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EXTENSIVE GAMES WITH PERFECT INFORMATION

• tree

• n  players

• assignment of one player 
to every non-terminal node

• assignment of an ordinal
payoff to every player at
every terminal node
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BACKWARD-INDUCTION SOLUTION
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(3 is rational
 and believes
 1 to be rational)

(1 is rational)

(2 is rational)

a b(1 is rational
 and believes
 that everybody
 is rational)
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STRATEGIES IN PERFECT-INFORMATION GAMES

Non-terminal nodes are 
called decision nodes

:  set of decision nodes

:  set of decision nodes assigned to player i

X

X i

Definition. A strategy of player i is a function that assigns to every

  a choice at  ix X x∈
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Player 1’s strategies: 

(a,g), (a,h), (b,g) and (b,h)
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THE STRATEGIC FORM OF A PERFECT-INFORMATION GAME
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bg 1 , 3 0 , 3 1 , 3 0 , 3

bh 1 , 3 2 , 1 1 , 3 2 , 1

Player  2
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1
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EPISTEMIC MODEL OF A PERFECT-INFORMATION GAME

(Knowledge based)

:  satisfyingi iSσ Ω →

if  ( )  then  ( ) ( )i i iω ω σ ω σ ω′ ′∈ =K

• Set of states Ω

• Equivalence relation Ki on Ω for every player i

• For every player i a function

Thus a standard epistemic model for the associated strategic form
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Let si and ti be two strategies of player i: ,i i is t S∈

i i is t≻ is interpreted as  “strategy si is better for player i than strategy ti ”

is true at stateω if ( , ( )) ( , ( ))i i i i i iu s u tσ ω σ ω− −>
that is, si is better than ti againstσ−i(ω )

i i is t≻

profile of strategies chosen 
by the players other than i

Recall from Lecture 1:

{ }Let  : ( , ( )) ( , ( ))i i i i i i i i is t u s u tω σ ω σ ω− −= ∈Ω >≻ event that si is better than ti

If  si ∈ Si ,  let { }: ( )i i is sω σ ω= ∈Ω = event that player i chooses si
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Let Ri
EA be the event representing the proposition “player i is ex ante rational”

i i i i is K t s∩ ⊆ ¬≻
EA
iR

( )
i i i i

i i i i i
s S t S

s K t s
∈ ∈

¬ = ∩ ≻∪ ∪
EA
iR

...= ∩ ∩EA EA EA
1 nR R R all players are rational

Recall from Lecture 1:
PROPOSITION: if at a state there is common knowledge of ex ante 
rationality then the strategy profile chosen at that state belongs to the game 
obtained by applying the iterated deletion of strictly dominated strategies; 
conversely, for every such strategy profile there is a model and a state 
where (1) the strategy profile is chosen and (2) there is common knowledge 
of ex ante rationality. 
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This notion of rationality is not sufficient 
to yield backward induction

Here there are no strictly 
dominated strategies

Thus every strategy profile is 
consistent with common 
belief/knowledge of ex ante 
rationality

ce cf de df

ag 2 , 2 2 , 2 1 , 1 1 , 1

ah 2 , 2 2 , 2 1 , 1 1 , 1

bg 1 , 3 0 , 3 1 , 3 0 , 3

bh 1 , 3 2 , 1 1 , 3 2 , 1
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ce cf de df

ag 2 , 2 2 , 2 1 , 1 1 , 1

ah 2 , 2 2 , 2 1 , 1 1 , 1

bg 1 , 3 0 , 3 1 , 3 0 , 3

bh 1 , 3 2 , 1 1 , 3 2 , 1

Player  2

Player
1

Here: ex ante rationality and common 
knowledge of ex ante rationality at 
both states. 

α β

ah

de

1's strategy:

2's strategy:

2:

1:

bh

de

For example:
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(For 2 ce better than de at α but not at β, thus 
at α she does not know that ce is better.)
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Let Ri
EA/S be the event representing the proposition “player i is ex ante rational 

in a strong sense”

i i i i i i i i is K t s K t s∩ ∩ ¬ ¬ ⊆ ¬≻
EA/S
iR�

( )
i i i i

i i i i i i i i i
s S t S

s K t s K t s
∈ ∈

¬ = ∩ ∩ ¬ ¬ ≻∪ ∪
EA/S
iR �

...= ∩ ∩EA/S EA/S EA/S
1 nR R R all players are rational in a 

strong sense

Recall from Lecture 1:
PROPOSITION: if at a state there is common knowledge of ex ante 
rationality in a strong sense then the strategy profile chosen at that state 
belongs to the set T∞ of strategy profiles that survive the iterated deletion of 
inferior profiles; conversely, for every such strategy profile there is a model 
and a state where (1) the strategy profile is chosen and (2) there is common 
knowledge of ex ante rationality in a strong sense. 
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ce cf de df

ag 2 , 2 2 , 2 1 , 1 1 , 1

ah 2 , 2 2 , 2 1 , 1 1 , 1

bg 1 , 3 0 , 3 1 , 3 0 , 3

bh 1 , 3 2 , 1 1 , 3 2 , 1

ce cf de
ag 2 , 2 2 , 2 1 , 1
ah 2 , 2 2 , 2 1 , 1
bg 1 , 3
bh 1 , 3 1 , 3

ce cf de
ag 2 , 2 2 , 2
ah 2 , 2 2 , 2
bg 1 , 3
bh 1 , 3

player 1 using ah

player 2 using cf

player 2 using ce

player 1 using ah

2 2
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g h

0
3

2
1

1
3

1
1

2
2

αααα

1's strategy:

2's strategy:

2:

1:

bg

de

Thus even common knowledge of  ex ante rationality in a 
strong sense is not sufficient to yield backward induction

In this example all the strategy profiles in T∞ are Nash equilibria. Is it the case that 
common knowledge of ex ante rationality in the strong sense gives Nash equilibrium 
play in perfect information games? 
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The answer is NO!
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a1 a2 a3

Backward
induction
solution

α

d2

1:

2:
β

α

3:
β

a1

d3

a2

a1

a3There is no Nash equilibrium that yields the play a1d2 (the 
Nash equilibria are marked in blue)

1 2 3 3

1 2 3 2

First round: eliminate ( , , ) through player 3 and 

second round: eliminate ( , , ) through player 2 and 

a a d a

a d a a

a2 d2 a2 d2 a2 d2 a2 d2
a1 4,4,4 2,2,2 1,1,1 2,2,2 a1 4,4,4 2,2,2 2,2,2
d1 3,3,3 3,3,3 3,3,3 3,3,3 d1 3,3,3 3,3,3 3,3,3 3,3,3

a2 d2 a2 d2
a1 4,4,4 2,2,2
d1 3,3,3 3,3,3 3,3,3 3,3,3

a3 d3

a3 d3 a3 d3
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Given a strategy profile , let    be the associated play( )s p s

( )
( )

0 1 2

0 2 3 5

( )

( ,

,

)bh df

p x x z

p x

ag df

x x z

=

=

( )
 At state  node  is  

                   if and only if  ( ) .

x reached

x p

ω
σ ω∈

Definition.

1

a b

c d e f

g h

x0

x222 x1

1 x3

z1 z2 z3

z4 z5

Going beyond ex ante rationality
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1

a b

c d e f

g h

x0

x222 x1

1 x3

z1 z2 z3

z4 z5

1's strategy:

α β γ δ ε

ag bh bg bh bg

2's strategy: df df ce de cf

( ){ }

 Given an epistemic model, for every

node , let    be the event that node  is reached:  

: ( )

x x x

x x pω σ ω= ∈Ω ∈

Definition.

1 2

3 1 2

{ }, { , , , }

{ , }, , { },    etc.

x x

x z z

α β γ δ ε
β ε α

= =

= = ∅ =
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Let  ,   be two events. 

Denote by    the event    (if  then )

E F

E F E F E F

⊆ Ω
→ ¬ ∪

Let Ri
RN be the event representing the proposition “player i is rational at 

reached nodes”

( )i i i i ix s K x t s∩ ∩ → ⊆ ¬≻
RN
iR

( )( )
i i i i i

i i i i i
x X s S t S

s K x t s x
∈ ∈ ∈

¬ = ∩ → ∩≻∪ ∪ ∪
RN
iR

...= ∩ ∩RN RN RN
1 nR R R all players are rational

at reached nodes

if  ix X∈
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2 11

a1

2 2 2 { }d a α=≻ 2 { , , }x α β ε= 2 2 2 2 { , , }x d a α γ δ¬ ∪ =≻

( )2 2 2 2 2K x d a→ = ∅≻ Thus player 2 is rational at nodes α andβ and trivially atγ.

2 2 2 { , }a d β ε=≻ 2 2 2 2 { , , , }x a d β γ δ ε¬ ∪ =≻2 { , , }x α β ε=

( )2 2 2 2 2 { , }K x a d δ ε→ =≻ ( )2 2 2 2 2 2 2 { }x d K x a d ε∩ ∩ → =≻

Thus player 2 is trivially rational at state δ, and irrational at εεεε.
*K = ∅R

α β γ δ ε

a1d3 a1a3 d1a3 d1a3 a1a3

a2 a2 a2 d2 d2

1:

2:
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Backward Induction terminating games

Definition. A BI terminating game is a perfect information game where 

(1) at each decision node there is a choice the terminates the game (it leads to a 

terminal node) and (2) the backward-induction solution prescribes a terminating 

choice at every decision node.

The best-known example is 
the centipede game (n is the 
number of decision nodes)

a1 a2

d1 d2 d3

a3

1 2 1

dn

an

2

z
1

z
2

z
3

z
n

z
n+1

if n is even

a1 a2

d1 d2 d3

a3

1 2 1

dn

an

1

z
1

z
2

z
3

z
n

z
n+1

if n is odd

1 1

2 1

( ) 2

( ) 1

u z

u z

=
= 1 2 1

2 1 1

for 1

( ) ( )

( ) ( ) 2
k k

k k

k n

u z u z

u z u z
−

−

< ≤
=
= +

1 1 1

2 1 2

If  is even

( ) ( ) 1

( ) ( ) 1
n n

n n

n

u z u z

u z u z
+

+

= +
= −

1 1 1

2 1 2

If  is odd

( ) ( ) 1

( ) ( ) 1
n n

n n

n

u z u z

u z u z
+

+

= −
= +
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Definition. Given an epistemic model of a BI terminating game, let BI be the event that 
the backward-induction play obtains, that is, { }1 1: ( ( ))p x zω Ω σ ω= ∈ =BI
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a1α β γ δ ε

a1d3 a1a3 d1a3 d1a3 a1a3

a2 a2 a2 d2 d2

1:

2:

BI = {γ,δ}

a1 a2

d1 d2 d3

a3

1 2 1

d4

2

n = 4
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5a4



20

*

*

 In every BI terminating game,  

 For every BI terminating game, there is a 

model of  it where 

K

K

⊆

≠ ∅

PROPOSITION 1.

PROPOSITION 2.

RN

RN

R BI

R

Aumann, R., A note on the centipede game, Games and Economic Behavior, 1998, 23: 97-105.

Broome, J. and W. Rabinowicz, Bacwards induction in the centipede game, Analysis, 1999, 59:237-242.

Rabinowicz, W., Grappling with the centipede, Economics and Philosophy, 1998, 14: 95-126.

Sugden, R., Rational choice: a survey of contributions from economics and philosophy, Economic Journal, 1991, 101:751-785.

Note: it is not necessarily the case that if ω ∈ Ω is such that at ω there is 
common knowledge of rationality then  σ(ω) coincides with the backward-
induction strategy profile. What is true is that player 1’s strategy assigns the 
terminating choice to the root. 

2
1

1
4

4
3

3
4

x
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x
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x
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2:



21

In general perfect-information games common knowledge of 
Rationality at Reached Nodes does not yield the backward-
induction play.

2 2

1
x1

x2 x3

l 1
r1

l 2
l 3r2 r3

3
3

0
0

1
1

0
0

α

r1

r2l3

1:

2:
The backward induction 

play is l1l2 while in this 

model we get r1l3

(r1,r2l3) is a Nash equilibrium. Does common knowledge of Rationality at Reached 

Nodes at least yield a play that can be sustained by a Nash equilibrium?
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NO! In general, common knowledge of Rationality at Reached Nodes does not yield 
Nash equilibrium play

x
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x
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x
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d1 d2 d3
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a1 a2 a3

Backward
induction
solution

α

d2

1:

2:
β

α

3:
β

a1

d3

a2

a1

a3

a2 d2 a2 d2
a1 4,4,4 2,2,2 1,1,1 2,2,2
d1 3,3,3 3,3,3 3,3,3 3,3,3

a3 d3

The Nash equilibria are marked in blue
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Let    be a decision node of player . Denote by  the set of player 's 

strategies in the subgame that starts at node .

x
i ix X i S i

x

∈

1

a b

c d e f

g h

0
3

2
1

1
3

1
1

2
2

x0

x222 x1

1 x3

3

1 2

1 1

2 2 2

{ , , , }, { , }

{ , , , }, { , }, { , }

x

x x

S ag ah bg bh S g h

S cd cf de df S c d S e f

= =

= = =

Dealing with general perfect-information games
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Let x be a decision node of player i and let ,x x x
i i is t S∈

x x
i i is t≻

is true at stateω if, starting from node x, 

Let    be the event that    is true.x x x x
i i i i i is t s t≻ ≻

{ }If , let  : ( ) |x x x x
i i i i i xs S s sω σ ω∈ = ∈Ω =

be two strategies of player i in the subgame that starts at node x

is interpreted as "for player ,  strategy  is better than strategy 

in the subgame that starts at node "

x x
i ii s t

x

  gives a higher payoff to player  than   against ( )x x
i i is i t σ ω−

x x
i i is t≻

If  is a node of player , let ( ) |  denote the restriction of 

( ) to the subgame that starts at 
i x

i

x i

x

σ ω
σ ω
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Recall that if  , ,      is the event    (if  then )E F E F E F E F⊆ Ω → ¬ ∪

Let Ri
SR be the event representing the proposition “player i is substantively rational”

( )x x x
i i i i is K t s∩ ⊆ ¬≻

SR
iR

( )( )
x x

i i i i i

x x x
i i i i i

x X s S t S

s K t s
∈ ∈ ∈

¬ = ∩ ≻∪ ∪ ∪
SR
iR

...= ∩ ∩SR SR SR
1 nR R R all players are 

substantively rational

if  ix X∈

SUSBSTANTIVE  RATIONALITY (Aumann, GEB 1995)
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2

2

2

{ , , } (  rationality)

{ , } (rationality at reached nodes)

{ }   (substantive rationality)

EA

RN

SR

ex anteα β γ
β γ
γ

=

=

=

R

R

R

2
1

1
4

4
3

3
6

x
1

x
2

x
3

a2

d1 d2 d3

a3

2 11

a1

α β γ

d1d3

a2

1:

2:

a1d3

a2

d1d3

d2
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*

*

 In every perfect information game,  

 For every perfect information game, there is a 

model of  it where 

K

K

⊆

≠ ∅

PROPOSITION 3.

PROPOSITION 4.

SR

SR

R BI

R

Aumann, R., Backward induction and common knowledge of rationality, Games and Economic Behavior, 1995, 8: 6-19.
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Why is player 2 substantively irrational at state α? What is true at state α that makes player 
2 substantively irrational?

At state α player 2 is not taking any actions, because her node x2 is not reached. In fact, at 

state α player 2  knows that her node is not reached. So what makes her irrational 

(according to the notion of substantive rationality) must be herplan to choose d2 if her 

decision node were to be reached. This is a counterfactual statement.

α

d1a3

d2

1:

2:
2
1

1
4

4
3

3
6

x
1

x
2

x
3

a2

d1 d2 d3

a3

2 11

a1
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α β γ

d1d3

a2

1:

2:

a1d3

a2

d1d3

a2

The association of a strategy profile with every state gives rise to two types of counterfactuals:

(1) An objective statement about what the relevant player would do at a node that is not 
reached.

(2) (With the help of the partitions) a subjective statement about what a player believes would 
happen if he were to take a different action from the one he is actually taking. 

(1) Thus at state γ it is true that player 2 would take action a2 if her node x2 were to 
be reached (although it is not in fact reached and she knows that it is not reached)

(2) At states β and γ player 1 knows that if he were to take action a1 instead of d1 at 
the root (he knows that he is taking d1) then his payoff would be 4 (the payoff 
associated with a1a2d3)

2
1

1
4

4
3

3
6

x
1

x
2

x
3

d1 d2 d3

2 11

a2 a3a1
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Modeling counterfactuals indirectly through strategies is not satisfactory. We have 
abandoned the modular approach suggested in Lecture 1, since there exists a module 
that deals with counterfactuals.

Modeling Counterfactuals

For every ,  let  be a relation on  satisfying, , ,

(1) either ( ) or ( )                  (completeness)

(2) if ( ) then ( ) ( )              (transitivity)

(3) if ( ) and 

ω

ω ω

ω ω ω

ω

ω Ω Ω α β Ω
α β β α

β α β α
α β β

∈ ∀ ∈
∈ ∈

∈ ⊆
∈

P

P P

P P P

P ( ) then     (antisymmetry)

(4) ( ),  for all                           (centeredness)
ω

ω

α α β
ω ω ω Ω

∈ =
′ ′∈ ∈

P

P

The interpretation of ( ) or  is that state  is at least as close to

to state  as state  is. Thus, for every state , the closeness relation  determines 

a strict ordering of the set of sta

ω ω

ω

β α α β α
ω β ω

∈P P

P

tes based on closeness to , with  itself being the 

closest state.

ω ω

( ) = set of states that are not closer to  than  is.ω α ω αP
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REPRESENTATION

{ , , , }Ω α β γ δ=

α β γ δ

α
γ
β
δ

β
α
δ
γ

γ
δ
α
β

δ
β
γ
α

} ordering

farthest

closest

Given a state ω and an event E, denote by min(ω,E) the closest state 
to ω that belongs to event E. Thus if ω ∈ E, then min(ω,E) = ω.

In the above example, if { , } then min( , ) = E Eβ δ α β=
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Recall that, if   ,   are two events,    denotes the event    

(if  then ). Thus  if either  or .

 represents the material conditional, which is true whenever the antecedent is

E F E F E F

E F E F E E Fω ω ω
⊆ Ω → ¬ ∪

∈ → ∉ ∈ ∩
→  false

We use the symbol  � to denote the counterfactual conditional. 
Thus  E � F  is interpreted as “if E were the case then F would be 
the case”

{ }  : min( , )E F E Fω Ω ω= ∈ ∈Definition. �

α β γ δ

α
γ
β
δ

β
α
δ
γ

γ
δ
α
β

δ
β
γ
αfarthest

closest

If { , } and { , , }

then  { , }

while  { , , }

E F

E F

E F

β δ α γ δ
γ δ

α γ δ

= =
=

→ =
�

Note that, for all , ,    E F E F E FΩ⊆ ⊆ →�
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MODELING STRATEGIES WITH COUNTERFACTUALS

i

Given a perfect information game define an epistemic model of it as before, but with

the following changes:

(1) replace the  functions :  with a single function :  where 

       is the set of pl

n S d P

P

σ Ω Ω→ →

{ }
ays of the game written in terms of actions taken,

(2) add a set of closeness relations ω ω Ω∈
P

NOW

α β γ

d1d3

a2

1:

2:

a1d3

a2

d1d3

a2

BEFORE2
1

1
4

4
3

3
6

x
1

x
2

x
3

d1 d2 d3

1

a2 a3a1

1 2

α β γ

d1

1:

2:

d1a1a2d3

α
β
γ

β
α
γ

γ
β
α
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We add two more requirements: 

(3) for every play there is at least one state where that play is realized 

(4) if, at a state, node x of player i is reached and he takes action a there,
then he knows that if x is reached he takes action a: 

( )

2 2

2 2 2 2

2 2 2

{ , , }, , }

{ , , , }

{ , , }

x a a

x a x a

K x a

α β ε β
α β γ δ

α β γ

= = {

→ = ¬ ∪ =

→ =

( )ia K x a⊆ →

α β γ δ ε

a1a2d3 a1a2a3

1:

2:

d1d1 a1d2

α
β
γ
δ
ε

β
γ
α
ε
δ

γ
β
α
δ
ε

δ
ε
γ
α
β

ε
δ
γ
α
β

2
1

1
4

4
3

3
6

x
1

x
2

x
3

a2

d1 d2 d3

a3

2 11

a1
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EXTRACTING STRATEGIES FROM A MODEL

Given a model we can extract a strategy profile at every state as follows. 

If si is a strategy of player i and xi is a decision node of player i, denote by 
si(xi) the choice prescribed by si at xi .

Define σi(ω) as follows: σi(ω)(xi) = ci if and only if i ix cω ∈ �

1 1 3 1 1 3

1 1 3 3

1 1 3 3

1 1 3 3

( ) , ( )

( )  (for node  we use state )

( )  (for node  we use state )

( )  (for node  we use state )

a d a a

d a x

d d x

a d x

σ α σ β
σ γ β
σ δ α
σ ε α

= =
=
=
=

2 2 2 2

2 2 2

2 2 2

2 2

( ) , ( )
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From We get

In this model it is not true that players 
know their own strategies. E.g. player 
1 at state γ

In order for a counterfactual model to give rise to a standard model based on 
strategies, we need to impose a further condition:

( ) ( )(5)  i i i i ix c K x c→� �

α β γ δ ε
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RE-DEFINING  RATIONALITY AT REACHED NODES

i

Let  be a decision node of player  and  and  be two 

choices of player  at .

If  is a number, let  be the event that player 's payoff is .

If  and  are numbers, let   if  and 

i i i

i

x i c c

i x

m m i m

k k k

π

′

=

> = Ω >ℓ ℓ ℓ    otherwise.k > = ∅ℓ

( )( )|| ||i i i i i ic k K x c kπ π′∩ = ∩ → = ∩ > ¬⊆ℓ ℓ�
RN
iR
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Thus no common 
knowledge of rationality 
at any state.
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α β γ δ ε
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( )
i i

i
x X

x
∈

= ∩ �
SR RN
i iR R

Redefining substantive rationality (Stalnaker’s notion)

rationality at all nodes: reached and un-reached

Does common knowledge of substantial rationality so 
defined imply the backward-induction play?
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At state α there is common knowledge of substantive rationality. The following is true at α: 

(1) 1 is materially rational at x1 : 1 knows that if he played a1 then 2 would play d2. [state ββββ]

(2) 2 is materially rational (does not do anything) but also substantively rational: if x2 were 

reached [state ββββ] then player 2 would be materially rational (she would play d2 knowing 

that if she played a2 then 1 would play d3) [state δδδδ].

(3) 1 is substantively rational at x3 : if x3 were reached he would play a3 [state γγγγ].
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Stalnaker (1998 p. 48)

Player 2 has the following initial belief: player 1 

would choose a3 on her second move if she had a second 

move. This is a causal ‘if’ – an ‘if’ used to express 2’s 

opinion about 1’s disposition to act in a situation that 

they both know will not arise. Player 2 knows that since 

player 1 is rational, if she somehow found herself at her 

second node, she would choose a3 . But to ask what 

player 2 would believe about player 1 if he learned that 

he was wrong about 1’s first choice is to ask a 

completely different question – this ‘if’ is epistemic; it 

concerns player 2’s belief revision policies, and not 

player 1’s disposition to be rational. No assumption 

about player 1’s substantive rationality, or about player 

2’s knowledge of her substantive rationality, can imply 

that player 2 should be disposed to maintain his belief 

that she will act rationally on her second move even were 

he to learn that she acted irrationally on her first.

2
2

1
1

0
0

3
3

x
1

x
2

x
3

a2

d1 d2 d3

a3a1

2 11

α β γ δ

1:

2:

αααα
ββββ
γγγγ
δ

ββββ
δδδδ
γ
α

γγγγ
δ
β
α

δδδδ
γ
β
α

d1 a1d2 a1a2a3 a1a2d3



43

The corresponding strategy-based model is:

According to Aumann, player 2 is not 

substantively rational at α: player 2 is 

planning to play d2 knowing that player 

1 would play a3. 
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( ) ( )2 3 3 2 2 3 3 and also  K x a x K x dα α∈ ∈� � �

Thus what player 2 believes about player 1’s behavior in the hypothetical world 

where node x3 is reached changes going from node x1 (where the game ends 

without node x2 being reached) to the hypothetical world wherex2 is reached. If 

one imposes the constraint that such changes cannot happen, then common 

knowledge of substantive rationality implies the backward-induction play.
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