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EXTENSIVE GAMES WITH PERFECT INFORMATION

tree
n players

assignment of one player
to every non-terminal node

assignment of aardinal
payoff to every player at
every terminal node




BACKWARD-INDUCTION SOLUTION

(1 is rational a-— QA
and believes

that everybody ?
Is rational)

7
(2 is rational)
2
0

(1 is rational)

0) 2
(3 is rational 3 1
and believes
1 to be rational) 4 @



STRATEGIES IN PERFECT-INFORMATION GAMES

Non-terminal nodes are X : set of decision nodes
calleddecision nodes X. : set of decision nodes assigned to eta

Definition. A strategy of playeris a function that assigns to every

x X. a choice atx

Player 1's strategies:
(a,9), (&h), (b,g) and b,h)

0
3 1
4



THE STRATEGIC FORM OF A PERFECT-INFORMATION GAME

ag
ah

Player 2
ce cf de df
2,2 2,2 1,1 1,1
2,2 2,2 1,1 1,1
1,3 0,3 1,3 0,3
1,3 2,1 1,3 2,1




EPISTEMIC MODEL OF A PERFECT-INFORMATION GAME
(Knowledge based)

e Set of states?
» Equivalence relatiod on Q for every player
 For every playera function g, : Q - § satisfying

if 0K (w) then o @ )=0 @)

Thus a standard epistemic model for the assocsitategic form



Recall from Lecture 1:

Lets andt, be two strategies of player S, LS

S > ’[i IS interpreted as “strategyis better for playerthan strategy, ”

§ > U istrueatstateoif U(s,0,(w) > u(t,o, (w))

that is,§ Is better tham, againsto,(w) profile of strategies chosen

by the players other than

Let HS =t H :{CUDQ U (§,0, )>u ¢ .0 (CU))} event thas is better than,

If sOS, let |s|={w0Q:0(w)=5} eventthat playerchooses



Let REA be the event representing the proposition “playgex ante rational”

sl n Killt = s} O -R™

~R™ = U U (HSH n K Hti ~ SH)

s0S 09
EA __ EA EA
R = Rl N...N Rn all players are rational

Recall from Lecture1:
PROPOSITION: if at a state there is common knowledgeoénte
rationality then the strategy profile chosen at #tate belongs to the game
obtained by applying the iterated deletion of ffidominated strategies;
conversely, for every such strategy profile thera model and a state
where (1) the strategy profile is chosen and (8)ehs common knowledge
of ex ante rationality. 8



This notion of rationality is not sufficient
to yield backward induction

ag
ah

Player 2
ce cf de df
2,2 2,2 1,1 1,1
2,2 2,2 1,1 1,1
1,3 0,3 1,3 0,3
1,3 2,1 1,3 2,1

Here there are no strictly
dominated strategies

Thus every strategy profile is
consistent with common
belief/knowledge oéx ante
rationality




Player 2

For example: ce cf de df
ag| 2,2 | 2,2 1,1| 1,1
Player ah 2.2 2,2 1,1 1,1
1 'bg| 1,3 0,3 1,3 0,3
bh | 1,3 | 2,1 1,3| 2,1

1's strategy: ah bh
2's strategy: de de

Here:ex ante rationality and common
knowledge ofex ante rationality at

(For 2ce better tharde ata but not af3, thus
both states. 10

ata she does not know theg is better.)



Let RE~S be the event representing the proposition “playgex ante rational
In a strong sense”

Isl 0 K[t =, s 0 ~Kaft = 0 -R™

-R™* = U(Is n &It =, s 0 =K [t = s)

§U9 Gt

REA/S — REA/S N...N EA/S all players are rational in a
strong sense

Recall from Lecture 1.
PROPOSITION: if at a state there is common knowledgeoénte
rationality in a strong sense then the strategfilprohosen at that state
belongs to the set Tof strategy profiles that survive the iterated tiefeof
Inferior profiles; conversely, for every such st profile there is a model
and a state where (1) the strategy profile is amasel (2) there is common
knowledge ofx ante rationality in a strong sense. 11



ag 2,2 2,2 1,1 1,1 player 1 usingh
ah 2,2 2,2 1,1 1,1 player 2 usinge
bg | 1,3 0,3 1,3 0,3
bh 1,3 2,1 1,3 2,1
ce cf de
ag 2,2 2,2 1,1 player 2 usingf
ah 2,2 2,2 1,1 player 1 usin@h
bg 1,3
bh 1,3 1,3
ce cf de
ag| 2,2 2,2
ah 2,2 2,2
1: @ bg 1,3
o bh 1,3
2: o]
I's strategy: bg Thus even common knowledge ex ante rationality in a

2's strategy: de strong sense is not sufficient to yield backwantliztion

In this example all the strategy profiles ifi &re Nash equilibria. Is it the case that
common knowledge of ex ante rationality in thestygense gives Nash equilibrium
play in perfect information games? 12



The answer i1s NQ!

1 2 3 :
W e o
X 2 3
1 > 4 o B
ai az as e o
d1 d2 ds 4~ Backward 2: i o
4 induction N
solution a B
3 2 1 3:(el e
3 2 1 T —
3 2 1 al al
d2 a
There is no Nash equilibrium that yields the play, (the ds as
Nash equilibria are marked in blue)
a2 d2 a2 d2 a2 d2 a2 d2
al | 444 | 2,2,2 11,1 2,2,2 al | 444 2,2,2 2,2,2
di| 333 333 333 | 333 > dl | 3,33 3,3,3 3,33 3,3,
a3 d3 a3 d3
First round: eliminateg a, d, ) through player 3 agd
—_ a2 d2 a2 d2
d d: el tey(d th hysa 2
second round: eliminatey(d, a, ) throughy®a2 andh, a 722 27
dl | 3,3,3 3,3,3 3,33 33,3
a3 d3

13



Going beyond ex ante rationality

Given a strategy profil§ , 1g0(S)  be thssociated ple

p((ag,df )) = %X%14;
p((bh, df )) = XpXoX3Zs

Definition. At statecw node Iscached
if and only ikO p(o @ )) .

S 14



Definition. Given an epistemic model, for every 1
nodex , let|x| be the event that node resched:

I :{a)D Q:x0O p(a(a)))}

o o o o
1's strategy: ag bh bg bh bg
YA Z
2's strategy: df df ce de cf )

x|={a, |x|AByI&
o|=(a4. |2]=0 |z|=a et

15



Let E,F [1Q be two events.
Denote byE - F theeventELIF @& thén

Let RRN be the event representing the proposition “playerationalat
reached nodes’

fxox, X0 [s] 0 K (¥ - [t = s]) & -R™

~R™ = U U(lsl o & (I =[5 = sl) o 4]

xOX; 509 03

RRN — RRN N ...N RN all players are rational
1 at reached nodes

16



y X, X,
1
1: e e o —1 az)l g
di d2 ds
o B 0 €
2. e ° o |o ° i 4 g
aids aias dias dias
a az az d2
|d; - a,] ={a} |%[={a. 8.8  ~|x|Old, >, a]={a y &

K, (”Xz” - ||d2 5 az”) =1  Thus player 2 is rational at nodesindp and trivially aty.

”az ~ d2||:{,315} ||x2||:{a',,8,5} ﬂ”Xz”D”az >'2dz”:{,31 Y, O, &
K2(||x2|| - |a, >20|2||) =10, & 1% n{ld,] n K2(||x2|| - ||a2>2d2||) ={g

Thusplayer 2 istrivially rational at stat®, andirrational at €. .



Backward Induction terminating games

Definition. A Bl terminating game is a perfect information game where
(1) at each decision node there is a choice tineinetes the game (it leads to a
terminal node) and (2) the backward-induction sofuprescribes a terminating

choice at every decision node.

The best-known example is
the centipede game (n is the
number of decision nodes)

w(z)=2 forl<k<n
u,(z) =1 u(z) =U,(z,)
U,(z) =u(z.,) +2

If nis even If nis odd

u1(2n+1) :ul(zn)+1 u1(2n+1) :ul(zn) -1
U,(z,,,) =u,(z,) -1 U,(Z,,,) =Uy(z,) +1

if nis even
1 2 1 2
a1 a as - an Zn+1
di d2 ds dn
Zl Z2 23 Zn
if nis odd

1 2 1 1
a1 a a - an Zn+1
di d2 da dn
Z, Z, Z, z
18



n=4

2

1 4 3

1 2 1
al a2 a3
d1 d2 ds da
2 1 4

3
6

> 4
aa 5

Definition. Given an epistemic model ofd terminating game, let Bl be the event that
the backward-inductioplay obtains, that is,B| :{wD_Q; p(o(w)) = xlz]}

1: e

RN
B Y 0

E
26 o o o o
aids aias diaz dias aias

az az az d2 d2

Bl = {v,0}

X

2
2

1
Xy
djl
2
1

ai
d2
1
4

1

X3

>

a as

;I
4
3

19
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PROPOSITION 1. In every Bl terminating gamds, R™ 0 B

PROPOSITION 2. For every Bl terminating game, therais
model of it wherel,R™ # [J

Aumann, R., A note on the centipede gaames and Economic Behavior, 1998, 23: 97-105.
Broome, J. and W. Rabinowicz, Bacwards inductiothencentipede gam@nalysis, 1999, 59:237-242.
Rabinowicz, W., Grappling with the centipe@&pnomics and Philosophy, 1998, 14: 95-126.

Sugden, R., Rational choice: a survey of contrdngifrom economics and philosoplEgonomic Journal, 1991, 101:751-785.

Note: it is not necessarily the case thabifl 2 is such that atvthere is
common knowledge of rationality thet ) coincides with the backward-
inductionstrategy profile. What is true is that player 1's strategy assiges
terminating choice to the root.

Y 1: e

1 2 1
a X X2 %3
1 ) 3
) a as
2: o . ;
d1 d2 ds
dias
2 1 4
d2 1 4 3 20



In general perfect-information games common knogdeof

Rationality at Reached Nodes dows yield the backward-
iInduction play.

1: e
a The backward induction
2: e play isl,I, while in this
r model we get,|,;

rals

w w
o o
[ERY

o o

(r,.rol;) is a Nash equilibrium. Does common knowledge atidhality at Reached
Nodes at least yield a play that can be sustaigedNash equilibrium?

21



NO! In general, common knowledge of Rationality at ReacNodes does not yield
Nash equilibrium play

1 2 3
y X, X,
1 ) .
T G Ne X R e o
d1 d2 ds j ¥ Backward a B
induction
solution 2: @ @
3 2 1
3 2 1 a B
> e e
al ai
d
2 a2 a2 ? a
al | 444 | 2,2,2 1,11 22,2 ds as
di | 3,3,3| 3,33 333 | 333
a3 d3

The Nash equilibria are marked in blue

22



Dealing with general perfect-information games

Let x[J X, be a decision node of player rid& byS" the set of player
strategies in the subgame that starts at mode .

" S ={ag ah bg,bl}, S*={ g h
S ={cd,cf,dedf}, S:={¢d, S:£ e}

0
3

23



Let x be a decision node of playeand let §,t" S

be two strategies of playem the subgame that starts at nade

S tX IS interpreted as "for player , strategfyis better than strategy
In the subgame that starts at nade "

SX ~ tix IS true at statev if, starting from nodex,

S” gives a higher payoff to player thein againsio_, ¢

Let |§° > t*| betheeventtha >~ t* istr

If XIs a node of player , let. «f )| dendtes restriction of
o (w) to the subgame that startat
If sTOS let

| ={whQ:5 =0 W)|}

24



SUSBSTANTIVE RATIONALITY (Aumann, GEB 1995)

RecallthatifEFOQ , E - F istheevestELF (if E thenF)

Let RSk be the event representing the proposition “playgisubstantively rational”

|

if xUX

x) B _IRSR

K (J = s1)

RSR = RSR N...N SR all players are
1 substantively rational

-R*=J U U(Js

XUX; s0S* t,0S*

25



=
N
=

1: @ ‘ ® ¢ I " ¥ - ¥ > 3

2. @ o @

aids dids dids

az az d2

R ={a, B )} (exanterationality)
R ={ 1 (rationality at reached node
R¥ ={)} (substantive rationality)

26



PROPOSITION 3. In every perfect information gami&, R™ 0 Bl

PROPOSITION 4. For every perfect information game, taes a
model of it wherek,R™ # [

Aumann, R., Backward induction and common knowleafgationality, Games and Economic Behavior, 1995, 8: 6-19.

27



1: e
a
2. @
dias

d2

1 2 1
X X
X 2 3
1
a a3 >3
al 6
d1 d2 ds
2 1 4
1 4 3

Why is player 2 substantively irrational at staWhat is true at statethat makes player

2 substantively irrational?

At statea player 2 is not taking any actions, because heerpd not reached. In fact, at
statea player 2 knows that her node is not reached. So what makes [atiomal
(according to the notion of substantive rationalityust be heplan to choosed, if her
decision node were to be reached. This is acounterfactual statement.

28



1:[e) [o e .

a By
2:[e o] e III

aids dids dids

az az az

The association of a strategy profile with eveatesgives rise towo types of counterfactuals:

(1) An objective statement about what the relevéatgy would do at a node that is not
reached.

(2) (With the help of the partitions) a subjectivatement about what a player believes would
happen if he were to take a different action frbeane he is actually taking.

(1) Thus at statgit is true thaplayer 2 would take actiom, if her nodex, were to
be reached (although it is not in fact reachedsdredknows that it is not reached)

(2) At state{3 andy player 1 knows that if he were to take actiapinstead ofd, at
the root (he knows that he is takidg then his payoff would be 4 (the payoff
associated with,a,d.) 29



Modeling counterfactuals indirectly through straésgs not satisfactory. We have
abandoned the modular approach suggested in Leltgnace there exists a module
that deals with counterfactuals.

Modeling Counterfactuals

For everywl1 Q2 , letP? be arelation @  shfiisg, Ua,50Q2,

(1) eitheraOP, ) oiBUP, & ) (completeness)
2)if pUP (a) then?, G )UP @) (transitivity)

Q) if alUP (B) andfUP (a) thena=L£ (antisymmetry)
(4) wOP, (w), foralla 0Q (centerax$s)

The interpretation o8P, A ) o@P [ s that state iseast as close tq
to statecw as stafg |s. Thus, for ev@stew , the closeness relat@)  deteasi
a strict ordering of the set of sta based on closeneszto , with itbelhg the
closest state.

P (a) = set of states that are not closewtthana is
30



REPRESENTATION

Q={a By
o B Y, 0
o o o o
closest o B y 0
\é g 2 5 ordering
farthest Y B a

Given a statev and an everi, denote by mir,E) the closest state
to wthat belongs to evell Thus ifwl E, then min@wE) = w.

In the above example, B= £ J, }then mia(E, 9p

31



Recall that, if E F 1 Q are two eventg, - F denotessent-E [ F
(if EthenF ). ThuswE - F ifeithewldE owlENF
- represents the material conditional, which is trenever the antecedentadse

We use the symboP> to denote the counterfactual conditional.
Thus E 2 F is interpreted as “IE were the case thédawould be
the case”

Definition. E>F ={w0.Q : min(w,E)OF}

a B Y 0

° ° ® ® f E={Z Jand F ={q, y; J
closest « B Y 0 then E=F = {V,5}

y a 6 B - - -

! a ° ¢ while E - F ={a, y,J}
farthest Y B a

Note that, foralE FO Q ,EYFUE - F 32



MODELING STRATEGIES WITH COUNTERFACTUALS

Given a perfect information game define an epistamodel of it as before, butith
the following changes:
(1) replace the@ functiong Q - S with a single functbn® — P where
P is the set of plys of the game written in terms of actions taken,
(2) add a set of closeness relati¢ts}

I 'I I A e @
2 ) @BEF& 2: al:?] @

a B Y o
2.0 e o] Noob v

aids dids dids

a2 az az 33



We add two more requirements:
(3) for every play there is at least one state wileat play is realized

(4) if, at a state, nodeof playeri is reached and he takes actsothere,
then he knows that ifis reached he takes actian |a| O K; (||X| - ||al])

1 2 1
. al a2 a3
1: @ o o dll :21 ;I 6
o B Y 0 €
2 1 4
2: o o o o ° 1 4 3
aia2ds aiazas d1 d1 aidz
‘ g y 5 ‘ || ={a B & |a]={a A
o)
z : : y y %] - [la.]| =[x Ofa] ={a 5 v &
€ (0 a
: 5 : B B Ky (%]l - Jla]) ={a; B. 1

34



EXTRACTING STRATEGIES FROM A MODEL

Given a model we can extract a strategy profievary state as follows.

If 5 is a strategy of playerandx; is a decision node of playerdenote by
s(x) the choice prescribed Isyatx; .

Defineo;(w) as follows:o,(w)(x) = ¢ if and only if CUDH)Q HL’HC, H

o,(y) =d,a, (for nodex, we use state

a B Y 0 € 0,(9) =dd, (for nodex, we use state

2 o ® °o ‘ ® ® ‘ g,(¢) =ad, (for nodex, we use state
aiazds aiazas d1 d1 aidz

o,(a)=4a,, 0,(f)=a,
a,(y) =a, (for nodex, we use stafe
a,(0) =d, (for nodex, we use stage

o,(e)=d,

n o< ™A
oM o< ™
m o<
A< m o
A< om

35



From

1: e R
a B % o €

2: o o o o o
aia2ds aiazas d1 d1 aid?

a B % 0 €

B y B € 5

Y a a Y Y

o) € o) o o

€ 0 € B B

We get
R R
o B Y o €
26 o o o e
aids aias diaz dids aids
az az az d2 d2

In this model it is not true that players
know their own strategies. E.g. player
1 at statey

In order for a counterfactual model to give risatstandard model based on
strategies, we need to impose a further condition:

G (x]=lel) - K (IxI=l<])

36



RE-DEFINING RATIONALITY AT REACHED NODES

Letx be a decision node of player and and be two
choices of player &

If mis a number, lef7z =m| be the event that playeraigoff ism.

If kand/ are numbers, ¢k >/¢|=Q Kkf>¢ antk>¢|=0 otherwise

el 7 =K 0 K (Ix] - (16 11z =) e >K] O R

37



o N

KA N

o]

X2 X3
X, >
o B y 0 € al 2 a g
2. ® ° o o o d1 d2 d
aia2ds aiazas d1 d1 aid? 2 1 4
1 4 3
a B y S £
B y B € d
y a a Y Y
) £ ) B B
€ o € a a
=4 m=3 =2 ni:2 o om=l
‘—»7]5_:2 dl‘—vﬂizz a:I.L’ni.:'3 ai_ni_l dl 7]5_:2
=3 TT, =6 7L, =1 7T =1 . TT, =4
Sg=4 dom=4 MO choice¢«: No choice 8,7 =6
by 2 by 2 Th
R i N R ___—— Thus nocommon
k iy R o knowledge of rationality
usep usee usep at any State_

38



1:@ @ 1:@ m
a B Y o) €

200 o o e e
aiazds aiazas d1 d1 aidz 2: ‘. ¢ .‘ @

a B Y 5 € aids aias diazs dias aias
B y B € 5
a a
! : 5 \é \é az az az d2 d2
€ 0 € a a
R R R R R
R, R, R, R, R
1 2 . 1 The corresponding strategy-based model
X
X, 2 3 >
al a as 6
d1 d2 ds
2 1 4
1 4 3

39



Redefining substantive rationality (Stalnaker’siowy}

R™ = (N (Ix[=RrR™)

X UX;

rationality at all nodes: reached and un-reached

Does common knowledge of substantial rationality so
defined imply the backward-induction play?

40



1:@@@@
2@@@@

di aid2 aiazaz aiaxds
a B y o)
o) o y
5 y B B
5 o a a

2
Xy
1 >
al az a3 g
di d2 ds
1 0

R™ ={a, }
R ={a, B 1

NN

At statea there is common knowledge of substantive rationalihe following is true a:

(1) 1 is materially rational & : 1 knows that if he playea then 2 would playl,. [state 3]

(2) 2 is materially rational (does not do anythibgj also substantively rational:xf were

reachedstate 3] then player 2 would be materially rational (she lsiquiay d, knowing
that if she playea, then 1 would playl,) [state 9].

(3) 1 is substantively rational &f: if x; were reached he would play [stateyj.

41



Stalnaker (1998 p. 48)

Player 2 has the following initial belief: player 1

would choose, on her second movéshe had a second

move. This is a causal ‘if’ — an ‘if used to express
opinion about 1'slisposition to act in a situation that
they both know will not arise. Player 2 knows thiaice
player 1 is rational, if she somehow found heratlier
second node, she would choase But to ask what
player 2 would believe about playerfhe learned that
he was wrong about 1’s first choice is to ask a
completely different question — this ‘if’ is episteanit
concerns player 2's belief revision policies, aotl n
player 1's disposition to be rational. No assumptio
about player 1’'s substantive rationality, or abgayer
2's knowledge of her substantive rationality, caaply
that player 2 should be disposed to maintain higbe
that she will act rationally on her second movenewere
he to learn that she acted irrationally on het.firs

l:le] (o (e [e
a B Y 0
2: ¢ o e e

d1 aid2 aiazaz aiazds
a B y 0
B 0 0 y
5 o a o
1 2 1
X X
X 2 3
1
a a3 >3
d1 d2 ds
2 1 0
2 1 0

42



aidz

Q< O™

aids
d2

=
N
=

o o X 2 '3
1 ) 3
5 ai a as 3
Y di d2 ds
o o
2 1 0
alazas aiazds 2 1 0
y 0
0 y
B B
a a

The corresponding strategy-based model is:

L)

Y 0 substantively rational at: player 2 is

According to Aumann, player 2 is not

o o planning to playd, knowing that player

1 would playa,.

aias aids

az az
43



=
N
=

1:@ @ e e X, X, X3 >

3
o B ¥ 0 d1 d2 ds
2: 0 o (e e
2 1 0
d1 aid2 aiazas aiazds 2 1 0
a B y 0
0 0 Y
5 y B B
: q a a

a 0K, (%] = a,) and alsoa O|x,| = K,(|xJ = d,)

Thus what player 2 believes about player 1's badvanithe hypothetical world
where node, is reached changes going from nadéwhere the game ends
without nodex, being reached) to the hypothetical world wheres reachedLf
one imposes the constraint that such changes cannot happen, then common
knowledge of substantive rationality implies the backward-induction play.

44
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