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Abstract

We provide a syntactic characterization of the property of perfect recall in extensive
games. The language we use is basic temporal logic with the addition of a knowledge
operator for every player.

1 Introduction

In a recent, thought-provoking paper van Benthem (2001) suggests using a joint dynamic-
epistemic language to analyze properties of games. The author considers games as models
for this language and shows that significant conditions on games are definable by certain

axioms in that language. For the class of extensive-form games, a property which is routinely

*I am grateful to Johan van Benthem, Joe Halpern and two anonymous referees for very helpful comments.
Some of the results in this paper were presented at the fifth conference on Logic and the Foundations of
Game and Decision Theory (LOFT5), Torino, June 2002.



assumed in the literature is that of perfect recall. This property was introduced by Kuhn
(1953) who interpreted it as “equivalent to the assertion that each player is allowed by the
rules of the game to remember everything he knew at previous moves and all of his choices
at those moves”. We provide a syntactic characterization of perfect recall in an extension
of basic temporal logic obtained by adding a knowledge operator for every player. This
is done in Section 2. In Section 3 we study an implication of perfect recall, namely the
property of remembering what one knew in the past, and discuss its relationship to a similar
property investigated in the computer science literature called “no forgetting”. In Section 4
we relate our characterization to other results in the literature, with particular focus on the
relationship between the axiom we propose for perfect recall and a simpler axiom suggested
by van Benthem. Section 5 concludes.

This paper thus falls within the growing literature on the relationship between game
theory and logic. The advantages of a logical analysis of game-theoretic concepts are many.
First of all, the tools of modal logic have enriched the game-theoretic language by making it
possible to express concepts that were previously only informally or vaguely stated. A good
example is the notion of common belief in rationality and its relationship to the procedure of
iterative deletion of strictly dominated strategies (see Stalnaker, 1994, and, for an overview
of the role of epistemic logic in the analysis of solution concepts, Battigalli and Bonanno,
1999b). Another example is the relationship between the notion of internal consistency of a

recommendation and the backward-induction algorithm (see Bonanno, 2001b). Secondly, as



Bacharach (1994, p. 21) notes,

“Game theory is full of deep puzzles, and there is often disagreement about pro-
posed solutions to them. The puzzlement and disagreement are neither empirical
nor mathematical but, rather, concern the meanings of fundamental concepts
(‘solution’, ‘rational’,‘complete information’) and the soundness of certain argu-
ments (that solutions must be Nash equilibria, that rational players defect in
Prisoner’s Dilemmas, that players should consider what would happen in eventu-
alities which they regard as impossible). Logic appears to be an appropriate tool
for game theory both because these conceptual obscurities involve notions such as
reasoning, knowledge and counterfactuality which are part of the stock-in-trade
of logic, and because it is a prime function of logic to establish the validity or

invalidity of disputed arguments”.!

In this vein, a logical analysis of the property of perfect recall might contribute to a
better understanding of its content. Perfect recall is a central property in extensive games.
Piccione and Rubinstein (1997) showed that when perfect recall is violated puzzles and
paradoxes arise even in very simple decision problems.? There seems to be a clear need for a
deeper understanding of the different aspects or components of perfect recall and their role

in rational decision-making.

1A good example of a disputed argument in game theory is whether backward induction in perfect-
information games can be derived from the hypothesis of common belief in (or knowledge of) rationality.
There are those (e.g. Aumann, 1995) who claim that the answer is positive and those (e.g. Stalnaker,
1998) who claim the opposite. In a recent contribution Halpern (2001) attempts to clarify the debate by
highlighting a difference in the interpretation of the counterfactuals involved in evaluating players’ rationality
at unreached nodes in the game tree.

2Their paper gave rise to an entire issue of Games and Economic Behavior (Vol. 20, 1997) being devoted
to the consequences of relaxing perfect recall or some of its implications.



2 An axiom for perfect recall

We begin by recalling the definition of extensive form due to Kuhn (1953; see also Selten,

1975). An extensive form is a collection ((T,—,tg), N,{X;}ien, {~i}ien, C), where

o (T,—,tp) is a (finite or infinite) rooted tree with ty as root. For any two nodes t,z € T,
t — x denotes that ¢ is the immediate predecessor of x (or z is an immediate successor
of t). We assume that every node has finite outdegree, that is, a finite number of
immediate successors. Let < denote the transitive closure of —. Thus t < x means
that ¢ is a predecessor of = (that is, there is a path from ¢ to x) and we write t S x as
a short-hand for ¢t = z or ¢t < z. Let Z be the (possibly empty) set of terminal nodes,

that is, nodes that have no successors and X = T\ Z the set of decision nodes.

e N ={0,1,...,n} is the set of players. Players i = 1,...,n are called personal players,
while player 0 is called Nature and represents events that are not the outcome of actions

taken by personal players.

o {Xy, X1,..., X} is a partition of the set of decision nodes X. For every player i € N,

X is the set of decision nodes of player 1.

e For every player i € N, ~; is an equivalence relation (that is, a binary relation
which is reflexive, symmetric and transitive) on X; satisfying the following condition:
if t,t' € X, and t ~; t' then the number of immediate successors of t is equal to the
number of immediate successors of . The interpretation of ¢ ~; t' is that player ¢
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cannot distinguish between ¢ and t', that is, as far as she knows, she could be making
a decision either at node t or at node t'. The equivalence classes of ~; partition X;

and are called the information sets of player 1.3

e (' is the choice partition, which, for every information set, partitions the edges out of
nodes in that information set (that is, the set of ordered pairs (¢, z) such that t — z)
into choices at that information set. If (¢,z) belongs to choice ¢ we write t —. x. The
choice partition satisfies the following constraints: (1) if ¢ —. x and ¢t —. 2’ then
x =2, and (2) if t —. x and t ~; ¢’ for some i € N, then there exists an z’ such that
t' —. 2'. The first condition says that a choice at a node selects a unique immediate
successor, while the second condition says that if a choice is available at one node of

an information set then it is available at every node in that information set.

An example of an extensive form is given in Figure 1. Here the set of players is N =
{1,2}, the set of terminal nodes is Z = {z1,..., 2} and the set of decision nodes is X =
{to,t,t',x,2'}. The set of player 1’s decision nodes is X; = {to,t}, while the set of player
2’s decision nodes is Xy = {t',xz,2'}. The equivalence relations are ~;= {(to, o), (¢,t)} and
~o= {(t', 1), (z,x),(x,2'), (2, ), (¢/,2')} . Thus, for example, player 2’s information sets
are {t'} and {z,2'} . We use the graphic convention of representing an information set as a

rounded rectangle enclosing the corresponding nodes, if there are at least two nodes, while

3The following additional constraint, usually imposed on Nature, plays no role in our analysis: if t ~g ¢/
then t =t.



if an information set is a singleton we do not draw anything around it. Furthermore, since
all the nodes in an information set belong to the same player, we write the corresponding
player only once inside the rectangle. The choices are shown by labeling the corresponding
edges in such a way that two edges belong to the same choice if and only if they are assigned
the same label. Thus, for example, z »—, 2z, and 2’ »—, 24 so that player 2’s choice g is
{(z,29), (2, 2z4)} . As a further example of our notation, we have that ¢ — x, that is, = is an

immediate successor of ¢, and t < z3, that is, z3 is a successor of t.
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Figure 1

Example of extensive form

Traditionally, game theorists have restricted attention to games with perfect recall. This

property, which was introduced by Kuhn (1953), requires that if a node y of player ¢ comes



after a choice ¢ at a previous node t of player ¢ himself, then every node in the information
set that contains y also comes after the same choice ¢ at the information set that contains .

Formally,*

For every player ¢ € N, for all nodes t,y,y € X; and x € T and for every

choice ¢, if t —. z, x 3y and y ~; ¢y then there exist nodes t' € X (PR)
and ' € T such that t ~; ¢/, ' —. 2’ and 2’ 3 y/.
1
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An extensive form with perfect recall

The extensive form of Figure 1 violates this property, since z’ is a decision node of player

2 which comes after choice e at the earlier decision node ¢’ of player 2, = belongs to the same

4The following definition is Selten’s (1975) reformulation of Kuhn’s original property which was stated in
terms of pure strategies.



information set of player 2 as 2’ and yet x does not come after choice e. On the other hand,
the extensive form of Figure 2 does satisfy perfect recall.

We now provide an axiomatic characterization of perfect recall using temporal epistemic
logic. We interpret the precedence relation < as a temporal relation and associate with it
the standard future and past operators from basic temporal logic, denoted by G and H (see,
for example, Burgess, 1984, or Goldblatt, 1992). Furthermore, to the equivalence relation
~; of player ¢ we associate a knowledge operator K;, and to every choice ¢ a modal operator

(.. The intended interpretation is as follows:

G¢ :  “it is Going to be the case at every future time that ¢”
H¢ : “it Has always been the case that ¢”
K¢ : “player « Knows that ¢”

(.o . “after choice ¢ it will be the case that ¢”.

Furthermore, for every player i we add a modal constant (or nullary modality) turn;,

whose intended interpretation is “it is player ¢’s turn to move”.

The formal language is built in the usual way from a countable set S of atomic propo-

sitions, the connectives = (for “not”) and Vv (for “or”) and the modal operators.” Let

Fo = -G—¢ and P¢ = —H-¢. Thus the interpretation is:

5Thus the set @ of formulas is defined inductively as follows: (1) turn; € ®, (2) g € ® for every atomic
proposition ¢ € S, (3) if ¢, € @ then all of the following belong to ®: —¢p, ¢ V ¢, Gp, Hp and K;¢p. See,

for example, Chellas (1984). The connectives A (for “and”) and — (for “if ... then”) are defined as usual:
def def

PN = 2 (mpV ) and ¢ — P = g VY.



F¢: “at some Future time it will be the case that ¢”

P¢: “at some Past time it was the case that ¢”.

Given an extensive form one obtains a model based on it by adding a function V' : § —
2T (where 2T denotes the set of subsets of the set of nodes T') that associates with every
atomic proposition g € S the set of nodes at which ¢ is true. Truth of a formula ¢ at a node

t, denoted by t |= ¢, is defined inductively as follows:
if ¢ is an atomic proposition, ¢ = ¢ if and only if t € V(q),
t = ¢ if and only if t ¥ ¢ and t |= ¢ V ¢ if and only if either t = ¢ or t =4 (or both),
t = G¢ if and only if ¢’ = ¢ for all ¢ such that t < ¢/,
t = H¢ if and only if ¢’ |= ¢ for all ¢ such that ¢ < ¢,
t = K;¢ if and only if ' = ¢ for all ¢’ such that t ~; ¢/,
t = O.¢ if and only if t —, x implies x |= ¢,

t = turn; if and only if t € X;.

Thus G¢ (Hg) is true at node ¢ if and only if ¢ is true at every successor (predecessor)
of t, while Fi¢ (P¢) is true at ¢ if and only if ¢ is true at some successor (predecessor) of
t. Furthermore, K;¢ is true at node ¢ if and only if either ¢ ¢ X; (see Remark 1 below) or
t € X, and ¢ is true at every node in the information set of player i containing t. Finally,

[.¢ is true at ¢ if and only if ¢ is true at the immediate successor of ¢ following choice ¢ and



turn; is true at node ¢ if and only if ¢ is a decision node of player .

We denote by ||#|| the truth set of formula ¢, that is, ||¢|| = {t € T : t = ¢}. A formula
¢ is valid in a model if t |= ¢ for all t € T, that is, if ¢ is true at every node. A formula ¢ is
valid in an extensive form if it is valid in every model based on it.

We say that a property of extensive forms is characterized by an axiom if the axiom is valid
in every extensive form that satisfies the property and, conversely, if whenever the axiom
is valid in an extensive form then the extensive form satisfies the property. The “axioma-
tizations” provided in this paper are characterizations of properties of extensive games by
means of axioms. This is known in modal logic as ‘frame definability (or distinguishability)’

(see, for example, Blackburn et al., 2001, p. 125).

Consider the following axiom:

Axiom (Apg) says that, if it is player ¢’s turn to move and she knows that after choice ¢
it will be the case that ¢, then after choice ¢ player ¢ knows that either ¢ is true now or was
true in the past and, furthermore, she will always know this.

Before we prove the characterization result we draw attention to the following fact, which

is well-known in modal logic (see Chellas, 1984, p. 77).

Remark 1 Fiz a playeri and a node t that does not belong to player i, that ist ¢ X;. Then,

for every formula ¢, the formula K;¢ is true at t, that is, t = K;¢. In fact, for t ¥ K;¢ to be
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the case there would have to exist a t' such that t ~; t' and t' ¥ ¢. But ~; is defined only on
X; (that is, ~; is empty-valued on T\X;). Similarly, if ¢ is not a choice at t, then t = O.¢

for every formula ¢.

Proposition 2 The property of perfect recall (PR) is characterized by aziom (Apg), that
18,

(A) the axiom is valid in every extensive form with perfect recall, and

(B) if the axiom is valid in an extensive form, then the extensive form satisfies perfect

recall.

Proof. (A) Fix an extensive form that satisfies perfect recall and any model based on it.
Fix an arbitrary player i, node ¢, choice ¢ and formula ¢ and suppose that ¢t |= turn; A K;O.¢.
Then

t € X; and, for every ¢’ and 2’ such that t ~; t' and t' —. 2/, 2’ = ¢. (1)

If ¢ is not a choice at ¢, then ¢t = .4 for every formula v (see Remark 1), thus, in particular,
for v = K; (¢ V Po) N GK; (¢ V Pp). Suppose, therefore, that ¢ is a choice at t and let z
be such that ¢ —, . We want to show that z = K; (¢ V P$) AN GK; (¢pV Po). If z ¢ X;
then = = K;1) for every formula ¢ (see Remark 1). Suppose, therefore, that z € X;. Fix
an arbitrary y’ such that z ~; y'. By perfect recall there exist ¢ and z’ such that ¢t ~; ¢/,
' —cx' and ' Zy. If 2’ =y then by (1) ¥/ E ¢. If 2’ < ¢/ then by (1) ¥/ = P¢. Thus in
either case ' |= ¢V P¢ and therefore z |= K;(¢V P¢). Next we show that z = GK; (¢ V P¢).
Fix an arbitrary y such that x < y. If y ¢ X, then y = K;(¢ V P¢) trivially (see Remark 1).
Suppose, therefore, that y € X;. Fix an arbitrary ¢’ such that y ~; i/. By perfect recall there
exist ¢ and 2’ such that ¢t ~; ¢/, ¢/ —, 2’ and 2/ 2 ¢'. By (1) 2/ = ¢ and thus ¢/ | ¢V Po.
Hence y = Ki(¢V P¢) and z = GK;(¢ V Po).

Next we prove the contrapositive of (B), namely that if an extensive form does not satisfy
perfect recall then axiom (Apg) is not valid in it. Fix an extensive form that violates perfect
recall. Then there exist a player i, nodes t,y,y € X; and = € T, and a choice ¢ at ¢ such
that t —, x, x Sy and y ~; ¥’ and

for all ¢ and 2" if t ~; t' and t' »—, 2’ then 2’ # ¢/ and 2’ £ ¥/ (2)

11



Construct a model based on this extensive form where, for some atomic proposition ¢, the
truth set of g is the set of immediate successors of nodes in the information set of player ¢
that contains ¢ following choice ¢, that is,

llg|| ={2" € T :t' —.a' for somet' such that t ~;t'}.
Then

t = turn; A K;O.q. (3)

By (2) ¢ ¥ qVv Pq. Hence, sincey ~; v, y ¥ K; (¢V Pq). Thus, if z = y then z ¥ K, (¢ V Pq),
while if z < y then x ¥ GK; (¢ V Pq). In either case z ¥ K; (¢V Pq) N GK; (qV Pq). Thus,
since t —, z, t ¥ 0. (K; (qV Pg) N GK; (qV Pq)). This, together with (3), falsifies axiom
(Apgr) at node t. m

3 Perfect recall, memory and extended partitions

An implication of perfect recall is that at any decision node of player i the player remem-
bers what she knew at earlier decision nodes of hers. Formally, property (PR) implies the

following property (‘KM’ stands for ‘Knowledge Memory’)

Ift,y € X; and t < y, then for every ¢ such that y ~; v/
there exists a t' € X; such that t ~; t' and t’ < ¢/.

(K M)
(K M) says that if ¢ and y are decision nodes of player ¢ and ¢ precedes y, then every node

y" in the information set of player i that contains y has a predecessor in the information set

that contains ¢.°

6Perfect recall is a strengthening of this property in that it requires, in addition, that all the nodes in the
information set containing y be preceded by the same choice at the information set containing .
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Figure 3
An extensive form that satisfies (KM) but not (PR)

This property was first discussed in game theory by Okada (1987, p. 89).” An essentially
identical property, called ‘no forgetting’, was discussed by Halpern and Vardi (1986, p. 313).
Every extensive form with perfect recall clearly satisfies this property. However, there are
extensive forms that violate perfect recall and yet satisfy property (K M). An example is the
extensive form of Figure 3.

Within the context of systems of runs, where the knowledge of each agent is specified at
every instant (unlike extensive forms, where a player’s knowledge is specified only at those
nodes where the player has to move) Halpern and Vardi (1986) propose the following axiom
to capture the notion of ‘no forgetting’: K;G¢ — GK;¢,where G¢ stands for (¢ N Go), that
is, ‘¢ is true now and at every future time’. We shall consider the following, essentially

identical, version of this axiom: K;G¢ — GK;¢p. Adapted to the context of extensive forms,

See also Kline (2000, p. 288), who refers to it as ‘occurrence memory’ and Ritzberger (1999, p. 77), who
calls it ‘strong ordering’.

81t was later renamed ‘perfect recall’ in Fagin et al. (1995, p. 129). However it it not the same property
as perfect recall as defined above for extensive games.

9The authors use the symbol [J instead of G.
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where the knowledge of a player is specified only when it is her turn to move, the appropriate

version of this axiom is the following:

This axiom says that if it is player ¢’s turn to move and he knows that it will always be
the case that ¢, then at every future time player ¢ will know that ¢. To the best of our

knowledge, the following characterization has not been proved in the literature.

Proposition 3 Property (KM) is characterized by axiom (HV'), that is,
(A) the axiom is valid in every extensive form that satisfies (KM), and

(B) if the aziom is valid in an extensive form, then the extensive form satisfies property

(K M).

Proof. Fix an extensive form that satisfies property (K M) and any model based on it.
Let ¢ be a node such that, for some formula ¢ and player i, ¢t = turn; A K;G¢. Then t € X;.
Fix an arbitrary y such that ¢ < y. We need to show that y = K;¢. If y ¢ X; then y = K;¢
trivially (cf. Remark 1). Suppose, therefore, that y € X;. Fix an arbitrary y’ such that
y ~; y'. By property (KM), there exists a t’ such that ¢t ~; ' and ¢’ < ¢/. Since t = K;G¢
and t ~; t', t' = G¢. Thus, since t' < ¢/, /' = ¢. Hence y = K;¢.

Conversely, fix an extensive game that violates property (K M). Then there exist a player
1, nodes t,y € X; with t < y, and a node y’ such that y ~; v’ and

for all ¢ such that t ~; t', t' £ ¢/'. (4)

Let ¢ be an atomic proposition and construct a model where the truth set of ¢ is the set
of successors of nodes in the information set of player ¢ that contains ¢, that is, ||q|| =
{reT:t <z for some t'" with t~;t'}. Then t = turn; A K;Gq. By (4), ¥/ ¥ q. Hence,
since y ~; ¢/, y ¥ K;q. Thus, since t < y, t ¥ GK,q and axiom (HV') is falsified at t. m
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As noted above, in the computer science and logic literature that deals with the inter-
action of knowledge and time, the knowledge of an agent is specified at every instant. One
could do the same in extensive forms by extending the information partition of player ¢ from
the set X; of his decision nodes, to the set of all nodes T'. That is, one could define, for every
player i, an equivalence relation R; C T x T satisfying the property that if x € X, then, for
all y € T, xR;y if and only if x ~; y. In other words, the restriction of R; to X; coincides
with ~;, so that the original information sets are preserved. Having done so, one can then
define an extension of property (K M) to the entire set T, that is, dropping the restriction

that t,y S Xz

If t < y and yR;y/, then there exists a t’ such that tR;t' and t' < v/. (KMgxr)

With a proof similar to that used for Proposition 3 it can be shown that (K Mgxr) is
characterized by the following simplified version of axiom (HV'), obtained by dropping turn;
from the antecedent:

The following proposition shows that (HVgxr) is equivalent to the following axioms,

which capture more explicitly the notion of remembering what one knew in the past:

PKi¢ — KiP¢ (MEMg)
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K¢ — GK;Po. (GMEMg)

Axiom (M EMjp) (which stands for ‘memory of past knowledge’) says that if at some
point in the past player ¢ knew that ¢ then she knows now that some time in the past it
was the case that ¢. While this axiom is backward-looking, (GM EM[) is forward-looking:
it says that if player i knows that ¢ now then at every future time she will know that some

time in the past it was the case that ¢.

Proposition 4 The three axioms (HVexr), (MEMg) and (GM EMk) are equivalent.

Proof. We give a syntactic proof. First we prove the equivalence of (HVgxr) and
(GMEMfF).
Derivation of (HVgxr) from (GM EMy) (PL stands for ‘Propositional Logic’):
1. K;Gp — GK;PG¢ instance of (GMEMf)
2. PG¢p— ¢ axiom of basic temporal logic (see Burgess, 1984, p. 93)
3. K,PG¢p — K;¢ 2, normality of K;
4. GK;PG¢ — GK;¢ 3, normality of G
5. K,Gd— GKid 1, 4, PL.

Derivation of (GM EMy) from (HVgxr):
1. K,GP¢p — GK;P¢ instance of (HVgxr)
2. ¢ — GPo axiom of basic temporal logic (see Burgess, 1984, p. 93)
3. K,p— K,GP¢ 2, normality of K;
4. K;p — GK;P¢ 1, 3, PL.

Next we prove the equivalence of (GM EMy) and (M EMf).
Derivation of (GM EMk) from (M EMf):
1. PK;¢p — K;P¢ axiom (M EMy)
2. GPK;¢p — GK;P¢ 1, normality of G
3. — GPy axiom of basic temporal logic (see Burgess, 1984, p. 93)
4. K;p — GPK;¢ instance of 3
5. K — GK;P¢ 2,4, PL.

Derivation of (M EMy) from (GM EMk) :
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1. K¢ — GK;P¢ axiom (GM EMk)

2. F-K,Pp— —K;¢ 1, PL (recall that G = ~F'—)

3. HF-K;Pp— H-K;p 2, normality of H

4. PK;¢p — PGK,P¢ 3, PL (recall that G = =F— and H = = P-)

5. PGy — axiom of basic temporal logic (see Burgess, 1984, p. 93)
6. PGK;P¢p — K;Po instance of 5

7. PKip — KiP¢ 4,6, PL. m

An interesting question is whether, given an extensive form that satisfies property (K M)
(or the stronger property of perfect recall), it is possible to define an extension R; C T x T
of ~; that satisfies (K Mgxr). In other words, given an extensive form where, whenever it
s his turn to move, a player remembers what he knew at earlier decision nodes of his, is
it possible to define an extension of the information partition (from the set X; of player i’s
decision nodes to the set T of all nodes) that satisfies the property that at every instant the
player remembers what he knew in the past? It turns out that there are cases where it cannot
be done. Consider, for example, the extensive form of Figure 2, which satisfies perfect recall
and therefore also property (K'M). The set of decision nodes of player 2 is Xy = {¢,t',z, 2’}
and her information sets are {¢,¢'} and {x,z'}. There are only two possible extensions of
player 2’s information partition to the set of all nodes: one where nodes ¢y and y belong to
two separate equivalence classes, namely {¢y} and {y}, and the other where they belong to

the same equivalence class, namely {to,y}.!Y In other words, the possible extensions are:

RA = {(to, tO)v (t7 t): (t7 tl)7 (t/7 t): (tlv t,)v (y7 y)v (l‘, 1‘), (l‘, 1‘/), (xlv (L‘), ($/, $/)}, and

WEor simplicity we have ignored terminal nodes. Considering also terminal nodes, there are more —
although less natural — possibilities (e.g. including node t¢ in the same equivalence class as a terminal node,
thereby postulating that at node tg player 2 is uncertain as to whether the game has not started yet or
has already been completed). It is straightforward to verify that all these possibilities involve violations of

property (KMgxr).
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Ry = {(to, to), (to, y), (¥ to), (v, ), (1, 1), (1, ), (', 1), (£, 1), (2, 2), (2, 2'), (2, ), (2, ') }.

Both R} and RE violate property (KMpgxr): R} because y < 2/, 2’ Rj'x and there is no
node v such that yR{v and v < z; RY because t' < y, yRPt, and there is no node v such
that ' RPv and v < to. Intuitively, with B3 player 2 learns at node y that player 1 has to
move (and choose between e and f ), but later (at node z') forgets this piece of information.
With RZ, on the other hand, at node y player 2 forgets what he knew previously (at node
t'), namely that the game had started and player 1 had made a choice between a and b.

There is, however, a class of games for which the extension discussed above is possible:
it is the class of von Neumann games. For every ¢ € T, we denote by £(t) the number of
predecessors of ¢ (i.e. the length of the path from the root to t). Thus ¢(ty) = 0 and if z — y
then ¢(y) = ¢(z) + 1. The following definition is taken from Kuhn (1953; p. 52 of Kuhn,

1997).

Definition 5 An extensive form is von Neumann if, whenever t and x are decision nodes
of player v that belong to the same information set of player i, the number of predecessors of

t is equal to the number of predecessors of x. Formally: ¥i € N, Vt,x € X;, if t ~; x then

For example, the extensive forms of Figures 1 and 3 are von Neumann, while that of
Figure 2 is not. Battigalli and Bonanno (1999a) show that given a von Neumann extensive
form that satisfies perfect recall, for every player ¢ there is an extension of the information
partition of player ¢ from X; to the entire set of nodes T" that satisfies property (K Mgxr). A
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simple adaptation of their proof shows that the hypothesis of perfect recall can be weakened
to the hypothesis that the extensive form satisfies property (K M). On the other hand,
Bonanno (2001a) shows that if an extensive form is such that, for every player i, there is
an extension of the information partition from X; to the entire set of nodes T that satisfies
property (K Mpgxr), then the extensive form is von Neumann. Thus we have the following

proposition.

Proposition 6 Fix an arbitrary extensive form that satisfies property (KM). Then there
exists, for every player i, an extension of the information partition from X; to T that satisfies

(KMgxr) if and only if the extensive form is von Neumann.

4 Related literature

Several semantic characterizations of perfect recall have been proposed in game theory.
Okada (1987, Proposition 4, p. 89) shows that, within the class of extensive forms that
satisfy property (K M), perfect recall is equivalent to complete inflation, a property intro-
duced by Dalkey (1953).!" Ritzberger (1999, Theorem 2, p. 81) offers a number of alternative
semantic characterizations of perfect recall, involving properties such as complete inflation,

weak and strong recall, etc. Neither of these authors offers an axiomatization or syntactic

T An extensive form is completely inflated if there is no information set that contains an isolated subset.
A subset v of an information set h of player i is isolated in h if, for every two nodes y € v and 3’ € h\v,
there exists another information set h’ of player ¢ and two distinct choices ¢ and ¢’ at A’ such that y comes
after choice ¢ and 3y’ comes after choice ¢’.
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characterization of perfect recall or its component properties, such as (KM).

The interaction of knowledge and time has been studied extensively in computer science.
In particular, as noted above, property (K M) is essentially identical to a property introduced
by Ladner and Reif (1986) and Halpern and Vardi (1986). In the latter it was called ‘no
forgetting’. Halpern and Vardi (1986) also provide a sound and complete axiomatization of
systems that satisfy ‘no forgetting’ and are synchronous (i.e. the agents have access to an
external clock). The key axiom is K; Q¢ — (O K¢, where () is the ‘next time’ operator, that
is, t = (O¢ if and only if ¢ is true at every immediate successor of t. A thorough account of
sound and complete axiomatizations of systems where knowledge and time interact is given
in Halpern et al. (2002).

A paper which is closely related to ours is van Benthem (2001), which views extensive
games as models for a joint dynamic-epistemic language. Properties of those games are
shown to be definable by certain axioms in that combined language. In particular, van

Benthem proposes the following axiom to capture perfect recall:

Axiom (vB) says that if it is player ¢’s turn to move and he knows that after choice ¢ it will
be the case that ¢ then after choice ¢ player ¢ knows that ¢. The following results show that

van Benthem implicitly restricted attention to von Neumann games.

Proposition 7 Aziom (vB) is valid in every von Neumann extensive form that satisfies
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perfect recall.

Proof. Fix a von Neumann extensive form with perfect recall. Fix an arbitrary node ¢
such that, for some player 7 and choice ¢, t = turn; A K;O.¢. Since t |= turn;, t € X;, that
is, t is a decision node of player i. Let y be the immediate successor of ¢ following choice
¢, that is, t —. y. If y ¢ X;, then y = K;¢ trivially. Suppose, therefore, that y € X;. Fix
an arbitrary ¢’ such that y ~; ¢/. By perfect recall, there exist ¢ and z’ such that ¢ ~; ¢/,
t' —. 2 and ' 3 ¢/. Thus, since t | K;[0.¢, 2’ = ¢. Since the game is von Neumann and
t ~;t', L(t) = L(t') (recall that ¢(x) denotes the number of predecessors of x). Similarly, it
follows from y ~; ¢/ that £(y) = £(y'). Since y is an immediate successor of ¢, £(y) = £(t) + 1
Thus £(y') = ¢(t') + 1, that is, ¥ = /. Hence v/ = ¢ and y = K;¢ and ¢t |= 0. K;¢. m

ILEE

Figure 4
A von Neumann extensive form without perfect recall

The converse of Proposition 7 does not hold, that is, a von Neumann extensive form that
validates axiom (vB) does not necessarily satisfy perfect recall. To see this, consider the von
Neumann extensive form of Figure 4. Here axiom (vB) is trivially valid, since the immediate
successors of a decision node of player i are decision nodes of the other player and thus at
those nodes K;¢ is trivially true for every formula ¢. However, the extensive form clearly
violates perfect recall (indeed it even violates (K M)).
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It is worth emphasizing that validity of (vB) in the extensive form of Figure 4 can still
be guaranteed even if the information partition of player i were to be extended to the set of
all nodes. In other words, it does not hinge on the fact that at a node that does not belong
to X; player ¢ trivially knows everything. To see this, extend the information partition of
player ¢ in such a way that the equivalence class of a node not in X; consists of that node
only. For example, for player 1 we would add the following ‘extended information sets’: {z}
and {y}. It is easy to verify that with such an extended partition axiom (vB) remains valid.
However, the following result says that if, for every player i, there is an extended partition
that satisfies (K Mgxr) (implying that the extensive form is von Neumann) then validity of

(vB) in the extended structure does guarantee that the extensive form satisfies perfect recall.

Proposition 8 Let G be an extensive form and, for every playeri € N, let R; CT' X T be
an extension of the information partition ~; from X; to T that satisfies property (K Mgxr)
(thus, by Proposition 6, G is von Neumann). If axiom (vB) is valid in <G, {Ri}i€N> then G

satisfies perfect recall.

Proof. Let G be an extensive form and R; an extension of ~; that satisfies property
(KMpgxr). Suppose that axiom (vB) is valid in (G, {R;},.y) but G does not satisfy perfect
recall. Then there exist a player i, nodes t,y,y" € X; and = € T, and a choice ¢ at ¢ such
that t —. x, z Zy, y ~; ¢y and

for all ¢ and 2" if t ~; t' and t' »—, 2’ then 2’ # ¢/ and 2’ £ ¥/ (5)

Construct a model where, for some atomic proposition ¢, the truth set of ¢ is the set of
immediate successors of nodes in the information set containing t following choice ¢, that
is, ||lq|| = {v € T : t' —. vfor some ¢’ such thatt ~; t'}. Then t = turn; A K;0.q. By the
postulated validity of axiom (vB), t = O.K;q. Thus, since t —. x, = K;q. Hence, for
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every ' such that xR;z’, 2’ |= q and therefore, by construction of ||g||, ¢’ . 2’ for some ¢’
such that ¢ ~; t'. Since x X y and y ~; ¢/, by (KMgxr), there exists a 2’ such that zR;x’
and 2’ 2 %/, contradicting (5). m

The following characterization result is a consequence of Propositions 6, 7 and 8. It

should be noted that van Benthem (2001) explicitly dealt with extended structures where

the knowledge of each player is specified at every node.

Corollary 9 Let G be an extensive form and, for every player i € N, let R, C T x T be
an extension of the information partition ~; from X; to T that satisfies property (K MgxT).

Then G is von Neumann and, furthermore, G satisfies perfect recall if and only if axiom

(vB) is valid in (G, {Ri};cn) -

By Proposition 7, axiom (vB) is valid in von Neumann extensive forms that satisfy perfect
recall. However, in extensive forms that are not von Neumann it is no longer true that perfect
recall guarantees validity of axiom (vB). To see this, consider the extensive form of Figure
2, which satisfies perfect recall. Let ¢ be an atomic proposition and construct a model where
the truth set of ¢ is {z,y}. The model is shown in Figure 5, where only the relevant portion
of the tree is highlighted and the formulas that are true at a node are written next to it.
Since ||q|| = {z,y}, Oaq is true at both ¢ and ¢’ and therefore at ¢ player 2 knows that [J,q:
t = K>04q. Furthermore, since t € Xo, t |= turny. Thus t = turng A Ko[yq. Since q is false
at 2’ and z ~o 2/, it is not the case that player 2 knows that ¢ at x: x ¥ Kyq. Thus, since
t —q x, t ¥ 3Koq. Thus we have constructed a model where axiom (vB) is falsified at node
t. Note that this example does not hinge on the fact that player 2 trivially knows everything
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at node y (since it is not a decision node of his: see Remark 1). In fact, we could take an
arbitrary extension Ry of player 2’s information partition ~;. Whatever the equivalence class
of Ry that contains node y (one possibility is {y}), the example is not affected. Of course,

as explained in the discussion of Figure 2, such an extension Ry cannot satisfy (K Mgxr).

turn,, L1430 ,K,[]4q ‘ .
—[gK, g

t 2 t"Jqu
d d

1
qu

0 K:a ¥x 2 x¥|

Figure 5
A portion of the extensive form of Figure 2

While axiom (Apg) characterizes perfect recall in the class of all extensive forms, axiom
(vB) provides a characterization only in the subclass of von Neumann extensive forms that
satisfy the conditions of Corollary 9. The appeal of axiom (vB) is in the fact that it is based
on a simple commutation of two modal operators: in the antecedent we have K;[]. and in the
consequent [1.K;. It was pointed out to me by Johan van Benthem that with an opportune
choice of temporal operators also axiom (Apg) can be seen as involving a commutation of

operators. To show this we define two new temporal operators, G and H, as follows:

def def

Gop = ¢NGo and Ho = ¢ A Ho.
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Thus G'¢ says that ¢ is true now and at every future time and H ¢ says that ¢ is true now

def

and was true at every past instant. Let P be the dual of H, that is, pgb e | —¢. Then

P¢ is equal to (¢ V P¢). Using these operators, axiom (Apg) can be rewritten as

tUTTLi N KZ|:|C¢ — DCGKZP¢ (APR)

The following proposition and proof were suggested to me by Johan van Benthem.

Proposition 10 Aziom (Apg) is equivalent to the following

turn; A K;0.Gp — O.GK;6. (vBApg)

Proof. Derivation of (vBApg) from (Apg):

AR S

6.

turn; A\ Kiljcécb — DCGKiPGqS instance of (Apg)

Jf’éqﬁ — ¢ theorem of basic temporal logic
KZPG¢ — K¢ 2, normality of K;
GK,PGp — GK;¢ 3, normality of G;
O0.GK,PGp — 0.GK;¢ 4, normality of [J,

turn; N Kiljcéfé — DC@K,»QS 1, 5, PL.

Derivation of (Apg) from (vBApg):

1.

SRR

turn; A K;0.Gp — 0,GK;¢p  axiom (vBApg)

¢ — Jf’gb theorem of propositional logic
K¢ — szgb 2, normality of K;
GK;p — GK;P¢ 3, normality of G
0.GK;¢ — 0.GK;P¢ 4, normality of [,

turn; N Kiljcéfé — DCG’KJA’(? 1,5 PL.m

The appeal of axiom (vBApg) is that it involves a commutation of the operators K; and

the concatenation of [, and G, thus yielding an axiom which is close in spirit to axiom (vB).
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5 Conclusion

Perfect recall is a central property in extensive games. Kuhn (1953) introduced this prop-
erty and showed that the equivalence between mixed strategies and behavioral strategies
holds only in games with perfect recall.’>The purpose of this paper was to contribute to a
better understanding of perfect recall by providing a syntactic characterization of it in a
temporal-epistemic logic and by relating it to similar properties studied in computer science
and logic. The recent debate on the paradoxes of decision-making when perfect recall is
lacking (see Games and Economic Behavior, Vol. 20, 1997) points to the need for a deeper
understanding of the different aspects or components of perfect recall and their role in ratio-
nal decision-making. For example, Kline (2002) finds that a weaker condition than perfect
recall is both necessary and sufficient for the equivalence between ex ante optimality and
time consistency.'> Bonanno (2003) studies different aspects of memory that are implied by
the notion of perfect recall and their relationship. The role of perfect recall, or memory in

general, in rational decision-making is in need of further exploration.

12 A pure strategy of player i in an extensive game is a function that associates with every information set
of player i a choice at that information set. A mized strategy of player ¢ is a probability distribution over
the set of pure strategies. A behavioral strategy of player i is a collection of probability distributions, one for
each information set of player i. Each probability distribution is over the set of choices at the corresponding
information set.

I3A strategy of a player is ex ante optimal if it maximizes the player’s expected payoff before the actual
play of the game. It is time consistent if the player does not wish to modify it during the play of the game.
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