

( 8 8 i ), which we will more simply denote by s (and which coincides with a pure strategy

of Player 1) and a possible behavior strategy of Player 2 is ( CQZ ) , which we will more simply

W= O
w

denote by (%c, %d) (and which is a completely mixed strategy).

A system of beliefs, is a collection of probability distributions, one for every information set,
over the elements of that information set, that is, a function p : D — A(H) such that if h € D;
(i € N) then u(h) is a probability distribution over I;(h) and if A’ € I;(h) then u(h) = p(h’). If
the game has chance moves, then we use the convention that p(h) = 1 for every history h assigned
to chance. Without risking ambiguity we shall denote by u(h) the probability assigned to history
h by the system of beliefs .3

An assessment is a pair (o, u) where o is a behavior strategy profile and p is a system of beliefs.
An assessment represents the beliefs of the players: the strategy profile o yields the initial beliefs
as well as conditional beliefs about the future, while the system of beliefs p gives conditional beliefs
about the past. For example, consider the following assessment for the extensive form of Figure 1:
o= (s, (%c, %d)  f, (h,n)) and p = ((%ac, %ad) ,acf, (%Ladf, %b)) and consider Player 3. By o, the
initial beliefs of Player 3 (that is, before the game begins) is that Player 1 will play s and thus the
outcome of the game will be z1; in particular, Player 3 believes that she will not be asked to move.
If she were asked to move, then, by g, she would assign equal probability to the event that Player
2 played ¢ and the event that Player 2 played d (while knowing that Player 1 played a) and, by o,
she would believe that her choice of e would lead to either outcome z2 or outcome zy (with equal
probability) and that her choice of f would lead to either outcome z5 or outcome z5 (with equal
probability).

"If h € D; and o; is the ith component of o, then o;(h) is a probability distribution over A(h) and if a € A(h)
then o;(h)(a) is the probability assigned to action a by o;(h). Thus we denote o;(h)(a) more simply by o(a).

8 A more precise notation would be p(h)(h): if h € D; then u(h) is a probability distribution over I;(h) and, for
every h' € I(h), p(h) = p(h') so that p(h)(h) = p(h’')(h). With slight abuse of notation we denote this common
probability by u(h).



Given that ¢ and p play separate roles in the representation of the players’ initial beliefs and
disposition to change those beliefs, it is necessary to impose some requirement of compatibility
between the two. Kreps and Wilson [14] proposed the following notion of compatibility, which they
called consistency; we will call it KW-consistency. An assessment (o, u) is KW-consistent if there
is an infinite sequence <al, vy 0 > of completely mixed strategy profiles such that, letting ™ be
the unique system of beliefs obtained from ¢™ by applying Bayes’ rule,” lim,,, oo (0™, u™) = (o, j1).

In this paper we provide an independently motivated (see [9]) qualitative notion of compatibility,
which we call AGM-consistency, and use it to define a notion of equilibrium which is intermediate
between subgame-perfect equilibrium and sequential equilibrium.

3 AGM-consistency

Given a set H, a total pre-order on H is a binary relation X C H x H which is complete (Vh,h' € H,
either h X A/ or K’ 2 h) and transitive (Vh,h',h” € H,if h 2 h' and I/ X h” then h X h").

Definition 3 Given an extensive form, a plausibility order is a total pre-order on the set of histo-
ries H that satisfies the following properties: Vh € D,

PL1. hZha, VYac A(h).

PL2. (i) Ja € A(h) such that ha 3 h,
(i) Ya € A(h), if ha 3 h then h'a Z W', VYh' € I(h).

PL3. If history h is assigned to chance, then ha 3 h, Ya € A(h).

If h = W' we say that history h is at least as plausible as history h'. Property PL1 says that
adding an action to a decision history h cannot yield a more plausible history than A itself. Property
PL2 says that at every decision history h there is some action a such that adding a to h yields a
history which is at least as plausible as h and, furthermore, any such action a performs the same
role with any other history that belongs to the same information set. Property PL3 says that all
the actions at a history assigned to chance are “plausibility preserving” (see Remark 5 below).

Remark 4 In [9] the notion of plausibility order is derived from the primitive concept of a player’s
(qualitative) epistemic state, which consists of the player’s initial beliefs (or prior beliefs, that is,
her beliefs before the game is played) and disposition to revise those beliefs when informed that it
s her turn to move. In an extensive-form game, a player might find herself having to move at an
information set that - according to her prior beliefs - should not have been reached; in such a case
the player will have to revise her initial beliefs by formulating a hypothesis about the past moves of
the other players and a prediction about future moves by herself and the other players. In [9] the
epistemic state of player i is expressed as a triple (H,&;, f;), where H is the set of histories, &; is
the set of possible items of information for player i (consisting of the information sets of player i
augmented with all possible continuation histories) and f; : & — H (which satisfies the property
that, for every E € &, @ # fi(F) C E) is a function that gives the player’s conditional beliefs.

I1 o™
9That is, for every h € D, u™(h) = %, where a € h means that action a occurs in history h. Since
o
x€I(h) a€a
o™ is completely mixed, 0" (a) > 0 for every a € A and thus p™(h) > 0 for all h € D.




The interpretation of f;(E) is that, if informed that event E has occurred, player i considers as
dozastically (that is, according to her beliefs) possible all and only the histories in f;(E). Four
natural properties of the individual epistemic states are given and it is shown that those properties,
together with the hypothesis of a common prior, are necessary and sufficient for the existence of a
plausibility order X C H x H (Definition 8 above) that rationalizes the epistemic state of every
player, in the sense that, for every i € N and for every E € &;, f;(E) ={h € E:h 3 h',Vh' € E}.
That is, when informed that event E has occurred, playeri considers as dozastically possible precisely
the histories that are most plausible within the set E. For more details the reader is referred to [9].

We write h ~ b’ (with the interpretation that h is as plausible as h') as a short-hand for “h 3 b’/
and A" 3 R and we write h < h' (with the interpretation that h is more plausible than h') as a
short-hand for “h < h' and b/ Z h”.

Remark 5 It follows from Property PL1 of Definition 3 that, for every h,h' € H, if b’ is a prefiz
of h then ' 2 h.'% Furthermore, by Properties PL1 and PL2, for every decision history h, there
s at least one action a at h such that h ~ ha, that is, ha is as plausible as h and, furthermore,
if B’ belongs to the same information set as h, then i/ ~ h'a. We call such actions plausibility
preserving.

Definition 6 Fiz an extensive-form. An assessment (o, ) is AGM-consistent if there exists a
plausibility order =X on H such that:

(i) the actions that are assigned positive probability by o are precisely the plausibility-preserving
actions: Yh € D,Va € A(h),

o(a) > 0 if and only if h ~ ha, (P1)

(i) the histories that are assigned positive probability by p are precisely those that are most
plausible within the corresponding information set: Yh € D,

w(h) >0 if and only if h S W' ,Vh' € I(h). (P2)
If 2 satisfies properties P1 and P2 with respect to (o, 1), we say that 3 rationalizes (o, u).

Remark 7 Given the justification of plausibility orders in terms of belief revision (see Remark 4),
the definition of AGM-consistent assessment captures a subjective interpretation of assessments.
This is along the lines of a recent literature (see, for example, [3] and the references given there in
Footnote 7) where mized strategies are treated not as conscious randomization but as conjectures. In
particular, we subscribe to the view expressed in [5] (p.2) that “strategies as plans cannot be anything
but beliefs of players about their own behavior”. Definition 6 says that - when informed that an
information set of hers has been reached - a player forms her beliefs about what has happened so
far by focusing on the most plausible histories within the information set (Property P2) and forms
beliefs about her own and the other players’ future choices by focusing on the continuation histories
obtained by following the plausibility-preserving actions (Property P1). For more details the reader
is referred to [9].

107f ! is a prefix of h then h = h'ay...am for some (possibly none) ai,...,am € A, so that, by Property PLI,
A 3 h'ar 3 hajas 3 ... 2 hai...am = h and thus, by transitivity of 3, ' 3 h.



The notion of AGM-consistency imposes natural restrictions on assessments. Consider, for
example, the extensive form of Figure 2 and any assessment (o, 1) where o = (¢, d, f) (highlighted
by double edges) and p assigns positive probability to history be. Any such assessment is not
AGM-consistent. In fact, if there were a plausibility order = that satisfied Definition 6, then, by
P1, b ~ bd (since o(d) = 1 > 0) and b < be (since o(e) = 0)!! and, by P2, be = bd (since - by
hypothesis - p assigns positive probability to be). By transitivity of <, from b ~ bd and b < be it
follows that bd < be, yielding a contradiction.

Sl F

Any assessment (o, ) where o = (¢,d, f) and p assigns
positive probability to history be is not AGM-consistent.
Figure 2

On the other hand, consider the partial extensive form of Figure 3 (in order to simplify the
figure, the choices of Player 3 have been omitted) and an arbitrary assessment of the form (o, p)
where o = (a, (g,7)) (highlighted by double edges) and p assigns positive probability to the black
nodes and zero probability to the gray nodes (thus p(c) = p(e) = u(ch) = 0, while every other
history is assigned positive probability). Any such assessment is AGM-consistent. In fact it is
rationalized by the following plausibility order (h is on the same row as b’ if and only if h ~ b’ and
h is above b’ if and only if h < A’ ):

0,a
b,bg,d,dr
bh, ds
c,cg, e, er
es
ch

Note that there may be several plausibility orders that rationalize a given assessment (for in-
stance, an alternative plausibility order to the one given above is obtained by switching the rows
(bh,ds) and (c, cg, e, er)).

1By definition of plausibility order, b < be and, by P1, it is not the case that b ~ be because e is not assigned
positive probability by o. Thus b < be.



bh 3 ds

(@ 3 -8

Any assessment (o, 1) where o = (a, (g,7)) and p assigns zero
probability to, and only to, histories ¢, e and ch is AGM-consistent.
Figure 3

For every extensive form, the set of plausibility orders is non-empty and, for every plausibility
order, there is at least one assessment which is rationalized by that plausibility order.!?

We now show that the notion of AGM-consistency generalizes the notion of KW-consistency,
in the sense that the set of KW-consistent assessments is a subset of the set of AGM-consistent
assessments.

Given a plausibility order = on the set of histories H, a function F' : H — N (where N denotes
the set of non-negative integers) is an integer-valued representation of 3 if F()) = 0 (recall that 0
denotes the null history) and, Vh,h' € H, F(h) < F(h') if and only if h X h’. Since H is finite, the
set of integer-valued representations of < is non-empty.!?

Definition 8 A plausibility order = on the set of histories H is choice-measurable if it has at
least one integer-valued representation F that satisfies the following property: Yh € D, Yh' € I(h),
Va € A(h),

F(ha) — F(h) = F(la) — F(). (CM)

Note that not every integer-valued representation of a choice measurable plausibility order need
satisfy Property CM. For example, consider the plausibility order and the two integer-valued

121f b, € D; let o;(h) be an arbitrary probability distribution whose support coincides with the set of plausibility
preserving actions at h and if I is an information set then let p assign positive probability to all and only the most
plausible histories in I.

13 A natural integer-valued representation is the following. Define Hy = {h € H:h 32, Vx € H}, HL = {h €
H\ Ho: h=Zz, Vxe€ H\Ho} and, in general, for every integer k > 1, Hy ={h € H \ HoU ..U Hp_y1: h 3
z, Ye € H\ HpU...U Hy_1}. Since H is finite, there is an m € N such that {Ho, ..., Hp } is a partition of H and,
for every j,k € N, with j < k <m, and for every h,h’ € H, if h € H; and b’/ € Hy, then h < h’. Define F: H - N
as follows: F'(h) = k if and only if h € Hy. The function F so defined is an integer-valued representation of 3.



representations F; and F5 shown in Figure 4a. F} is the representation described in Footnote 13
and does not satisfy Property CM, since ¢ € I(b), f € A(b) = A(c) and Fy(bf) — F1(b)=2-1=1
while Fi(cf) — Fi(¢) =5 — 3 = 2. On the other hand, Fy does satisfy CM.

o

Q

sy
Tk W N~ O
SOl W~ O

(a) A plausibility order (b) The assessment o = (a,e), u(b) =1, u(c) =0

and two integer-valued is rationalized by the choice-measurable
representations of it. plausibility order shown on the left.
Figure 4

The following lemma (which follows easily from Lemma A.1 in Kreps and Wilson [14], p. 887)
shows that AMG-consistency is a generalization of KW-consistency. The proof is given in the
Appendix.

Lemma 9 Fiz an extensive form. If (o, ) is a KW-consistent assessment then there is a choice-
measurable plausibility order that rationalizes it (and thus (o, ) is AGM consistent).

Lemma 9 makes it easy to prove that an assessment is not KW-consistent. For example, consider
again the extensive form of Figure 3 and an arbitrary assessment (o, ) where o = (a, (g,7)) (high-
lighted by double edges) and p assigns positive probability to the black nodes and zero probability
to the gray nodes (thus p(c) = p(e) = u(ch) = 0, while every other history is assigned positive
probability). We saw above that any such assessment is AGM-consistent. On the other hand, no
such assessment is KW-consistent, because there is no choice-measurable plausibility order that
rationalizes it. To see this, let = be a plausibility order that rationalizes the assessment under
consideration and let F' be an arbitrary integer-valued representation of <. By P2 of Definition 6,
es < ch and thus

F(es) < F(ch). (1)

By P1 of Definition 6, ¢ ~ cg and e ~ er and by P2 cg ~ er. Thus, by transitivity of =3, ¢ ~ e so
that F'(c) = F(e). Hence, by (1),

F(es) — F(e) < F(ch) — F(c). (2)
Similarly, by P1, b ~ bg and d ~ dr and, by P2, bg ~ dr. Thus, by transitivity of =<, b ~ d so that

F(b) = F(d). (3)

10



By P2, bh ~ ds and thus F(bh) = F(ds). Hence, by (3),

F(bh) — F(b) = F(ds) — F(d). (4)

Now, if F(ch) — F(c) = F(bh) — F(b) (as required by Property CM of Definition 8) then, by (2)
and (4), F(es) — F(e) < F(ds) — F(d), violating Property CM.

4 Perfect Bayesian equilibrium

We now define a notion of perfect Bayesian equilibrium which is very general, in the sense that
it can be applied to every finite extensive-form game. The essential ingredient is the qualitative
notion of AGM-consistency to which we add a Bayesian updating requirement for probabilities and
sequential rationality.

Given a total pre-order T on H and a subset I C H we denote by Min< I the set of most
plausible histories in I, that is,

Ming I={hel:h3H VN el}.

Definition 10 Fiz an extensive form. Let X be a plausibility order that rationalizes the assessment
(o,p). We say that (o, 1) is Bayesian relative to 3 if for every 3-equivalence class E that contains
some decision history h € D; (i € N) with u(h) > 0, there exists a probability measure vy : H —
[0,1] such that:

B1. Supp(vg) ={h € E: u(h) > 0}.

B2. If h, b/ € Supp(vg) and I = hay...an, (that is, h is a prefic of h') then
ve(h) =ve(h) xo(a1) X ... X o(am).

B3. If b/ € Supp(vg), then, Yh € I(1')

I/E(h)
ve(I(h))

Property B1 requires that vg(h) > 0 if and only if h € E and u(h) > 0 (thus vg(h) = 0 if and
only if either h € H\E or u(h) = 0). Property B2 requires vg to be consistent with the strategy
profile o in the sense that if h, ' € E, vg(h) >0, vg(h') > 0 and A’ = hay...a,, then the probability
of b’ (according to vg) is equal to the probability of A multiplied by the probabilities (according to
o) of the actions that lead from h to h’.!* Property B3 requires the system of beliefs u to satisfy
Bayes’ rule in the sense that if history h belongs to information set I then u(h) (the probability
assigned to h by p) is the probability of h conditional on I using the probability measure v g, where

p(h) =ve (h | 1(h)) =

4 Note that if h,h’ € E and b’ = hai...am, then o(a;) > 0, for all j = 1,...,m. In fact, since h’ ~ h every action
a; is plausibility preserving and therefore, by Property P1 of Definition 6, o(a;) > 0.

11



FE is the equivalence class of the most plausible elements of I. In fact, Property B3 is equivalent to
the following:'®

For every information set I such that Min<I C E

~ !
and, for every h € I, M(h):VE(h|I):Zf;—E}[L§- (B3)

Definition 11 An assessment (o, 1) is Bayesian AGM-consistent if it is rationalized by a plausi-
bility order = on the set of histories H and it is Bayesian relative to 3.

Consider, for example, the extensive form of Figure 3 and the following assessment:
0= (CL, (gv 7")) and = (b7 (%bg7 %d?"), (%bhv %dS), (%097 %67"), dv 68)) .
Then, as we saw above, (o, 1) is rationalized by

0,a
b,bg,d,dr
bh,ds
¢, cg, e, er
es
ch

< =

Furthermore, (o, i) is Bayesian relative to =: for every (relevant) =-equivalence class E let vg to
be the uniform measure on {h € E : u(h) > 0}. Take, for instance, E = {b,bg,d,dr}. Then vg
assigns probablhty to every element of E and zero to every history in H \E Property B2 of

Deﬁnltlon 10 is satlsﬁed because b,bg € E, b is a prefix of bg and vg(bg) = v = ve(b) x o(g) =
4 x 1 =1 (and similarly for d and dr). Property B3 is also satisfied. For 1nstance pu(bg) = 3 =
VElZfbg"Z = iii and pu(b) =1= ﬁ;f’z}) = 1+0 For the equivalence class F' = {¢,cg, e, er} we
take vp = ( 8 clg ¢ 6%7" > since p(c) = p(e) = 0. Property B2 is not relevant, since, although
cis a preﬁ of cg, VF( ) = 0. Property B3 is only relevant for histories cg and er (and indeed
pleg) = & = UFU{Fc(gcge)r} = %i%), while vp is not the relevant measure for I(c) = {b,c}, since

Min<{b, c} = {b} ¢ F (the relevant measure for I(c) is the measure v described above).

As another example, consider the extensive form of Figure 5 and the following assessment:

15Proof that B3 = B3'. Let I be such that Min<I C E. Fix an arbitrary h € I. If h € Min<I then, by Property
P2 of Definition 6, u(h) > 0 and thus, by B1, h € Supp(vg) so that, by B3, u(h) =vg (h | I) = ZEE?) Ifh ¢ Min<I
then, by Property P2 of Definition 6, u(h) = 0 and thus, by Bl, vg(h) = 0, so that u(h) = vg(h|I) = ;gi(%
(note that vg(I) > 0 since @ # Min<I C {h € E: u(h) > 0}).
Proof that B3’ = B3. Let h’ € Supp(vg). By B1, u(h’) > 0 so that, by Property P2 of Definition 6, h’ € Min<I(h')
and thus Min~I(h') C E (since h’ € E by hypothesis). Fix an arbitrary h € I(h'). By B3, u(h) =vg (h | I(R")) =

vg(h
ve(I(h")"

Note that the Z-equivalence class that contains Min< I may be a proper superset of Min< I and is not necessarily
a subset of I. For example, if H = {h1,...,ha} and = is given by h1 < ha ~ hg < ha ~ hs and I = {ha,ha} then
Min~ I = {h2} and the equivalence class that contains hg is {ha, h3}.
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o= (c.d,(3,39)), n=((3a, 1bf, 3bg), (Fad, 2b)) .
Then (o, 1) is rationalized by

0,c

< = a,b,ad,bf,bg, adf,adg,bfd,bgd
ae,aef,aeg,bfe, bge
and it is Bayesian relative to 3. First of all, note that, letting I, = {a,bf,bg} be the in-
formation set of Player 2 and I3 = {ad,ae,b} the information set of Player 3, we have that
Min<Iy = Iy and Min<ly = {ad,b} and the equivalence class that contains these two sets is
E = {a,b,ad,bf,bg,adf,adg,bfd,bgd}. Then all we need to specify is a probability measure over
E. Let

5 ( a b ad bf bg adf adg bfd bgd )
E= .
b 0 0

Then all the properties of Definition 10 are satisfied. For instance, concerning Property B2, b is a
prefix of bf and vg(bf) = 3 = ve(b) X o(f) = £ x §, and, concerning Property B3, u(ad) = § =
vp(ad _ —é

ve(l3) — $+0+3°

The assessment o = (c,d, (3 f,29)), 1 = ((Fa, 1bf, 2bg), (ad, 2b))
is Bayesian AGM-consistent
Figure 5

The last ingredient of the definition of perfect Bayesian equilibrium is the standard requirement

of sequential rationality. An assessment (o, ;1) is sequentially rational if, for every player i € N and
every information set I; of player i, player i’s expected payoff, given her beliefs at I; (as specified
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by p) and the strategy profile o, cannot be increased by unilaterally changing her choice at I; and
possibly at information sets of hers that follow I;.'6 In order to define sequential rationality precisely
we need to introduce more notation. Recall that Z denotes the set of terminal histories and, for
every player i € N, U; : Z — R denotes player i’s von Neumann-Morgenstern utility function.
Given a decision history h, let Z(h) denote the terminal histories which have h as a prefix. Let
IPy.» denote the probability distribution over Z(h) induced by the strategy profile o, starting from
history h (that is, if z is a terminal history and z = has...an, then Pp, ,(z) = H;nzl o(aj)). Let
I; be an information set of player ¢ and let u;(L;|lo, ) = > u(h) > Pp.(2)Ui(z) be player
el 2€Z(h)

i's expected payoff at I; if o is played, given her beliefs at I; (as specified by u). We say that
player i’s strategy o; is sequentially rational at I; if w;(1;|(0s,0—-4), 1) > wi(L;|(75,0-;), p) for every
strategy 7; of player i (where o_; denotes the strategy profile of the players other than ¢, that is,
0_i = (01,.0y 041,041, ...,0p)). An assessment (o, ) is sequentially rational if, for every player
1 € N and for every information set I; of player i, o; is sequentially rational at I;.

Definition 12 An assessment (o,u) is a perfect Bayesian equilibrium if it is Bayesian AGM-
consistent and sequentially rational.

The following propositions are proved in the Appendix.

Proposition 13 If (o, ) is a perfect Bayesian equilibrium then o is a subgame-perfect equilibrium.

Note that not every subgame-perfect equilibrium is part of an assessment which is a perfect
Bayesian equilibrium. That is, the notion of perfect Bayesian equilibrium is a strict refinement of
subgame-perfect equilibrium. This can be shown with the aid of the extensive form of Figure 2.
Turn it into a game by adding the following payoffs:

af ag bdf bdg bef beg
v, 0 2 0 0 0 0
U 0 2 1 0 0 0
Us 0 2 0 1 1 0

OO~ O

Let 0 = (¢,d, f). Then o is a Nash equilibrium and thus - since there are no proper subgames -
also a subgame-perfect equilibrium. Add to o a system of beliefs 1 that makes (o, i) a sequentially
rational assessment. Then it must be that u(be) > 0 (since, for Player 3, g is strictly better than f
at both history a and history bd). As showed above, such an assessment is not AGM-consistent.

Proposition 14 If (o, ) is a sequential equilibrium then it is a perfect Bayesian equilibrium.

Note that not every perfect Bayesian equilibrium is a sequential equilibrium (this can be shown
with the aid of a completion of the extensive form of Figure 3). Thus sequential equilibrium is a
strict refinement of perfect Bayesian equilibrium.

Kreps and Wilson [14] proved that every finite extensive-form game has at least one sequential
equilibrium. From this existence result and Proposition 14 one thus obtains the following.

16There are two definitions of sequential rationality: the weakly local one - which is the one adopted here -
according to which at an information set a player can contemplate changing her choice not only there but possibly
also at subsequent information sets of hers, and a strictly local one, according to which at an information set a player
contemplates changing her choice only there. If the definition of perfect Bayesian equilibrium (Definition 12 below) is
modified by using the strictly local definition of sequential rationality, then an extra condition needs to be added to
Definition 10, namely the "pre-consistency" condition on y identified in [12] and [20] as being necessary and sufficient
for the equivalence of the two notions. For simplicity we have chosen the weakly local definition.
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Corollary 15 FEvery finite extensive-form game has at least one perfect Bayesian equilibrium.

5 Conclusion

The central elements of the proposed definition of perfect Bayesian equilibrium are the qualitative
notions of plausibility order and AGM-consistency of assessments. As shown in [9], these notions can
be derived from the primitive concept of a player’s epistemic state, which encodes the player’s initial
(or prior) beliefs and her disposition to revise those beliefs upon receiving (possibly unexpected)
information. The existence of a plausibility order that rationalizes the epistemic state of each player
(see Remarks 4 and 7) guarantees that the belief revision policy of every player satisfies the axioms
for belief revision introduced by Alchourrén, Gérdenfors and Makinson [1].17

The notion of plausibility order and the associated notion of AGM-consistent assessment are
qualitative notions. It is well-known that there is a correspondence between the set of total pre-
orders on a set S and the set of conditional probability systems (CPS) on 2% x 29\& (see, for
example, [2]).!® Thus one could alternatively develop the analysis of this paper in terms of a CPS
on 28 x 28\ & (where H is the set of histories in the given extensive-form game). Indeed several
papers in the literature study solution concepts for extensive-form games in terms of conditional
probability systems.!” However, conditional probability systems are much more complex objects
than plausibility orders. In a CPS the set of conditioning events is very “large” as compared to
the typically very few items of information that a player might receive in a game. Thus a CPS
introduces much more structure than is needed. We feel that the approach proposed in this paper
offers a considerable gain in simplicity by avoiding unnecessary structure.?”

It is important to note that the notion of AGM-consistency allows for correlation in a player’s
beliefs about the choices of her opponents (and possibly her own choices), while KW-consistency
has several independence properties built into it. Some of these independence properties can be
expressed in purely qualitative terms (that is, as properties of the underlying plausibility order)

17The AGM theory of belief revision is not directly applicable to extensive-form games for two reasons: (1) the AGM
postulates are formulated within a syntactic framework, while extensive-form games are set-theoretic constructs, and
(2) the AGM belief revision functions have as domain the set of all conceivable items of information (the set of all
formulas) while in an extensive game there are typically very few items of information that a player might receive
(represented by her information sets). The link between the syntactic and the set-theoretic frameworks is provided
by a valuation which gives, for every atomic formula p, the set of histories at which p is true. A valuation gives rise to
a partial syntactic belief revision function. It is shown in [7, 8] that such a function can be extended to a full-domain
function that satisfies the AGM postulates if and only if the epistemic state of the player can be rationalized by a
total pre-order.

18Given a CPS P : 2% x 25\@ — [0, 1], one can extract from it a total pre-order 3 on S by letting s < s’ if and
only if P({s}|{s,s’}) > 0. Conversely, given a total pre-order 3 on S on can construct at least one ( typically several)
CPS such that, for every s,s’ € S, P({s}|{s,s’}) > 0 if and only if s 3 s'.

Y For example, [4] uses either CPSs on the set of strategy profiles or (in Section 5) CPSs on the set of terminal
nodes and [5] uses more complex CPSs defined over the product space of terminal histories and profiles of players’
types.

20Tt could be objected that the collection of probability measures postulated in Definition 10 is close to a lexi-
cographic probability system, which - as is well known (see, for example, [11]) - is equivalent to a CPS. However,
Definition 10 requires specifying a measure only for the Z-equivalence classes that contain some history h € D;
(i € N) such that p(h) > 0. Furthermore, the plausibility order already takes care of the basic structure of histories
and assessments and the probabilities can be added with ease, while starting with a lexicographic probability system
on the set of histories as a primitive notion would require more complex notation and less transparent definitions.
Furthermore, the qualitative notion of AGM-consistency has an appealing independent justification in terms of the
AGM theory of belief revision.
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and used to refine the notion of AGM-consistency and thus of perfect Bayesian equilibrium.?!

A Appendix

Although Lemma 9 follows easily from a result in Kreps and Wilson [14] we provide a proof for
completeness.

Recall our assumption that A = J, . A(h). Thus, for every a € A there is an h € D such that
a € A(h). Recall also the assumption that no action is available at more than one information set,
that is, if h, i’ € H are such that A(h) N A(h') # @ then b’ € I(h).

For every h € H and a € A we write a € h if there exists an h’ € H such that h'a is a prefix of
h (thus a € A(R')), that is, if @ is an action that occurs in history h.

Definition 16 An A-weighting is a function A : A — N such that, for every h € D, there is at
least one a € A(h) with A(a) = 0. Furthermore, if history h is assigned to chance, then A(a) = 0
for every a € A(h).

The following result is proved in Kreps and Wilson ([14], Lemma A.1, p. 887; we have re-written
the result in terms of the notation used in this paper and slightly reworded it).

Lemma 17 Fizx an extensive form. If (o,u) is a KW-consistent assessment then there exists an
A-weighting A : A — N such that, Yh € D,Va € A(h), (i) Ma) =0 if and only if o(a) > 0, and (i)
p(h) >0 if and only if A(h) < A(R') for all b € I(h), where A(h) =", .p, AMa).

Proof of Lemma 9. Let (0,u) be a KW-consistent assessment. By Lemma 17 there exists
an A-weighting A\ : A — N such that, Vh € D,Va € A(h), (i) AMa) = 0 if and only if o(a) > 0,
and (ii) p(h) > 0 if and only if A(h) < A(K') for all A’ € I(h). Define the following total pre-order
on the set of histories H: h 3 b’ if and only if A(h) < A(R). Then 3 is a plausibility order. In
fact, if h € D and a € A(h) then A(ha) = A(R) + A(a) > A(h) (since A(a) > 0), so that h 3 ha;
thus Property PL1 of Definition 3 is satisfied. By Definition 16, for every h € D there is an
a € A(h) such that A\(a) = 0 and thus A(ha) = A(h) + A(a) = A(h), so that ha 3 h; furthermore,
if @ € A(h) is such that ha = h then A(ha) = A(h) + AMa) = A(h), so that A(a) = 0 and thus,
for every ' € I(h), A(h'a) = A(R') + A(a) = A(I') and therefore h'a X h'. Hence Property PL2
of Definition 3 is satisfied. Finally, by Definition 16, if h is assigned to chance then, for every
a € A(h), A(a) = 0 and thus A(ha) = A(h) + Ma) = A(h) so that ha = h. Hence Property
PL3 of Definition 3 is also satisfied. It is also clear that 3 is choice measurable (the function A
provides an integer-valued representation of < that satisfies Property CM of Definition 8) and that
= rationalizes (o, i) (Definition 6).22 m

Before we prove Proposition 13 we recall the definition of subgame and of subgame-perfect
equilibrium. Let G = (A, H,N,1,{=;};cn) be an extensive form and let hy € D. We say that
G = (A H N,/ {~};cn/) is a subgame of G with root hg if: (1) I(ho) = {ho} (that is, the
information set that contains hg consists of hg only; recall the convention - see Notation 1 - that is

21 An in-depth analysis of appropriate qualitative notions of independence is left for future work. It is also possible
to obtain a simple characterization of the backward-induction solution(s) in perfect information games in terms of
AGM-consistency.

22By Definition 16, o(a) > 0 if and only if A(a) = 0 and, by definition of A(-), ha ~ h if and only if A(a) = 0.
Furthermore, Vh € D, p(h) > 0 if and only if A(h) < A(R') (and thus h 3 k') for all A’ € I(h).
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ho is assigned to chance then I(ho) = {ho}), (2) H' = {h € H : hy is a prefix of h} (that is, H' is
the subset of H consisting of histories that have hg as a prefix), (3) V' € H', Vi € N, Vh € H, if
h =; b/ then h € H' (that is, the information sets of G that contain an element of H' are entirely
included in H'), (4) A’ = {a € A: a € A(l) for some b/ € H'} (that is, A’ is the subset of A
consisting of those actions that are available at histories in H'), (5) N’ = {i € N : .7(i) C H'}
(that is, N’ is the subset of players that are assigned to histories in H'), (6) ¢’ is the restriction of
tto H and (7) Vi € N', = is the restriction of ~; to H', that is, ~, = ~; N (H' x H')

Let G be a game and o a profile of behavior strategies. Then o is a subgame-perfect equilibrium
of G if, for every subgame G’ of G, the restriction of o to G’ is a Nash equilibrium of G’.

Next we introduce some notation. Fix a game G and a profile of behavior strategies o. Let
h,h' € H with h a prefix of b/, that is, A’ = haj...a,, for some actions ai,...,a,, € A. Define
Qno(h') = o(ar) x ... x o(anm) (that is, Qp -(h') is the probability of reaching b’ from h if play
is according to o) and if I is an information set let Qp o(I) = > Qpo(x) be the probability of

xzel

reaching I from h, if play is according to o. An assessment (o, 1) is weakly consistent if for every
information set I, whenever the probability of reaching I from the null history (that is, from the
root of the tree) is positive (that is, Qg ,(I) > 0) then, for every h € I, u(h) is obtained from
Qp,»(-) by using Bayes’ rule:

o(h
if I is an information set and Qg ,(I) > 0 then, Vh € I, pu(h) = Qoo (h) (WC)

N Q(D,U(I) '

The following result is well-known (see, for example, [17] p. 329).

Lemma 18 Fiz an extensive-form game G and an assessment (o, ). If (o, 1) is weakly consistent
and sequentially rational, then o is a Nash equilibrium.

Proof of Proposition 13 . Fix an extensive-form game G and let (o, 1) be a perfect Bayesian
equilibrium, that is, (o, ) is Bayesian AGM-consistent and sequentially rational (Definition 12).
Let 3 be a plausibility order on the set of histories H that rationalizes (o, u) (Definition 6) and
relative to which = is Bayesian (Definition 10). Let G’ be an arbitrary subgame of G. We need
to show that the restriction of o to G’ is a Nash equilibrium of G’. Since (o, ) is sequentially
rational in G, the restriction of (o, 1) to G’ is sequentially rational in G’. Hence, by Lemma 18, it
is sufficient to show that the restriction of (o, u) to G’ is weakly consistent in G’, that is, if hg is
the root of G’, then for every information set I C H’,

if Qpy.o(I) > 0 then, VA € I, p(h) = Qoo (h) (W)

B Qhoyd(‘[) .
Fix an arbitrary information set I C H' and suppose that Qp, (I) > 0, that is, I is reached with
positive probability if o is played starting from hg. Let E be the Z-equivalence class that contains
ho and let E¥ = {h € E : u(h) > 0}. Since I(hg) = {ho}, u(ho) = 1.23 Thus hy € ET. Next we
show that

MinsI C E*. (5)

Since Qp,,0(I) > 0, there is an hy € I such that hy = hoay...a,, for some actions ay, ..., a,, such that
o(a;) > 0 for all j =1, ...,m. Thus, by Property P1 of Definition 6, every action a; is plausibility

23Recall the convention that if h is assigned to chance, then I(h) = {h} and u(h) = 1.
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preserving (see Remark 5) and hence, by transitivity of =, hy ~ hg, so that hy € E. Since (by
definition of subgame) every history in H’ has hy as a prefix, by Remark 5 hg 3 z, for every
x € H'. From this and the fact that hy ~ ho, it follows that hy € Min<I (since I C H'), so that,
by Property P2 of Definition 6, s(h1) > 0. Thus hy € E*. Now fix an arbitrary h € Min<I. Then
h ~ hy and thus (since h; € E), h € E. By Property P2 of Definition 6, u(h) > 0. Hence h € E*.
Thus (5) holds. By B1 of Definition 10, there is a probability measure vy on H whose support

coincides with Et. Next we show that

Vhel, I/E(h) = VE(ho) X @h[),o'(h)- (6)
Fix an arbitrary h € I.Then h = hga;...a,, for some actions as, ..., @y, so that Q, ,(h) = o(a1) x
. X 0(am). If h € Min<I, then, by (5), h € ET. Thus, since hg € E, by B2 of Definition 10,
ve(h) =ve(ho) x (0(a1) X ... X 0(am)) = vE(ho) X Qngo(h). If h & Min<I then hg < h.24 Hence
h = hocy...c, for some actions cy, ..., ¢, at least one of which - say ¢; - is not plausibility preserving.25
Hence, by Property P1 of Definition 6, o(¢;) = 0 and thus Qp, o (h) = o(c1) X ... x o (¢,) = 0. Hence
vE(h) = Qpy0(h) =0=vg(ho) X Quy,o(h). Thus (6) holds.

To complete the proof of (W(C"), fix an arbitrary h € I. Then, by (6),

ve(h) _ _ve(ho) X Qnyo(h) _ vE(ho) X Qny.o(h) _ Qno.o(h)
ve(I) Y ve(ho) X Queo(®)  vE(ho) 3 Qreo(®)  Qno(l)

xel zel

(7)

If h € Min<I, then, by B3 of Definition 10, u(h) = ZEE?? and thus, by (7), u(h) = % It
~ 0,0

h ¢ Min<I, then, by Property P2 of Definition 6, u(h) = 0 and, as shown above Qp, ,(h) = 0 so

that also in this case u(h) = % (recall that, by hypothesis, Qpy () > 0). Thus (WC") holds
0.

and, therefore, the restriction of (o, u) to the subgame G’ with root hg is weakly consistent in G’

so that, by Lemma 18, the restriction of o to G’ is a Nash equilibrium of G’. m

In order to prove Proposition 14 we need some preliminary definitions and lemmas.

Definition 19 Fiz an extensive-form game. Let (o, ) be an assessment and = a plausibility order
on the set of histories H that rationalizes (o, ). Let E C H be an 3-equivalence class and let
Et ={h € E: u(h) > 0}. A path in ET is a sequence (hi,...,hn) in ET such that, for every
i=1,..,m—1, either h; is a prefiz of hit1 or hix1 s a prefix of h; or hi11 € I(h;). We say that
h,h' € E* are linked if there exists a path (hy,...,hy) in ET with hy = h and hy, = h'. A subset
F C E7 is connected if every pair in F is linked. A subset F C EV is maximally connected if it
is connected and, for every connected G C ET, if F C G then F = G.

For example, consider the (partial) extensive form of Figure 6 and a plausibility order 3 for which
the following is an equivalence class: E = {a,b,c,d,em,en,bf,cg}. Suppose that E* = E. Then
histories a and d are linked by the path (a,b,bf, cg,c,d) (b € I(a), b is a prefix of bf, cg € 1(bf), ¢
is a prefix of ¢g and d € I(c)), while histories a and em are not linked; furthermore, the maximally
connected subsets of E are Fy = {a,b,c,d,bf,cg} and F» = {em, en}.2

241f h ¢ Min<I, then hy < h (where hy € Min<I: see above). Thus, since hg ~ h1, hg < h.

251f all those actions were plausibility preserving than we would have hg ~ h.

260n the other hand, if Et = {a,c,d,bf,cg,em} then the maximally connected subsets of ET are {a} (note that
b¢ EY), {c,d,bf,cg} and {em}.

18



{ 3 Y
Ilustration of Definition 19
Figure 6

Lemma 20 Fix an extensive-form game. Let (o,u1) be an assessment and = a plausibility order
on the set of histories H that rationalizes (o, ). Let E be an 3-equivalence class and let EY =
{h€ E:pu(h)>0}. If F and G are two mazimally connected subsets of Et then either F' = G or
FNG=o.

Proof. Suppose that F' and G are two maximally connected subsets of ET with F' # G and
FNG # @. Fix an arbitrary h € F NG and arbitrary h; € F and he € G. Then there is a path
from h; to h and there is a path from h to ho. Joining these two paths we get that hq is linked to hs.
Thus every two histories in F'UG are linked and therefore F'U G is connected. Since F' # G, FUG
is a proper superset of either F' or GG, contradicting the hypothesis that F' and G are maximally
connected. m

Corollary 21 Fiz an extensive-form game. Let (o, p) be an assessment and 3 a plausibility order
on the set of histories H that rationalizes (o, ). Let E be an Z-equivalence class and let E¥ = {h €
E : u(h) > 0}. Then ET can be partitioned into a collection {E, ..., E.} of maximally connected
subsets. Furthermore, the collection {Ex, ..., E., EY}, where E° = {h € E : u(h) = 0}, is a partition
of E.

Corollary 21 is an immediate consequence of Lemma 20 and finiteness of H.

Lemma 22 Fizx an extensive-form game. Let (o, ) be a KW-consistent assessment and let

<al, vy 0T > be a sequence of completely mized strategy profiles such that, letting (for every h € D

and for everym > 1) p™(h) = —:—Z(@w (g”(h)( T limyy, 00 (6™, ™) = (o, u). Let I be an information
0,c™m x

z€l1(h)

set and I™ ={h € I : u(h) > 0}. Then,

. Qp,om (h)
It = ] —_—
vh e ’ 'u(h) mggo Z Q@,o-m, (CL‘) (8)
zelt

Proof. To simplify the notation we write v™(h) instead of Qg ,m (h). By hypothesis, for every

h eI, uth) =lim,, % Thus we need to show that, for every h € I, lim,,_,o % —
xecl xel
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m

lim,,, o0 ZV Z( ;- Fix an arbitrary h € I, Since I™ C I, > v™(z) < Y. v™(x). Thus, for

zelt zel
zelt
every y € IT, ZV Sn < ZU :gl)(z). Hence
xzel relt
"(y) v (y)
lim ————— > lim ——~— = Y It 9
A @) Z A S () wy), vy e (9)
zelt zel
In particular, lim,, .. % > wu(h). Suppose that lim,, % > p(h). Then, sum-
zelt zelt

ming over I+ and using (9) we get that

> lim @) V;li)( > > ) (10)

+ +
yel rel+ yel

By definition of I*, the right-hand side of (10) is equal to 1 and the left-hand side is equal to

limy, 00 Zyeﬁ Zymui(x) = lim,, . 1 = 1, yielding a contradiction. Thus lim,, . Zl’mu:(x) =
wert zelt

pu(h). m

Proof of Proposition 14. Fix an extensive-form game and let (o, ) be a sequential equi-
librium, that is, (o, 1) is sequentially rational and KW-consistent. By Lemma 9, KW-consistency
implies AGM-consistency. Fix an arbitrary plausibility order X that rationalizes (o, u) (e.g. the
one described in the proof of Lemma 9). We need to show that (o, u) is Bayesian relative to = (see
Definition 10). Fix an arbitrary =-equivalence class E that contains some decision history h € D;
(i € N) such that u(h) > 0. Let ET = {h € E : p(h) > 0}. Thus ET # &. We need to show
that there is a probability measure vg on H that satisfies the three properties of Definition 10.
By definition of KW-consistency, there is a sequence <01, vy @M > of completely mixed behavior-
strategy profiles such that (1) lim,,—o, 0™ = o and (2) for every h € H, lim,,_o, u™(h) = p(h)
where p™(h) = % As before, to simplify the notation, we denote Qg ,m (h) by v (h).

z€I(h)

Let {F1,..., E,} be a partition of E* into maximally connected subsets (see Corollary 21). Fix
an arbitrary E; (i = 1,...,7) and define the following measure v, : H — [0, 1]:2

0 if h ¢ B
yEE; Y

2TNote that, since o™ is completely mixed, 0 < v™(h) < 1 for every h € H and thus, for every non-empty
F C H and every h € F, 0 < ) - < 1. Hence, by the Bolzano-Weierstrass theorem, the sequence

> v
yeF
<%> has a convergent subsequence. Thus, if necessary, we can take a convergent subsequence to
yEE; m=1,2,...
define the limy, oo %
yER;

20



First we show that

Supp(ve,) = E; (12)

By construction Supp(vg,) C E;. Fix an arbitrary h € E;. We need to show that vg, (h) > 0. Fix
an arbitrary b’ € Supp(vg,). Then (see Definition 19) there is a path (h1, ..., hy,) in E; with hy = b/
and h,, = h and for every j € {1,...,m — 1} either h; is a prefix of h; 41 or hjy1 is a prefix of h; or
hj+1 € I(hj). Since hy € Supp(vg,), vg,(hi1) > 0. Next we show that, for every j € {1,...,m — 1}
if vg, (h;) > 0 then vg, (hj11) > 0. Fix j € {1,...,m — 1} and suppose that vg, (h;) > 0. We need
to consider three cases.

Case 1: h; is a prefix of hji 1. Then hji 1 = hjay...a, for some actions ay,...,a,. Since h; ~
hj+1 (they belong to the same Z-equivalence class E) every action ar (K = 1,...,s) is plausi-
bility preserving and thus, by Property P1 of Definition 6, o(ay) > 0. Now, by definition of
v (), v™(hjp1) = v™(hy) X 0™(a1) X ... X 0™(as). Thus v, (A1) = limy, e 4eiuztl —

Yoy

yEE;
hmmﬂoo % (Um(al) X X Um(as)) = 1lmm~>oo % X 11mm~>oo (UhL(GI) X ... X O'm(as))
yeEE; yeE;

ve,(hj) x o(a1) X ... x 0(as). Thus vg, (hji1) > 0 (since vg, (h;) > 0 by hypothesis and o(ar) > 0
for every k=1, ..., 5).
Case 2: hj4q is a prefix of h;. Then h; = hji1a1...as for some actions ay, ..., as. Since hj ~ hjq

every action ay, is plausibility preserving and thus o(ay) > 0. By definition of v™(.),
v™(hj) = v™(hjy1) X 0™ (a1) x ... x 0™ (as). Thus

. v"™ (hj T v™(h; m m —
VEl(hJ) = limy;, o % = limy, 0 ﬁ (0 (al) X..xX o (as)) -
yEE; yEE;

lim,;,—o0 % X limyy, 00 (UM(al) X ..o X O'm(as)) = VEi(h‘le‘l) X a(al) X ... X O'(as)
yEE;

and therefore vg, (hj11) > 0.
Case 3: hjy1 € I(hj). First of all, note that

S ovm(x)
. -€1(hj)
lim == >0 (13)
m=oco 3 V™ (y)
yEE;
2 )V’”(x)
. z€ mip . mp,.
In fact, since h; € I(h;), ]ym(y) > ZV: I(j?:zy) and llm,,LéooZV—l(szT) = vg,(h;) and, by
yeE; yeE; yeE;
hypothesis, vg, (h;) > 0. Now,
v (x)
(h; =1 m— oo (i) =1l m— o0 v (1) X el =
VE (1) = oo =000 = lim > @y )
yeE; xz€I(hj) yEE;
VWL(I)
z€l(hj) Um(h‘+1)

1 ——2——. Since lim
v (z) Yo vm(y) OO YT um(a)
zel(hj) yEE; zel(hj)

by hypothesis, h;j+1 € I(h;) and thus I(h;) = I(h;11)) and p(hji1) > 0 (because hjiq € ET) it
follows, by (13), that vg,(hj+1) > 0. This completes the proof of (12). Note that

= p(hjt1) (recall that,
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if b, € E; and b’ = hay...as, then v, (h') = v, (h) x o(a1) x ... x o(as) (14)

(the proof is a repetition of the argument used above in Case 1). Next we show that

if h € Min<I(h) N E; then Min<I(h) C E;. (15)

Let h € Min<I(h) N E; and fix an arbitrary k' € Min<I(h). Then h’ ~ h and thus b’ € E. By
Property P2 of Definition 6, p(h') > 0, so that b’ € E*. Furthermore (h, k') is a path in ET (see
Definition 19) and thus, since h € E;, it follows that b’ € E; (because E; is a maximally connected
subset of E). Next we show that

if I is an information set such that Min<I C E; then,

(@) Yve@= Y vg(),and
xel

xEM'mjl (16)
ve. (h
() Vhel, u(h)=ve,(h| 1) =22,

Let I be such that Min<I C E;. If h ¢ Min<I then, by Property P2 of Definition 6, u(h) = 0.
Hence h ¢ E* (and thus h ¢ E;) so that vg,(h) = 0. Thus part (a) of (16) holds. Hence to

prove part (b) it is sufficient to show that Vh € Min<I, pu(h) = #%.28 Furthermore, by

Lemma 9, Vh € Min<I, p(h) = limp, %ﬁ%_w Thus it will be sufficient to prove that,

Um,(x
z€Min I
. vg, (h) T v™(h)
Vh € MinxI, v, (Min<T) — lim,,, o0 S ) We have that
z€Min I
L, — oo __vmm im0 _vmm
> oumw > umw
VEi(h) _ VEi(h) _ yeE; _ yEE;
VE,L(MZ"ILjI) Z VEZ(w) Z lim,,_ oo v (z) iMoo Z v (z)
z€Min_yI z€Min_I Z v (y) zeMin I Z v (y)
= ~ yEE; ~  yekE;
v™ (h) 1 v™ (h)
v (y) Z v (y)
= lim el = lim el = lim v (h)
= Hlim—oo @ T Mmoo T ym(e) T vm(a)
zEMin I Z v (y) v (y) x€MinI zEMin I
~ yekE; yeEE; ~ ~

If E; = E7 then the proof of Proposition 14 is complete: by (12), (14) and (16) the measure v g,
satisfies the three properties of Definition 10. If E; is a proper subset of ET, then let aq, ..., o, be
arbitrary numbers such that 0 < a; <1, foralléi=1,...,r,and > ;_, a; =l and let vg : H — [0,1]
be defined by vg(h) = >.._; a;vg, (k). Then, by (12), (14) and (16) vg satisfies properties of
Definition 10 3° and thus (o, 1) is Bayesian relative to <. m

28Note that v, (Min<I) > 0. Proof: fix an arbitrary h € Min<I (since I is finite Min<I # @). Then h € E;
and thus, by (12), vg, (h) > 0. Hence, since vg,(Min<I) > vg, (h), vg,(Min<I) > 0.

29By Property P2 of Definition 6, It = {h € I : u(h) > 0} = Min<I.

301f T is an information set such that Min<I C E; (for some i = 1,...,r) and h € I then vg(h|I) =
vg, (h|I).

avg, (h)
avg, (1)

22



References

1]

Alchourrén, Carlos, Peter Girdenfors and David Makinson, On the logic of theory change:
partial meet contraction and revision functions, The Journal of Symbolic Logic, 1985, 50: 510-
530.

Arl6-Costa, Horacio and Rohit Parikh, Conditional probability and defeasible inference, Jour-
nal of Philosophical Logic, 2005, 34: 97-119.

Aumann, Robert and Adam Brandenburger, Epistemic conditions for Nash equilibrium, Econo-
metrica, 1995, 63: 1161-1180.

Battigalli, Pierpaolo, Strategic independence and perfect Bayesian equilibria, Journal of Eco-
nomic Theory, 1996, 70: 201-234.

Battigalli, Pierpaolo, Alfredo Di Tillio and Dov Samet, Strategies and interactive beliefs in
dynamic games, Technical Report IGIER WP 375, Bocconi University, January 2011.

Bonanno, Giacomo, Memory and perfect recall in extensive games, Games and Economic
Behavior, 2004, 47: 237-256.

Bonanno, Giacomo, Rational choice and AGM belief revision, Artificial Intelligence, 2009, 173:
1194-1203.

Bonanno, Giacomo, Perfect Bayesian equilibrium. Part II: epistemic foundation and refine-
ments, Working Paper, University of California Davis, 2011.

Bonanno, Giacomo, AGM belief revision in dynamic games, in: K. R. Apt (ed.), Proceedings
of the 13th conference on theoretical aspects of rationality and knowledge (TARK XIIT), ACM,
New York, 2011.

Fudenberg, Drew and Jean Tirole, Perfect Bayesian equilibrium and sequential equilibrium,
Journal of Economic Theory, 1991, 53: 236-260.

Hammond, Peter, Elementary non-Archimedean representations of probability for decision
theory and games, in: P. Humphreys (ed.), Patrick Suppes: scientific philosopher. Vol. I:
probability and probabilistic causality, Kluwer Academic Publishers, 1994, chapter 2, 25-59.

Hendon, Ebbe, Jgrgen Jacobsen and Brigitte Sloth, The one-shot-deviation principle for se-
quential rationality, Games and Economic Behavior, 1996, 12: 274-282.

Kohlberg, Elon and Philip Reny, Independence on relative probability spaces and consistent
assessments in game trees, Journal of Fconomic Theory, 1997, 75: 280-313.

Kreps, David and Robert Wilson, Sequential equilibrium, Fconometrica, 1982, 50: 863-894.

Kreps, David and Garey Ramey, Structural consistency, consistency, and sequential rationality,
Econometrica, 1987, 55: 1331-1348.

Myerson, Roger, Game Theory, Harvard University Press, 1991.

Osborne, Martin, An introduction to game theory, Oxford University Press, 2004.

23



Osborne, Martin and Ariel Rubinstein, A course in game theory, MIT Press, 1994.

Perea, Andrés, Mathijs Jansen and Hans Peters, Characterization of consistent assessments in
extensive-form games, Games and Economic Behavior, 1997, 21: 238-252.

Perea, Andrés, A note on the one-deviation property in extensive form games, Games and
Economic Behavior, 2002, 40: 322-338.

Selten, Reinhard, Re-examination of the perfectness concept for equilibrium points in extensive
games, International Journal of Game Theory, 1975, 4: 25-55.

von Stengel, Bernhard and Frangoise Forges, Extensive form correlated equilibrium: definition
and computational complexity. Mathematics of Operations Research, 2008, 33: 1002-1022.

24



