Epistemic Foundations of Game Theory

Lecture 1

Giacomo Bonanno

QUESTION:

What strategies can be chosen by rational players who know the structure of the game and the preferences of their opponents and who recognize each other's rationality and knowledge?

Keywords: knowledge, rationality, recognition of each other's knowledge and rationality

Modular approach

Module 1: representation of belief and knowledge of an individual (Hintikka, 1962; Kripke, 1963).

Module 2: extension to many individuals. Common belief and common knowledge ("recognition of each other's belief / knowledge")

Module 3: definition of rationality in games (relationship between choice and beliefs)

QUESTION: what are the implications of rationality and common belief of rationality in games?

Module 1
 representation of beliefs and knowledge of an individual

Finite set of states Ω and a binary relation \mathcal{B} on Ω.
$\alpha \mathcal{B} \beta$ means "at state α the individual considers state β possible"
Notation: $\mathcal{B}(\omega)=\left\{\omega^{\prime} \in \Omega: \omega \mathcal{B} \omega^{\prime}\right\}$ set of states considered possible at ω

$$
\text { PROPERTIES } \quad \forall \omega, \omega^{\prime} \in \Omega,
$$

1. $\mathcal{B}(\omega) \neq \varnothing$
2. if $\omega^{\prime} \in \mathcal{B}(\omega)$ then $\mathcal{B}\left(\omega^{\prime}\right) \subseteq \mathcal{B}(\omega)$ transitivity
3. if $\omega^{\prime} \in \mathcal{B}(\omega)$ then $\mathcal{B}(\omega) \subseteq \mathcal{B}\left(\omega^{\prime}\right)$ euclideannes
seriality

Belief operator on events: $B: 2^{\Omega} \rightarrow 2^{\Omega}$

For $E \subseteq \Omega, \quad \omega \in B E$ if and only if $\mathcal{B}(\omega) \subseteq E$

EXAMPLE:

$$
\begin{aligned}
& \mathcal{B}(\alpha)=\mathcal{B}(\beta)=\{\alpha, \beta\} \\
& \mathcal{B}(\gamma)=\mathcal{B}(\delta)=\{\delta\}
\end{aligned}
$$

Let $E=\{\beta, \delta\}$: the event that represents the proposition p
Then $B E=\{\gamma, \delta\}$

Properties of the belief operator: $\forall E \subseteq \Omega$

1. $B E \subseteq \neg B \neg E \quad$ (consistency:
follows from seriality of \mathcal{B})
2. $B E \subseteq B B E \quad$ (positive introspection: follows from transitivity of \mathcal{B})
3. $\neg B E \subseteq B \neg B E \quad$ (negative introspection:
follows from euclideanness of \mathcal{B})
Mistaken beliefs are possible: at γp is false but the individual believes p

KNOWLEDGE

If - in addition to the previous properties - the "doxastic accessibility" relation \mathcal{B} is reflexive $(\forall \omega \in \Omega, \omega \in \mathcal{B}(\omega)$) then it is an equivalence relation - giving rise to a partition of the set of states - and the associated belief operator satisfies the additional property that $\forall E \subseteq \Omega, B E \subseteq E$ (beliefs are correct). In this case we speak of knowledge and the associated operator is denoted by K rather than B

α

β
γ

Module 2 interactive belief and common belief

Set of individuals N and a binary relation \mathcal{B}_{i} for every $i \in N$

Let $E=\{\alpha, \beta, \gamma\}$: the event that represents the proposition p
Then $K_{1} E=\{\alpha, \beta, \gamma\}, K_{2} E=\{\alpha, \beta\}$
$K_{1} K_{2} E=\{\alpha\}, K_{2} K_{1} K_{2} E=\varnothing$

An event E is commonly believed if (1) everybody believes it,
(2) everybody believes that everybody believes it,
(3) everybody believes that everybody believes that everybody believes it, etc.

Define the "everybody believes" operator B^{e} as follows:

$$
B^{e} E=B_{1} E \cap B_{2} E \cap \ldots \cap B_{n} E
$$

The common belief operator B_{*} is defined as follows:

$$
B_{*} E=B^{e} E \cap B^{e} B^{e} E \cap B^{e} B^{e} B^{e} E \cap \ldots
$$

Let \mathcal{B}_{*} be the transitive closure of $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \ldots \cup \mathcal{B}_{n}$ Thus $\omega^{\prime} \in \mathcal{B}_{*}(\omega)$ if and only if there exists a sequence $\left\langle\omega_{1}, \ldots, \omega_{m}\right\rangle$ in Ω such that
(1) $\omega_{1}=\omega$
(2) $\omega_{n}=\omega^{\prime}$
(3) for every $j=1, \ldots, m$ there exists an individual $i \in N$ such that $\omega_{\mathrm{j}+1} \in \mathcal{B}_{i}\left(\omega_{\mathrm{j}}\right)$

PROPOSITION. $\omega \in B_{*} E$ if and only if $\mathcal{B}_{*}(\omega) \subseteq E$.

Let $E=\{\beta, \gamma\}$: the event that represents the proposition p
Then $B_{1} E=\{\gamma\}, B_{2} E=\{\beta, \gamma\}, B_{*} E=\varnothing$
In fact, while $\gamma \in B_{1} B_{2} E=\{\gamma\}, \quad \gamma \notin B_{2} B_{1} E=\varnothing$

Module 3 Models of games and Rationality

Definition. A finite strategic-form game with ordinal payoffs is a quintuple

$$
\left\langle N,\left\{S_{i}\right\}_{i \in N}, O,\left\{\succeq_{i}\right\}_{i \in N}, z\right\rangle
$$

$N=\{1, \ldots, n\}$ is a set of players
S_{i} is a finite set of strategies or choices of player $i \in N$
O is a set of outcomes
\succeq_{i} is player i^{\prime} s ordering of $O\left(o \succeq_{i} o^{\prime}\right.$ means that, for player i, outcome o is at least as good as outcome o^{\prime})
$z: S \rightarrow O$ (where $S=S_{1} \times \ldots \times S_{n}$) associates an outcome with every strategy profile $s \in S$

Definition. Given a strategic-form game with ordinal payoffs

$$
\left\langle N,\left\{S_{i}\right\}_{i \in N}, O,\left\{\succeq_{i}\right\}_{i \in N}, z\right\rangle
$$

a reduced form of it is a triple

$$
\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle
$$

where $u_{i}: S \rightarrow \mathbb{R}$ is such that $u_{i}(s) \geq u_{i}\left(s^{\prime}\right)$ if and only if $z(s) \succeq_{i} z\left(s^{\prime}\right)$ player i 's utility function

Player 2

		e	f	g
P A $3,2$P,				
a	B	2,3	2, 2	3, 1
r	C	1, 2	1, 2	4, 1
1	D	0, 2	0,3	1, 3

Player 2

Definition. An epistemic model of a strategic-form game is an interactive belief structure together with n functions

$$
\sigma_{i}: \Omega \rightarrow S_{i} \quad(i \in N)
$$

Interpretation: $\quad \sigma_{i}(\omega)$ is player i 's chosen strategy at state ω

Restriction: if $\omega^{\prime} \in \mathcal{B}_{i}(\omega)$ then $\sigma_{i}\left(\omega^{\prime}\right)=\sigma_{i}(\omega)$
(no player has mistaken beliefs about her own strategy)

EXAMPLE

P		e	f	g
	A	3,2	3,1	0,1
a	B	2,3	2, 2	3,1
$\begin{aligned} & e \\ & r \end{aligned}$	C	1,2	1, 2	4,1
1	D	0,2	0, 3	1,3

1's strategy:	A	C	C	D
2's strategy:	f	f	g	g

At every state each player knows his own strategy

At state β player 1 plays C (he knows this) not knowing whether player 2 is playing f or g and player 2 plays f (she knows this) not knowing whether player 1 is playing A or C

RATIONALITY

Non-probabilistic (no expected utility) and very weak notion of rationality
Definition. Player i is IRRATIONAL at state ω if there is a strategy s_{i} (of player i) which she believes to be better than $\sigma_{i}(\omega)$ (that is, if she believes that she can do better with another strategy)

Player i is RATIONAL at state ω if and only if she is not irrational

1	\bigcirc	- \quad		-			Player 2			
						e	f	g		
	α	β	γ		δ	P	A	3, 2	3, 1	0,1
2			\bigcirc	-	a	B	2,3	2, 2	3,1	
1's strategy:	A	C	C	D	e	C	1,2	1, 2	4,1	
2's strategy:	f	f	g	g	1	D	0,2	0, 3	1,3	

Player 1 is rational at state β

Let s_{i} and t_{i} be two strategies of player $i: \quad s_{i}, t_{i} \in S_{i}$
$s_{i} \succ_{i} t_{i} \quad$ is interpreted as "strategy s_{i} is better for player i than strategy t_{i} "
$s_{i} \succ_{i} t_{i} \quad$ is true at state ω if $u_{i}\left(s_{i}, \sigma_{-i}(\omega)\right)>u_{i}\left(t_{i}, \sigma_{-i}(\omega)\right)$ that is, s_{i} is better than t_{i} against $\sigma_{-i}(\omega)$
profile of strategies chosen
Player 2 by the players other than i

$A \succ_{1} B \quad B \succ_{1} A \quad C \succ_{1} B$
$A \succ_{1} C \quad B \succ_{1} C \quad C \succ_{1} A$
$B \succ_{1} C \quad A \succ_{1} C \quad B \succ_{1} A$
$E \succ_{2} F \quad F \succ_{2} G \quad F \succ_{2} G \quad$ etc.

Let $\left\|s_{i} \succ_{i} t_{i}\right\|=\left\{\omega \in \Omega: u_{i}\left(s_{i}, \sigma_{-i}(\omega)\right)>u_{i}\left(t_{i}, \sigma_{-i}(\omega)\right)\right\}$ event that s_{i} is better than t_{i} If $s_{i} \in S_{i}$, let $\quad\left\|s_{i}\right\|=\left\{\omega \in \Omega: \sigma_{i}(\omega)=s\right\} \quad$ event that player i chooses s_{i}

Let \boldsymbol{R}_{i} be the event representing the proposition "player i is rational"

$$
\begin{gathered}
\left\|s_{i}\right\| \cap B_{i}\left\|t_{i} \succ_{i} s_{i}\right\| \subseteq \neg \boldsymbol{R}_{i} \\
\neg \boldsymbol{R}_{i}=\bigcup_{s_{i} \in S_{i} \in S_{i}} \bigcup_{i}\left(\left\|s_{i}\right\| \cap B_{i}\left\|t_{i} \succ_{i} s_{i}\right\|\right)
\end{gathered}
$$

$$
\boldsymbol{R}=\boldsymbol{R}_{1} \cap \ldots \cap \boldsymbol{R}_{n} \quad \text { all players are rational }
$$

Let $S_{-i}=S_{1} \times \ldots \times S_{i-1} \times S_{i+1} \times \ldots \times S_{n} \quad$ set of strategy profiles of all players except i
Definition. Let $s_{i}, t_{i} \in S_{i}$. We say that t_{i} is strictly dominated by s_{i}
if $u_{i}\left(t_{i}, s_{-i}\right)<u_{i}\left(s_{i}, s_{-i}\right)$ for all $s_{-i} \in S_{-i}$
ITERATED DELETION OF STRICTLY DOMINATED STRATEGIES

	Player 2		
	e	f	g
P A	3, 2	3,1	0,1
a B	2, 3	2, 2	3, 1
$\begin{array}{ll}\text { e } & \\ r\end{array}$	1, 2	1, 2	4, 1
1	0	0.3	1.3

Let G be a strategic-form game with ordinal payoffs and G^{∞} be the game obtained after applying the procedure of Iterated Deletion of Strictly Dominated Strategies.

Let S^{∞} denote the strategy profiles of game G^{∞}
Given a model of G, let \mathbf{S}^{∞} denote the event $\left\{\omega \in \Omega: \sigma(\omega) \in S^{\infty}\right\}$

PROPOSITION 1. $B_{*} R \subseteq S^{\infty}$

If at a state it is commonly believed that all players are rational, then the strategy profile chosen at that state belongs to the game obtained after applying the iterated deletion of strictly dominated strategies.

Player 2
Every normal operator B satisfies the property that if $E \subseteq F$ then $B E \subseteq B F$.
B_{*} is a normal operator. Thus from $B_{*} \boldsymbol{R} \subseteq S^{\infty}$
it follows that $B_{*} B_{*} \boldsymbol{R} \subseteq B_{*} S^{\infty}$.
By transitivity of \mathcal{B}_{*} we have that
$B_{*} E \subseteq B_{*} B_{*} E$ for every event E.
Thus $B_{*} \boldsymbol{R} \subseteq B_{*} B_{*} \boldsymbol{R}$.
It follows that $B_{*} R \subseteq B_{*} S^{\infty}$

Same as:

REMARK. In general it is not true that $\boldsymbol{S}^{\infty} \subseteq B_{*} \boldsymbol{R}$

	Player 2		
	e	f	g
P A	3, 2	3, 1	0,1
a B	2,3	2, 2	3,1
$\begin{array}{ll}\text { e } \\ \mathrm{r} & \mathrm{C}\end{array}$	1, 2	1,2	4,1
1 D	0, 2	0,3	1, 3

$$
\begin{gathered}
\mathbf{S}^{\infty}=\{\delta\} \\
K, \boldsymbol{R}=\varnothing
\end{gathered}
$$

$$
\boldsymbol{R}_{1}=\{\alpha, \delta\}, \quad \boldsymbol{R}_{2}=\{\alpha, \beta, \gamma, \delta\}
$$

$$
K_{2} \boldsymbol{R}_{\mathbf{1}}=\varnothing
$$

PROPOSITION 2. Fix a strategic-form game with ordinal payoffs G and let $s \in S^{\infty}$. Then there exists an epistemic model of G and a state ω such that $\sigma(\omega)=s$ and $\omega \in B_{*} \boldsymbol{R}$.

EXAMPLE Player 2

In this game every strategy profile survives iterative deletion

REMARK. Given the above notion of rationality, there is no difference between common belief of rationality and common knowledge of rationality. The previous two propositions can be restated in terms of knowledge and common knowledge.

PROPOSITION 1'. $K_{*} R \subseteq S^{\infty}$

PROPOSITION 2'. Fix a strategic-form game with ordinal payoffs G and let $s \in S^{\infty}$. Then there exists an epistemic model of G and a state ω such that $\sigma(\omega)=s$ and $\omega \in K_{s} \boldsymbol{R}$.

STRONGER NOTION OF RATIONALITY

Still non-probabilistic (no expected utility)
Definition. Player i is IRRATIONAL at state ω if there is a strategy s_{i} which she believes to be at least as good as $\sigma_{i}(\omega)$ and she considers it possible that s_{i} is better than $\sigma_{i}(\omega)$

Player i is RATIONAL at state ω if and only if she is not irrational

Player 1 is irrational at state β : B is at least as good as C at both β and γ and it is better than C at $\gamma \quad \boldsymbol{R}_{1}=\{\alpha\}, \boldsymbol{R}_{2}=\varnothing$

Player i is IRRATIONAL at state ω if there is a strategy s_{i} which she believes to be at least as good as $\sigma_{i}(\omega)$ and she considers it possible that s_{i} is better than $\sigma_{i}(\omega)$

$$
\begin{array}{r}
\left\|s_{i}\right\| \cap B_{i}\left\|t_{i} \succeq_{i} s_{i}\right\| \cap \neg B_{i} \neg\left\|t_{i} \succ_{i} s_{i}\right\| \subseteq \neg \boldsymbol{R}_{i} \\
\neg \boldsymbol{R}_{i}=\bigcup_{s_{i} \in S_{i}, t} \bigcup_{t_{i} S_{i}}\left(\left\|s_{i}\right\| \cap B_{i}\left\|t_{i} \succeq_{i} s_{i}\right\| \cap \neg B_{i} \neg\left\|t_{i} \succ_{i} s_{i}\right\|\right)
\end{array}
$$

$$
\boldsymbol{R}=\boldsymbol{R}_{I} \cap \ldots \cap \boldsymbol{R}_{n}
$$

all players are rational

Definition.

Given a game $G=\left\langle N,\left\{S_{i}\right\}_{i \in N}, O,\{\succeq\}_{i \in N}, z\right\rangle$, a subset of strategy profiles $X \subseteq S$ and a strategy profile $x \in X$, we say that x is inferior relative to X if there exist a player i and a strategy $s_{i} \in S_{i}$ of player i (thus s_{i} need not belong to the projection of X onto S_{i}) such that:

1. $z\left(s_{i}, x_{-i}\right) \succ_{i} z\left(x_{i}, x_{-i}\right)$ and
2. for all $s_{-i} \in S_{-i}$, if $\left(x_{i}, s_{-i}\right) \in X$ then $z\left(s_{i}, s_{-i}\right) \succeq_{i} z\left(x_{i}, s_{-i}\right)$.

Iterated Deletion of Inferior Profiles : for $m \in \mathbb{N}$ define
$T^{m} \subseteq S$ recursively as follows: $T^{0}=S$ and, for $m \geq 1$,
$T^{m}=T^{m-1} \backslash I^{m-1}$, where $I^{m-1} \subseteq T^{m-1}$ is the set of strategy profiles that are inferior relative to T^{m-1}. Let $T^{\infty}=\bigcap_{m \in \mathbb{N}} T^{m}$.

Player 2

Player 2

$T^{0}=S=\{(A, d),(A, e),(A, f),(B, d),(B, e),(B, f),(C, d),(C, e),(C, f)\}, I^{0}=\{(B, e),(C, f)\}$ (the elimination of (B, e) is done through player 2 and strategy f, while the elimination of (C, f) is done through player 1 and strategy B);
$T^{1}=\{(A, d),(A, e),(A, f),(B, d),(B, f),(C, d),(C, e)\}, I^{1}=\{(B, d),(B, f),(C, e)\}$ (the elimination of (B, d) and (B, f) is done through player 1 and strategy A, while the elimination of (C, e) is done through player 2 and strategy d);
$T^{2}=\{(A, d),(A, e),(A, f),(C, d)\}, I^{2}=\{(C, d)\}$ (the elimination of (C, d) is done through player 1 and strategy $\left.A\right) ;$
$T^{3}=\{(A, d),(A, e),(A, f)\}, I^{3}=\varnothing ;$ thus $T^{\infty}=T^{3}$.

PROPOSITION 3. $K_{*} \boldsymbol{R} \subseteq \boldsymbol{T}^{\infty}$

If at a state it is commonly known that all players are rational, then the strategy profile chosen at that state belongs to the game obtained after applying the iterated deletion of Inferior strategy profiles.

PROPOSITION 4. Fix a strategic-form game with ordinal payoffs G and let $s \in T^{\infty}$. Then there exists an epistemic model of G and a state ω such that $\sigma(\omega)=s$ and $\omega \in K_{*} \boldsymbol{R}$.

NOT TRUE if we replace common knowledge with common belief

$$
\boldsymbol{R}_{I}=\{\alpha, \beta\}, \boldsymbol{R}_{2}=\{\alpha, \beta\}
$$

There is common belief of rationality at every state and yet at state α the strategy profile played is (B, d) which is inferior

$$
\begin{aligned}
& T^{\infty}=\{(A, c),(B, c)\} \\
& S^{\infty}=\{(A, c),(A, d),(B, c),(B, d)\}
\end{aligned}
$$

PROBABILISTIC BELIEFS

Definition. A Bayesian frame is an interactive belief frame together with a collection $\left\{p_{i, \omega}\right\}_{i \in N, \omega \in \Omega}$ of probability distributions on Ω such that

```
(1) if \(\omega^{\prime} \in \mathcal{B}_{i}(\omega)\) then \(p_{i, \omega^{\prime}}=p_{i, \omega}\)
(2) \(p_{i, \omega}\left(\omega^{\prime}\right)>0\) if and only if \(\omega^{\prime} \in \mathcal{B}_{i}(\omega)\)
```

(the support of $p_{i, \omega}$ coincides with $\mathcal{B}_{i}(\omega)$)

Definition. A strategic-form game with von Neumann-Morgenstern payoffs is a quintuple

$$
\left\langle N,\left\{S_{i}\right\}_{i \in N}, O,\left\{U_{i}\right\}_{i \in N}, z\right\rangle
$$

where
$N=\{1, \ldots, n\}$ is a set of players
S_{i} is the set of strategies of player $i \in N$
O is a set of outcomes
$U_{i}: O \rightarrow \mathbb{R}$ is player i 's von Neumann-Morgenstern utility function
$z: S \rightarrow O$ (where $S=S_{1} \times \ldots \times S_{n}$) associates an outcome with every strategy profile $s \in S$

Its reduced form is a triple $\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{\pi_{i}\right\}_{i \in N}\right\rangle$ where $\pi_{i}(s)=U_{i}(z(s))$.

An epistemic model of a strategic-form game is a Bayesian frame together with n functions

$$
\sigma_{i}: \Omega \rightarrow S_{i} \quad(i \in N)
$$

such that if $\omega^{\prime} \in \mathcal{B}_{i}(\omega)$ then $\sigma_{i}\left(\omega^{\prime}\right)=\sigma_{i}(\omega)$

Stronger definition of Rationality than the previous ones
Player i is RATIONAL at state α if her choice at α maximizes her expected payoff, given her beliefs at α : for all $t_{i} \in S_{i}$

$$
\sum_{\omega \in \mathcal{B}_{i}(\alpha)} \pi_{i}\left(\sigma_{i}(\alpha), \sigma_{-i}(\omega)\right) p_{i, \alpha}(\omega) \geq \sum_{\omega \in \mathcal{B}_{i}(\alpha)} \pi_{i}\left(t_{i}, \sigma_{-i}(\omega)\right) p_{i, \alpha}(\omega)
$$

$$
\boldsymbol{R}_{1}=\{\delta, \varepsilon\}
$$

Player 1 is not rational at α because her expected payoff is $\frac{2}{3} 1+\frac{1}{3} 2=\frac{4}{3}$
while if she had chosen strategy A her payoff would have been $\frac{2}{3} 3+\frac{1}{3} 0=2$
On the other hand, Player 1 is rational at δ because her expected payoff is $\frac{1}{2} 3+\frac{1}{2} 0=\frac{3}{2}$
and if she had chosen strategy B her payoff would have been $\frac{1}{2} 1+\frac{1}{2} 2=\frac{3}{2}$
and if she had chosen strategy C her payoff would have been $\frac{1}{2} 0+\frac{1}{2} 3=\frac{3}{2}$

What are the implications of Common Belief of this stronger notion of rationality?

Definition. A mixed strategy of player i is a probability distribution over S_{i} The set of mixed strategies of player i is denoted by $\Delta\left(S_{i}\right)$
Let $t_{i} \in S_{i}$ and $v_{i} \in \Delta\left(S_{i}\right)$. We say that t_{i} is strictly dominated by v_{i} if, for every $s_{-i} \in S_{-i}, \pi_{i}\left(t_{i}, s_{-i}\right)<\sum_{s_{i} \in S_{i}} v_{i}\left(s_{i}\right) \pi_{i}\left(s_{i}, s_{-i}\right)$

```
Player 2
```

P		d	e
	A	3, 0	0,1
y	B	0, 0	2,2
	C	0,3	3,2

In this game strategy B of player 1 is
strictly dominated by the mixed strategy $\left(\begin{array}{cc}\text { A } & \text { C } \\ \frac{1}{6} & \frac{5}{6}\end{array}\right)$

Player 2

ITERATIVE
DELETION
OF PURE
STRATEGIES
THAT ARE
STRICTLY
DOMINATED
BY (POSSIBLY
MIXED)
STRATEGIES

	e	f	g
P A	3, 0	1, 0	0,1
a B	1, 1	0, 2	1,1
$\begin{array}{ll}\text { e } & \\ \text { r }\end{array}$	0,0	4, 1	2,2
1 D	0, 3	1,0	3,2

(a) The game G

B is strictly dominated by $(1 / 2 \mathrm{~A}, 1 / 2 \mathrm{D})$

Player 2

		e	g
P 1	A	3, 0	0, 1
y	C	0, 0	2,2
	D	0,3	3,2

(c) The game G ${ }^{2}$

Now C is strictly dominated by ($1 / 6 \mathrm{~A}, 5 / 6 \mathrm{D}$)

Player 2

(b) The game G ${ }^{1}$

Now f is strictly dominated by g

(d) The game G ${ }^{3}=G^{\infty}$

No strategy is strictly dominated

Let G be a strategic-form game with von Neumann-Morgenstern payoffs and G^{∞} be the game obtained after applying the procedure of Iterated Deletion of Pure Strategies that are Strictly Dominated by Possibly Mixed Strategies.

Let S_{m}^{∞} denote the pure-strategy profiles of game G^{∞}
Given a model of G, let S_{m}^{∞} be the event $\left\{\omega \in \Omega: \sigma(\omega) \in S_{m}^{\infty}\right\}$

PROPOSITION 5. $B_{\circledast} R \subseteq S_{m}^{\infty}$

PROPOSITION 6. Fix a strategic-form game with von Neumann-Morgenstern payoffs G and let $s \in S_{m}^{\infty}$. Then there exists a Bayesian model of G and a state ω such that $\sigma(\omega)=s$ and $\omega \in B_{s} \boldsymbol{R}$.

Given this stronger notion of rationality, there is a difference between common belief of rationality and common knowledge of rationality. The implications of common knowledge of rationality are stronger.

With knowledge, a player's beliefs are always correct and are believed to be correct by every other player. Thus there is
correctness and common belief of correctness of everybody's beliefs.

Definition. Given a strategic-form game with von Neumann-Morgenstern payoffs G, a pure-strategy profile $x \in X \subseteq S$ is inferior relative to X if there exists a player i and a (possibly mixed) strategy v_{i} of player i (whose support can be any subset of S_{i}, not necessarily the projection of X onto S_{i}) such that:
(1) $\pi_{\mathrm{i}}\left(x_{i}, x_{-i}\right)<\sum_{s_{i} \in S_{i}} \pi_{i}\left(s_{i}, x_{-i}\right) v_{i}\left(s_{i}\right) \quad\left(v_{i}\right.$ yields a higher expected payoff than x_{i} against $\left.x_{-i}\right)$
(2) for all $s_{-i} \in S_{-i}$ such that $\left(x_{i}, s_{-i}\right) \in X, \pi_{\mathrm{i}}\left(x_{i}, s_{-i}\right) \leq \sum_{s_{i} \in S_{i}} \pi_{i}\left(s_{i}, s_{-i}\right) v_{i}\left(s_{i}\right)$

Player		D	Player E	2 F
	A	2, 0	2, 2	0, 2
1	B	2, 2	1, 2	5, 1
	C	2, 0	1, 0	1, 5

Here (C, F) is inferior relative to S (for player $1, B$ weakly dominates C and is strictly better than C against F)
and (A, D) is inferior relative to S (for player $2, E$ weakly dominates D and is strictly better than D against A)

Let G be a strategic-form game with von Neumann-Morgenstern payoffs and G^{∞} be the game obtained after applying the procedure of Iterated Deletion of Inferior Pure-Strategy Profiles.

Let S_{s}^{∞} denote the pure-strategy profiles of game G^{∞}
Given a model of G, let S_{s}^{∞} be the event $\left\{\omega \in \Omega: \sigma(\omega) \in S_{s}^{\infty}\right\}$

PROPOSITION 7. $K_{*} \boldsymbol{R} \subseteq \boldsymbol{S}_{s}^{\infty}$

PROPOSITION 8. Fix a strategic-form game with von Neumann-Morgenstern payoffs G and let $s \in S_{s}^{\infty}$. Then there exists a Bayesian model of G and a state ω such that $\sigma(\omega)=s$ and $\omega \in K_{*} \boldsymbol{R}$.

Player	D		Player E	2 F
	A	2, 0	2, 2	0, 2
1	B	2, 2	1, 2	5, 1
	C	2, 0	1, 0	1, 5

$$
\begin{aligned}
& \text { In this game } S^{\infty}=S_{m}^{\infty}=S \\
& \text { while } S_{s}^{\infty}=\{(A, E),(A, F),(B, D),(C, D)\}
\end{aligned}
$$

Thus every strategy profile is compatible with common belief of rationality while only $(A, E),(A, F),(B, D)$ and (C, D) are compatible with common knowledge of rationality

CREDITS

The link between the iterated deletion of strictly dominated strategies and the informal notion of common belief of rationality was first shown by Bernheim (1984) and Pearce (1984)
The first explicit epistemic characterization was provided by Tan and Werlang (1998) using a universal type space.

The state space formulation used in Propositions 5 and 6 is due to Stalnaker (1994), but it was implicit in Brandenburger and Dekel (1987).

Propositions 7 and 8 are due to Stalnaker (1994) (with a correction given in Bonanno and Nehring, 1996b).

To my knowledge, Propositions 1, 2, 3 and 4 have not been explicitly stated before.

References and further details can be found in
Battigalli, Pierpaolo and Bonanno Giacomo, "Recent results on belief, knowledge and the epistemic foundations of game theory", Research in Economics, 53 (2), June 1999, pp. 149-225.

For a syntactic version of Propositions 1, 2, 3 and 4 see
Giacomo Bonanno, A syntactic approach to rationality in games, Working Paper, University of California, Davis (http://www.econ.ucdavis.edu/faculty/bonanno/PDF/CBR.pdf)

