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1 Introduction

Since LEWIS’s [10] and AUMANN’s [1] pioneering contributions, the notions of common
knowledge and common belief have been investigated thoroughly, both semantically
(see, e.g. [2], [3], [3], [6], [14], [15], [16]) and syntactically (see [7], [8], [11], [12],
[13]). Informally a proposition is common belief (knowledge) if everybody believes
(knows) it, everybody believes (knows) that everybody believes (knows) it, and so
on ad infinitum. From a semantic point of view there are no difficulties in capturing
the informal notion, since the intersection of an infinite family of sets is a meaningful
concept (semantically, the notion of common belief is captured by the transitive clo-
sure of the union of the individual accessibility relations). From a syntactic point of
view, however, the informal notion cannot be captured directly because in a finitary
logic formulas are required to be of finite length and, therefore, the conjunction of
an infinite number of formulas is not itself a formula. Several axiomatizations of the
notion of common belief (knowledge) have been offered (see [8], [11], [12] and — for a
recent survey — [13]). All of them include the so called “fixed-point” axiom

0, A — D0O(AADA),

where the intended interpretation of O, 4 is “it is common belief (knowledge) that A”,
and that of OA is “everybody believes (knows) that A”, together with some appro-
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priate rule of inference. HALPERN and MoSEs [8] use the rule
A —O(AAB)
A—0OB '’
while LISMONT [12] uses the rule
A— 0OA
04 -0, A4
The purpose of this paper is to investigate an axiomatization of common belief
(knowledge) that makes use of no rules of inference (apart from Modus Ponens and

Necessitation) and to highlight the property of the set of accessi- bility relations that
characterizes each axiom.

2 The formal system K,,. and its semantics

We consider a normal system with (n + 1) modal operators Oy, ...,0,,0,. The
intended interpretation of 0;A (for ¢ = 1,...,n) is “individual 7 believes that A”
whereas 0O, A is interpreted as “it is common belief that A”. The alphabet of the
language consists of (1) a countable set S = {po,p1,...} of sentence letters, (2) the
connectives =, V, 0y, ..., 0,, 0, (where n > 1is a natural number) and (3) the bracket
symbols (and ). A word is a finite string of elements of the alphabet. The set F of
formulas (or sentences ) is the subset of the set of words defined recursively as follows:
(1) for every sentence letter p, p € F;
(2)if Ae F,then ~Ae ¥ 0,Ac F, and, foreveryi=1,...,n, ;A € F;
(3) if A,B € F, then (AV B) € F.
As usual we write (A A B) for =(-=AV —B) and (A — B) for (mAV B).
We denote by K, the system or calculus specified by the following axiom schemata
and rules of inference:
(1) all tautologies (i.e., a suitable axiomatization of Propositional Calculus);
(2) the schema (K) (cf. CHELLAS [4])
(K) 0;(A— B) - (0,A — 0;B) foreveryi€ {l,...,n,*};
(3) the rule of inference Modus Ponens:

A, (A—B)
MP _
(MP) iy
(4) the rules of inference Necessitation:
(RN) D/?A for every i € {1,...,n,x}.

We now turn to the semantics. A standard frame is an (n + 2)-tuple
(W,R1,...,Ra, R.),

where W is a nonempty set whose members are called worlds and, for i € {1,...,n, *},
R; is a (possibly empty) binary accessibility relation on W. A standard model is an
(n + 3)-tuple

M = (W,Ry,..., R, Ry, F),
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where (W, R1, ..., Ry, R.) is a standard frame and F : S — 2" is a function from
the set of sentence letters S into the set of subsets of W. We say that 9 is based on
the frame (W, Ry, ..., Rn, R.).

Given a formula A and a standard model M = (W, Ry, ..., R, R, F), the truth
set of A in 9M, denoted by ||A||™, is defined recursively as follows:
(1) If A = p, where p is a sentence letter, then ||A||™ = F(p);
(2) [|=A)™ =W — [|A||™ (i.e., [|2A||™ is the complement of ||A||™);
(3) 1AV BII™ = |4l U || B|™;
(4) for all i € {1,...,n,*},
I0:A||™ = {a € W : for all 8 such that aR;8, 8 € ||A]|™}.
If & € ||A||™ we say that A is true at world o in model M. An alternative notation

for a € ||A||™ is FX' A and an alternative notation for o ¢ ||A||™ is B A. A formula
A is valid in model M if and only if T A for all a € W.

The following proposition is a straightforward extension of a well-known result in
modal logic (for a proof see HALPERN and MoSES [8]).

Proposition 1. The system K,. is sound and complete with respect to the class
of standard models, that 1s,

(i) every theorem of K. is valid in every standard model;

(ii) if a formula A is valid in every standard model, then A is a theorem of K.

3 The logic of common belief

We shall consider the following axiom schemata, where i € {1,...,n}:
(S:) 0,A — O; A,

(Ps) 0,4 — 0;0,A4,

(L) O, (A—=01AAN- - AO,A) = (0;AA - -AD, A — O,A).

The letter ‘S’ stands for ‘shared belief’, ‘P’ for ‘public belief’, and the letter ‘L’
was chosen because the corresponding axiom schema was first mentioned by LISMONT
(12]. The schema (S;) says that if it is common belief that A, then individual 7 believes
that A; (P;) says that if it is common belief that A, then individual 7 believes that it
is common belief that A; finally, (L) says that if it is common belief that if A, then
everybody believes that A, then if everybody believes that A, then it is common belief
that A.

We say that a property P of the set {R;,..., Ra, Rs} of accessibility relations
characterizes axiom schema A if (1) every instance of A is valid in every model that
satisfies P and (2) given a frame that does not satisfy P, there exists a model based
on that frame and an instance of A which is not valid in that model. In the following
by ‘property’ we mean always ‘property of the set {R;,..., R,, R} of accessibility
relations’.
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Proposition 2.

(i) Aziom schema (S;) is characterized by the following property:
forallo, B € W, if aR;3, then aR,[3.

(i1) Aziom schema (P;) is characterized by the following property:>)
foralla, B,y € W, if aR;3 and SR,y, then aR.7y.

(iii) Aziom schema (L) is characterized by the following property:
for all a, B € W, if aR.3, then there exists a sequence (61,...,6m,) in W
(with m > 2) and a sequence (iy,...,im—1) 1 {1,...,n} such that & = a,
8m = B, for every k = 2,...,m, aR.bx, and for every k =1,...,m —1,
6k Ri 6141 (that is, if aR.3, then there is an R-path from « to B, where
R = R,U---UR,,, such that for every node v on this path, except possibly «,
aR.y).

Proof. The proofs of (1) and (ii) are trivial and we omit them.

As for (iii), let (W, Ry,..., Rn, R.) be a frame that satisfies the above property.
Let 9 be a model based on it and choose an arbitrary world « in 9% and an arbitrary
formula A. Suppose that F® 0O, (A — 0;AA---AO,A) and, for all ¢ = 1,...,n,
Pigz 0;A. We want to show that #g‘ O, A. If there is no world which is R.-accessible
from «, then there is nothing to prove. Otherwise, let 8 be an arbitrary world such
that aR.3. We want to show that ;:.;R A. By the assumed property, there exists
a sequence (6),...,6,) in W and a sequence (i1,...,4m-1) in {1,...,n} such that
6, = a, by = B, for every k = 2,...,m, aR.6;, and for every k = 1,...,m — 1,
6k Ri, 6k41. Since FT O; A we have Fg’f A. Since #g‘ 0.(A—0;AA---AO,A) and
aR.65 we have t:g}: (A — 0yAA---AO,A). Thus l:?: 0,AA---AQ,A and, therefore,
k:gf 0,;,A. Thus kzg‘z A. Repeating this argument, we obtain Fg{i A le, Pgﬂ A, as
desired. 4

Now let (W, Ry, ..., Rn, R.) be a frame where R. does not satisfy the above prop-
erty. Then there exist o and 8 such that aR.(, and either there is no R-path from o
to 8 (recall that R = Ry U---URy) orif (61,...,6m) is an R-path in W with 61 = «
and é,, = 3, then, for some k = 2,...,m, not aR.0;. Let

Wo = {y € W : aR.y and either there is no R-path from & to v or,
if there is such a path, then not aR.§ for some 6 # a
on this path}.
Thus 3 € Wy. Let p be a sentence letter and 9 a model based on this frame, where
F(p)=W — W,.

Step 1. We show that E™ O, (p — O1pA---AOpp). Choose an arbitrary v such
that aR,y. We have to prove that I’—';Y‘m (p — O1pA---ADOpp). Suppose that t=gﬂ p.
Then v ¢ Wo. It follows that there is an R-path (61, ..., 6m) from a(= 1) to y(= 6m)
such that aR.6y for all k = 2,...,m. Suppose that, for some 1 = 1,...,n, Jigy‘m aQ;p.
Then there exists an 7 such that yR;n and ng;"m p. Then n € W, and therefore aR.n.
But then there is an R-path from o to 1 with aR.6 for every 6 # « on this path,
implying that n ¢ Wq: a contradiction.

3)This property is a special case of a property considered by VAN DER HOEK [9, Definition 4.2(c)].
1 am grateful to JOE HALPERN for this reference.
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Step 2. We show that, for every i = 1,...n, EX® O;p. Choose arbitrary § € W
and i € {1,...,n} such that «R;6. We want to show that F? p. Suppose not. Then
6 € Wy. Hence aR,6. But then, since there i1s an R-path from « to § and aR.6, it
follows that 6§ & Wy: a contradiction.

Step 3. We show that #? O,p. This follows from the fact that 5 € Wy.

Thus the formula O, (p — O1pA - AOQ,p) — (O1pA -+ - AO,p — O,p), which is
an instance of (L), is not true at « in 9. i

Remark 1. Let R= Ry U---UR, and R™ be the transitive closure of R, i.e.,

aR™ 3 iff there exists a sequence (61,...,6m) with m > 2 and a sequence
(f1,...,im—1) In {1,...,n} such that §; = «, 6, = B, and for
every k=1,...,m—1, 6 Ri, bp41.

Then it is easy to see that Properties (i) and (ii) of Proposition 2 imply that R™ C R,.
Indeed: Suppose that a R™*f, i.e., there are sequences (61, ...,6m) and (i1, ..., im_1)
satisfying the above properties. We want to show that aR.3. Since 6,,—1Ri,,_,6m,
by Proposition 2(i), ém—1Ruém. By Proposition 2(ii), since ém_2R;,,_,0m—1 and
8m—1Rubm, it follows that 8, 2 R.6,. Repeating this argument (m — 1) times we
obtain 8 R.éy, i.e., aR.p3, as desired. Moreover, Property (iii) of Proposition 2
implies that R. C R™. Thus the conjunction of the three properties implies that
R. = R™ (clearly, RT" satisfies these three properties).

Let Ky« +S+ P+ L be the system obtained by adding to K,,. the axiom schemata
(L), (8;) and (P;) for every i = 1,...,n.

Proposition 3. The system K, +S+ P+ L 1s sound and complete with respect
to the class of models where R. is the transitive closure of R= R U---U R,.

Proof. Completeness: LiSMONT [12] proved (soundness and) completeness for
the system obtained by adding to K,. the axiom schema

(F) 0,4 — O(AAOA),
where OA is defined as O; A A ---A D, A, and the rule of inference
A— DA
(I) 0OA —- 0O, A"

Now, (F) is implied by the conjunction of (S;) and (P;) for all i = 1,...,n, while the
rule (I) is a derived rule in the system K,, + S+ P + L: Assume that A — DA is a
theorem of K,,. + S+ P + L. Then, by (RN,), so is O, (A — OA). Hence, by (L) and
(MP), also O0A — O, A is a theorem.

The soundness follows from Proposition 2 and Remark 1. Another way to prove
soundness is to prove syntactically that (L) is a theorem of the system Kn. +S + P

plus the inference rule (I). Such a (non-trivial) syntactical proof can be found in
LismonT [11]. O

While Proposition 3 dealt with the system K, .+S+P+L, the following proposition
concerns the system K,. +S + P.

Proposition 4. For every sequence (11,12, ...,1) of elements of {1,...,n} and
for every formula A, the following is a theorem of K, +S + P:

0.4 — 0;,0;,...0;, A
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Proof. If £ = 1, this is axiom (S;). We prove that if the proposition is true for
an arbitrary sequence (ip,...,%) with (k — 1) elements (with £ > 2), then it is true

for the sequence (i1,12,...,4) with k elements for arbitrary 4;:
1. 0,A—-D0O;,...0,A induction hypothesis
2. 0;,0,A—0;,0;,...0,A4 1., (RN;,) — see CHELLAS [4, p. 114]
3. 0,A—-0;0A4 instance of (P;,)
4. 0,A-0,0,...0,,A4 2.,3., PL. 0O

Remark 2. Recall that, at an informal level, O,A is thought as the infinite
conjunction of all formulas of the form 0O;,0;,...0;, A, for every possible sequence
(21,42, ...,%) in {1,...,n} (that is, something is commonly believed if everybody
believes it, everybody believes that everybody believes it, and so on ad infinitum).
By Proposition 4, O, A implies this “infinite conjunction” (that is, each element of this
infinite conjunction, which is not itself a formula) in the system K,,.+S+P. Axiom (L)
is not needed for this implication. In virtue of Proposition 3, adding axiom (L) has the
effect of yielding the converse implication from the infinite conjunction to O, A. To see
that this converse implication does not hold in K, .+S+P consider the following frame:
n=2 W={epB} R = R =0, Re = {(a,),(a,8),(8,2),(8,3)}. This frame
satisfles Properties (i) and (i) of Proposition 2 (R, contains the transitive closure
of R = Ry U Ry) and therefore any model based on it validates all the theorems of
Ko« +S + P. Let p be a sentence letter and let 9 be a model where p is true at o
and false at 8. Then for every sequence (i1,...,%) in {1,2} the formula O;, ...0;p
is valid in 9. However, O,p is false at every world. In order for the implication from
the infinite conjunction of all formulas of the form O;, ...0;, A to O, A4 to hold, it is
necessary that R, be contained in the transitive closure of R = Ry U---U R, and
this is precisely the role of axiom (L) (see Remark 1).

It is easy to check, using Proposition 2, that the axiom schemata (S), (P) and
(L) form an independent set. For example, to see that (L) is not a theorem of
Ky + S + P, consider the following frame: n = 1, W = {a, 8}, R1 = {(a, )}, and
R. = {(a,a),(a,B)}. Note that R, satisfies Properties (i) and (i1) of Proposition 2,
hence this frame validates (S;) and (P1). Thus every theorem of K, + S+ P is valid
in every model based on this frame. If (L) were a theorem of K,. + S + P, then (L)
would be valid in every model based on this frame, which is not the case. In fact,
let p be a sentence letter and 9 a model based on this frame where F(p) = {a}.
Then ™ O,p, and therefore F™ (p — Oyp). Also, t:g‘ (p — D1p), since ¢b‘m p. Thus
ET O, (p — Oyp). However, ¥2* O,p. Hence, ¥ (O;p — O.p). It follows that
7 0. (p — O1p) — (O1p — O.p).
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