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Preface
In the last three years I wrote two open access textbooks: one on Game Theory (http:

//faculty.econ.ucdavis.edu/faculty/bonanno/GT_Book.html) and the other on Decision
Making (http://faculty.econ.ucdavis.edu/faculty/bonanno/DM_Book.html). Encouraged
by the many expressions of appreciation from students and scholars around the world, I
decided to write a third textbook: this time on the Economics of Uncertainty and Insurance.
I have been teaching an upper-division undergraduate class on this topic at the University
of California, Davis for 25 years and was not able to find a suitable textbook. Hopefully
this book will fill this gap.

I tried to write the book in such a way that it would be accessible to anybody with
minimum knowledge of calculus (the ability to calculate the derivative of a function of
one variable). The book is appropriate for an upper-division undergraduate class, although
some parts of it might be useful also to graduate students.

I have followed the same format as the other two books, by concluding each chapter
with a collection of exercises that are grouped according to that chapter’s sections. Com-
plete and detailed answers for each exercise are given in the last section of each chapter.
The book contains a total of 88 fully solved exercises. It is also richly illustrated with 80
Figures.

I expect that there will be some typos and (hopefully, minor) mistakes. If you come
across any typos or mistakes, I would be grateful if you could inform me: I can be reached
at gfbonanno@ucdavis.edu. I will maintain an updated version of the book on my web
page at

http://www.econ.ucdavis.edu/faculty/bonanno/

I intend to add, some time in the future, a further collection of exercises with detailed
solutions. Details will appear on my web page.

I am very grateful to Elise Tidrick for teaching me how to use spacing and formatting
in a (perhaps unconventional) way that makes it easier for the reader to learn the material.

I would like to thank Mathias Legrand for making the latex template used for this book
available for free (the template was downloaded from http://www.latextemplates.com/

template/the-legrand-orange-book).
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1. Introduction

This book offers an introduction to economic analysis under uncertainty, with particular focus on insurance
markets.

Life is made up of a never-ending sequence of decisions. Many decisions – such as what to watch on
television or what to eat for breakfast – do not have major consequences. Other decisions – such as whether
or not to invest all of one’s savings in the purchase of a house, or whether to purchase earthquake insurance –
can have a significant impact on one’s life. We will concern ourselves with decisions that potentially have a
considerable impact on the wealth of the individual in question.

Most of the time the outcome of a decision is influenced by external factors that are outside the decision
maker’s control, such as the side effects of a new drug, or the future price of real estate, or the occurrence
of a natural phenomenon (such as a flood, or a fire, or an earthquake). While one is typically aware of the
existence of such external factors, as the saying goes “It is difficult to make predictions, especially about
the future”.1 Most decisions are shrouded in uncertainty and this book is about how uncertainty affects the
actions and decisions of economic agents.

We begin by examining, in Chapter 2, what explains the existence and profitability of insurance markets.
For this we simply appeal to the definition of risk aversion, without the need for the full power of expected
utility theory.

Chapter 3 develops the Theory of Expected Utility, which is central to the rest of the book.

In Chapter 4 we use the theory of expected utility to re-examine the notion of attitude to risk (risk
aversion, risk neutrality and risk love), discuss how to measure the degree of risk aversion of an individual
and develop a test for determining when, of two alternative risky prospects, one can unambiguously be
labeled as being more risky than the other.

With the help of expected utility theory, in Chapter 5 study the demand side of insurance markets. We
then put together the analysis of the supply side of insurance, developed in Chapter 2, with the analysis of
the demand side, to determine the equilibrium of an insurance industry under two opposite scenarios: the
case where the industry is a monopoly and the case where there is perfect competition with free entry.

Chapter 6 is devoted to the phenomenon of “moral hazard” in insurance, namely the situation where
the probability that the insured individual will face a loss – and thus apply for a reimbursement from the

1This saying is often attributed to the physicist Niels Bohr, but apparently it is an old Danish proverb.
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insurance company – is affected by the behavior of the individual, in particular by the effort and care exerted
in loss prevention.

Up to Chapter 6 the analysis is focused on the case where the potential customers of an insurance
company are essentially identical, that is, face the same circumstances. Chapter 7 is devoted to the
analysis of “adverse selection” in insurance markets. This is the situation where there are different types of
individuals, with different propensities to incur losses, and – while each individual knows his or her own
type – the insurance company does not. Thus it is a situation of “asymmetric information”. We study how
asymmetric information affects the decisions of the suppliers of insurance and re-examine the conditions for
an equilibrium in the two types of industry structure examined in Chapter 5, namely monopoly and perfect
competition.

At the end of each section of each of Chapters 2-7 the reader is invited to test his/her understanding of
the concepts introduced in that section by attempting several exercises. In order not to break the flow of the
exposition, the exercises are collected in a section at the end of the chapter. Complete and detailed answers
for each exercise are given in the last section of each chapter. In total, the book contains 88 fully solved
exercises. Attempting to solve the exercises is an integral part of learning the material covered in this book.

The book was written in a way that should be accessible to anyone with minimum knowledge of
calculus, in particular the ability to calculate the derivative of a function of one real variable. In order to aid
understanding of the concepts, many figures are used throughout the book, for a total of 80.

This book does not necessarily follow conventional formatting standards. Rather, the intention was to
break each argument into clearly outlined steps, highlighted by appropriate spacing.



2. Insurance: basic notions

2.1 Uncertainty and lotteries
Most of the important decisions that we make in life are made difficult by the presence of uncertainty:
the final outcome is influenced by external factors that we cannot control and we cannot predict with
certainty. Because of such external factors, any given decision will typically be associated with different
outcomes, depending on what “state of the world” will actually occur. If the decision-maker is able to assign
probabilities to these external factors – and thus to the associated outcomes – then one can represent the
uncertainty that the decision maker faces as a list of possible outcomes, each with a corresponding probability.
We call such lists lotteries.

For example, suppose that Ann and Bob are planning their wedding reception. They have a large number
of guests and face the choice between two venues: a spacious outdoor area where the guests will be able
to roam around or a small indoor area where the guests will feel rather crammed. Ann and Bob want their
reception to be a success and their guests to feel comfortable. It seems that the large outdoor area is a better
choice; however, there is also an external factor that needs to be taken into account, namely the weather. If it
does not rain, then the outdoor area will yield the best outcome (success: denote this outcome by o1) but if
it does rain then the outdoor area will give rise to the worst outcome (failure: denote this outcome by o3).
On the other hand, if Ann and Bob choose the indoor venue, then the corresponding outcome will be a less
successful reception but not a failure (call this outcome o2). Let us denote the possible outcomes as follows:

o1 : successful reception
o2 : mediocre reception
o3 : failed reception.

Clearly they prefer o1 to o2 and o2 to o3. At the time of deciding which venue to pay for, Ann and Bob do not
know what the weather will be like on their wedding day. The most they can do is consult a weather forecast
service and obtain probabilistic estimates. Suppose that the forecast service predicts a 30% chance of rain on
the day in question. Then we can represent the decision to book the outdoor venue as the following lottery(

outcome: o1 o3
probability: 0.7 0.3

)
On the other hand, the decision to book the indoor venue corresponds to the following degenerate lottery:(

outcome: o2
probability: 1

)
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Throughout this book we will represent the uncertainty facing a decision-maker in terms of lotteries.1

This assumes that the decision-maker is always able to assign probabilities to the possible outcomes. We
interpret these probabilities either as “objective” probabilities, obtained from relevant past data, or as
“subjective” estimates by the individual. For example, an individual who is considering whether or not to
insure her bicycle against theft, knows that there are two relevant basic outcomes: either the bicycle will be
stolen or it will not be stolen. Furthermore, she can look up data on past bicycle thefts in her area and use the
proportion of bicycles that were stolen as an objective estimate of the probability that her bicycle will be
stolen; alternatively, she can use a more subjective estimate: for example she might use a lower probability
of theft than suggested by the data, because she knows herself to be very conscientious and – unlike other
people – to always lock her bicycle when left unattended.

In this chapter we will focus on lotteries where the outcomes are sums of money. More general lotteries
will be considered in Chapter 3.

2.2 Money lotteries and attitudes to risk
Definition 2.2.1 A money lottery is a probability distribution over a list of outcomes, where each

outcome consists of a sum of money. Thus, it is an object of the form
(

$x1 $x2 ... $xn
p1 p2 ... pn

)
with

0≤ pi ≤ 1 for all i = 1,2, ...,n, and p1 + p2 + ...+ pn = 1.

We assume that the individual in question is able to rank any two money lotteries. For example, if asked

to choose between getting $400 for sure, which can be viewed as the degenerate lottery

(
$400

1

)
, and

the lottery2

(
$900 $0

1
2

1
2

)
, she will be able to tell us if she prefers one lottery to the other or is indifferent

between the two. In general, there is no “right answer” to this question, as there is no right answer to the
question “do you prefer coffee or tea?”: it is a matter of individual taste.

Definition 2.2.2 Given a money lottery L =

(
$x1 $x2 ... $xn
p1 p2 ... pn

)
, its expected value is the

number E[L] = x1 p1 + x2 p2 + ...+ xn pn.

For example, the expected value of the money lottery(
$600 $180 $120 $30

1
12

1
3

5
12

1
6

)
is 1

12 600+ 1
3 180+ 5

12 120+ 1
6 30 = 165.

Definition 2.2.3 Let L be a non-degenerate money lottery (that is, a money lottery where at least
two different outcomes are assigned positive probability)a and consider the choice between L and the
degenerate lottery (

$E[L]
1

)
(that is, the choice between facing the lottery L or getting the expected value of L with certainty).
Then

1For some analysis of decision-making in situations where the individual is not able to assign probabil-
ities to the outcomes see my book Decision Making (http://faculty.econ.ucdavis.edu/faculty/
bonanno/DM_Book.html).

2We can think of this lottery as tossing a fair coin and then giving the individual $900 if it comes up
Heads and nothing if it comes up Tails.

http://faculty.econ.ucdavis.edu/faculty/bonanno/DM_Book.html
http://faculty.econ.ucdavis.edu/faculty/bonanno/DM_Book.html


2.2 Money lotteries and attitudes to risk 13

• An individual who prefers $E[L] for certain to L is said to be risk averse (relative to L).

• An individual who is indifferent between $E[L] for certain and L is said to be risk neutral (relative
to L).

• An individual who prefers L to $E[L] for certain is said to be risk loving or risk seeking (relative
to L).

aA money lottery
(

$x1 $x2 ... $xn
p1 p2 ... pn

)
is non-degenerate if, for all i = 1,2, ...,n, pi < 1.

Note that, if an individual

(1) is risk neutral relative to every money lottery,

(2) has transitive preferences3 over money lotteries and

(3) prefers more money to less,

then we can tell how that individual ranks any two money lotteries.

For example, how would a risk-neutral individual rank the two lotteries

L1 =

(
$30 $45 $90

1
3

5
9

1
9

)
and L2 =

(
$5 $100
3
5

2
5

)
? We shall use the symbol � to denote strict

preference and the symbol ∼ to denote indifference.4 Since E[L1] = 45 and the individual is risk neutral,
L1 ∼ $45; since E[L2] = 43 and the individual is risk neutral, $43∼ L2; since the individual prefers more
money to less, $45� $43:

L1 ∼ $45 � $43 ∼ L2.

Thus, by transitivity, L1 � L2 (see Exercises 2.10-2.13).

On the other hand, knowing that an individual is risk averse relative to every money lottery, has transitive
preferences over money lotteries and prefers more money to less, is not sufficient to predict how she will
choose between two arbitrary money lotteries. For example, as we will see in Chapter 3, it is possible that one

risk-averse individual will prefer L3 =

(
$28
1

)
(whose expected value is 28) to L4 =

(
$10 $50

1
2

1
2

)
(whose expected value is 30), while another risk-averse individual will prefer L4 to L3.

Similarly, knowing that an individual is risk loving relative to every money lottery, has transitive
preferences over money lotteries and prefers more money to less, is not sufficient to predict how she will
choose between two arbitrary money lotteries.

R Note that “rationality” does not, and should not, dictate whether an individual should
be risk neutral, risk averse or risk loving: an individual’s attitude to risk is merely
a reflection of that individual’s preferences. It is a generally accepted principle
that de gustibus non est disputandum (in matters of taste, there can be no disputes).
According to this principle, there is no such thing as an irrational preference and thus
there is no such thing as an irrational attitude to risk.

3That is, if she considers lottery A to be at least as good as lottery B and she considers lottery B to be at
least as good as lottery C then she considers A to be at least as good as C.

4Thus A� B means that the individual prefers A to B and A∼ B means that the individual is indifferent
between A and B.
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From an empirical point of view, however, most people reveal through their choices
(e.g. the decision to buy insurance) that they are risk averse, at least when the stakes
are sufficiently high. It is also possible (as we will see in Chapter 4) for an individual
to have different attitudes to risk, depending on how high the stakes are (e.g. an
individual might display risk aversion, by purchasing home insurance, as well as risk
love, by purchasing a lottery ticket).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.7.1 at the end of this chapter.

2.3 Certainty equivalent and the risk premium
Given a set of money lotteries L , we will assume that the individual under consideration has well-defined
preferences over the elements of L . As before, we shall use the symbol � to denote strict preference
(L1 � L2 means that the individual prefers lottery L1 to lottery L2) and the symbol ∼ to denote indifference
(L1 ∼ L2 means that the individual is indifferent between L1 and L2, that is, she considers L1 to be just as
good as L2). Finally, we use the symbol % to signify “at least as good as”: L1 % L2 means that the individual
considers L1 to be at least as good as L2, that is, either she prefers L1 to L2 or she is indifferent between L1
and L2. The following table summarizes the notation:

notation: interpretation:

L1 � L2 the individual prefers L1 to L2

L1 ∼ L2 the individual is indifferent between L1 and L2

L1 % L2 the individual considers L1 to be at least as good as L2,
that is, either L1 � L2 or L1 ∼ L2.

We shall assume that the individual is able to rank any two lotteries (her preferences are complete) and her
ranking is transitive:

• (completeness) for every L1 and L2, either L1 % L2 or L2 % L1 or both,

• (transitivity) if L1 % L2 and L2 % L3 then L1 % L3.5

We shall also assume throughout that the individual prefers more money to less, that is,(
$x
1

)
�

(
$y
1

)
if and only if x > y. (2.1)

Suppose that, for every money lottery L there is a sum of money, denoted by CL, that the individual
considers to be just as good as the lottery L; then we call CL the certainty equivalent of lottery L for that
individual.

Definition 2.3.1 The certainty equivalent of a money lottery L is that sum of money CL such that

L =

(
$x1 ... $xn
p1 ... pn

)
∼
(

$CL
1

)

5In Exercises 2.10-2.13 the reader is asked to prove that transitivity of the “at least as good” relation
implies transitivity of strict preference and of indifference.
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Typically, the certainty equivalent of a given money lottery will be different for different individuals. However,
all risk-neutral individuals will share the same certainty equivalent; in fact, it follows from the definition of
risk neutrality (Definition 2.2.3) that

• for a risk-neutral individual, the certainty equivalent of a money lottery L coincides with the expected
value of L:

CL = E[L].

On the other hand, for a risk-averse individual (who, furthermore, prefers more money to less and whose
preferences are complete and transitive) the certainty equivalent of a money lottery will be less than the
expected value:

• for a risk-averse individual, for every money lottery L,

CL < E[L].

In fact, by definition of risk aversion,

(
$E[L]

1

)
� L and, by definition of certainty equivalent, L ∼(

$CL

1

)
. Thus, by transitivity,

(
$E[L]

1

)
�

(
$CL

1

)
; hence, by (2.1),

E[L]>CL. Similarly,

• for a risk-loving individual, for every money lottery L,

CL > E[L].

From the notion of certainty equivalent we derive another notion which can be used to compare the
degree of risk aversion across individuals.

Definition 2.3.2 The risk premium of a money lottery L, denoted by RL, is the amount by which the
expected value of L can be reduced to induce indifference between the lottery itself and the reduced
amount for certain:

L =

(
$x1 ... $xn
p1 ... pn

)
∼
(

$(E[L]−RL)
1

)

It follows from Definitions 2.3.1 and 2.3.2 that CL = E[L]−RL or, equivalently,

RL = E[L]−CL.

Thus, for a risk-neutral individual the risk premium is zero, while for a risk-averse individual the risk
premium is positive (and for a risk-loving individual the risk premium is negative). Furthermore, we can
label a risk-averse individual as more risk-averse (relative to lottery L) than another risk-averse individual
if the risk premium for the former is larger than the risk premium for the latter. In fact, the risk premium
can be interpreted as the price (relative to the expected value) that the individual is willing to pay to avoid
facing lottery L. For example, consider three individuals: Ann, Bob and Carla. They all have the same initial
wealth $6,000 and they are facing the lottery L where with probability 50% their wealth is wiped out and

with probability 50% their wealth is doubled: L =

(
$0 $12,000
1
2

1
2

)
. Suppose that Ann’s risk premium
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for this lottery is RAnn
L = 900, Bob’s is RBob

L = 500 and Carla’s is RCarla
L = 0. Then Ann and Bob are risk

averse and Ann is more risk averse than Bob, while Carla is risk neutral. Ann would be willing to pay up to
$900 (thus reducing her wealth from $6,000 to $5,100) in order to avoid the lottery L, while Bob would
only be willing to pay up to $500 (thus reducing his wealth from $6,000 to $5,500) in order to avoid the
lottery L; on the other hand, Carla would not be willing to pay any amount of money to avoid L, since she is
indifferent between keeping her initial wealth of $6,000 and playing lottery L.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.7.2 at the end of this chapter.

2.4 Insurance: basic concepts
Insurance markets are a good example of situations where uncertainty can be represented by means of money
lotteries.

Consider an individual who has an initial wealth of $W0 > 0 and faces the possibility of a loss in the
amount of $` (0 < `≤W0) with probability p (0 < p < 1). For example, it could be an individual who owns
a plot of land worth $80,000 and a house built on it worth $220,000 (so that W0 = 80,000+ 220,000 =
300,000). She is worried about the possibility of a fire destroying the house (thus ` = 220,000) and,
according to publicly available data, the probability of this happening in her area is 2% (thus p = 0.02). An
insurance company offers her a contract and she has to decide whether or not to purchase that contract. An
insurance contract is typically expressed in terms of two numbers: the premium, which we will denote by h,
and the deductible, which we will denote by d. The premium can be thought of as the price of the contract:
it is paid no matter whether the loss is incurred or not. The deductible is the portion of the loss that is not
covered. If d = 0 we say that the contract offers full insurance, while if d > 0 then we say that the contract
offers partial insurance:

d = 0 full insurance
d > 0 partial insurance.

In the above example, if the deductible is $40,000 then, if the loss occurs, the insurance company makes a
payment to the insured in the amount of $(`−d) = $(220,000−40,000) = $180,000 (and, of course, if the
loss in not incurred then the insurance company does not make any payments to the insured). The following
table summarizes the notation used in this book in the context of insurance:

W0 initial wealth
` potential loss
p probability of loss
h premium
d deductible

`−d insured amount
(h,d) insurance contract.
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It will be useful to represent the initial situation and possible insurance contracts graphically. We shall
do so by using wealth diagrams where, on the horizontal axis, we represent the individual’s wealth if a loss
occurs, denoted by W1, and, on the vertical axis, the individual’s wealth if there is no loss, denoted by W2;
we shall also refer to the former as wealth in the bad state and to the latter as wealth in the good state. The
no-insurance situation can be represented in the wealth diagram as the point NI = (W0− `,W0), as shown in
Figure 2.1.

W2

W1

wealth in good state

wealth in bad state

45o lineNI
no insurance

W0

W0− `
0

set of
insurance
contracts

Figure 2.1: The no-insurance point (NI) and the set of possible insurance contracts (the
shaded triangle).

The purpose of an insurance contract is to protect the individual in case she experiences
a loss: thus an insurance contract can be thought of as a point in the diagram where the
horizontal coordinate is larger than W0− ` (which is the individual’s wealth in the bad
state if she does not insure), while the vertical coordinate is smaller than W0 because of the
premium. The set of possible insurance contracts (encoded in terms of the corresponding
wealth levels for the individual, in the bad state and in the good state), is shown in Figure
2.1 as a shaded triangle. The “45o line”– which is the line out of the origin with an angle
of 45o – is the set of points (W1,W2) such that W1 =W2. As we will see below, the points
on the 45o line represent full-insurance contracts.

How do we translate an insurance contract (h,d), expressed in terms of premium h and
deductible d, into a point in the (W1,W2) diagram? If the individual purchases contract
(h,d) then she pays the premium h in any case (that is, whether or not she incurs a loss) and
thus her wealth in the good state is equal to W2 =W0−h; the premium reduces her wealth
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also in the bad state, but in this state there is a further reduction due to the deductible, so
that W1 =W0−h−d =W2−d. Conversely, given a contract expressed as a point (W1,W2)
we can recover the premium and deductible as follows: h =W0−W2 and d =W2−W1. It
is clear from this that d = 0 if and only if W1 =W2, that is, if and only if the point lies on
the 45o line.

W2

W1

wealth in good state

wealth in bad state

NI

0

45o line

5,000

3,000

A
4,500

3,900

B
4,100

4,100

Figure 2.2: The no-insurance point and two insurance contracts.

In Figure 2.2 three points are shown: the no-insurance point NI = (3,000,5,000) and
two possible insurance contracts: A = (W A

1 = 3,900, W A
2 = 4,500) and

B = (W B
1 = 4,100, W B

2 = 4,100). From NI we deduce that

W0 = 5,000 and `= 5,000−3,000 = 2,000.

Let hA denote the premium of contract A and dA the deductible; then

hA =W0−W A
2 = 5,000−4,500 = 500 and dA =W A

2 −W A
1 = 4,500−3,900 = 600.

Similarly, let hB denote the premium of contract B and dB the deductible; then

hB =W0−W B
2 = 5,000−4,100 = 900 and dB =W B

2 −W B
1 = 4,100−4,100 = 0.

Hence A is a partial-insurance contract, while B is a full-insurance contract.
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Figure 2.3 shows how to view the premium and deductible corresponding to a contract
A = (W A

1 ,W A
2 ).

W10

W2

NI
W0

W0− `

45o line

A
W0−hA

W0−hA−dA

premium hA

W0−hA−dA

deductible dA

Figure 2.3: The graphical representation of the premium hA and the deductible dA corre-
sponding to a contract A = (W A

1 ,W A
2 ).

As shown in Figure 2.1, there are many potential insurance contracts (the points in the
shaded triangle). Will an insurance company be willing to offer any of them? Would an
individual be willing to accept any of them? The first question has to do with the incentives
of the supplier of contracts (the insurer), while the second question has to do with the
incentives of the potential customer (the insured).

We will address the first question in the next sections and postpone a full analysis of
the second question to Chapter 4.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.7.3 at the end of this chapter.
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2.5 Isoprofit lines
Throughout this book we shall assume that insurance companies are risk neutral and that
their objective is to maximize expected profits.6 Selling a contract (h,d) to a customer
corresponds to the following money lottery (in terms of profits) for the insurer:(

$h $[h− (`−d)]
1− p p

)
. (N)

Given an insurance contract (h,d), we denote by π(h,d) the expected value of the corre-
sponding profit lottery (N), that is, the expected profit from the contract:

π(h,d) = (1− p)h+ p[h− (`−d)] = h− p`+ pd. (NN)

By the assumption of risk neutrality, the insurance company will be indifferent between
any two contracts that yield the same expected profit. For example, if ` = 4,000 and
p = 5

100 , the two contracts A = (hA = 800, dA = 1,000) and B = (hB = 825, dB = 500)
yield the same expected profit:

π(A) = 800− 5
1003,000 = 650 and π(B) = 825− 5

1003,500 = 650.

Definition 2.5.1 A line in the (W1,W2) plane joining all the contracts that give rise to
the same expected profit is called an isoprofit line.

We want to show that an isoprofit line is a downward-sloping straight line with slope− p
1−p .

Let A =
(
W A

1 ,W A
2
)

and B =
(
W B

1 ,W B
2
)

be two contracts that yield the same expected profit,
that is,

W0−W A
2︸ ︷︷ ︸

=hA

−p`+ p (W A
2 −W A

1 )︸ ︷︷ ︸
=dA

= W0−W B
2︸ ︷︷ ︸

=hB

−p`+ p (W B
2 −W B

1 )︸ ︷︷ ︸
=dB

.

Deleting W0− p` from both sides of the equation and rearranging the terms we get

−(1− p)W A
2 − pW A

1 =−(1− p)W B
2 − pW B

1

or, equivalently,
rise
run

=
W A

2 −W B
2

W A
1 −W B

1
=− p

1− p

which gives the slope of the line segment joining points A and B. Note that the slope is a
constant, that is, it does not vary with the points A and B that are chosen.

6The assumption of risk neutrality is not needed if the insurance company sells the same contract to
a large number of individuals. Let n be a large number of customers insured by the insurance company
with contract (h,d). Let n0 be the number of customers who do not suffer a loss and n1 be the number of
customers who suffer a loss (thus n0 +n1 = n). Then the insurer’s total profits will be (n0 +n1)h−n1(`−d),
so that profit per customer, or profit per contract, is nh−n1(`−d)

n = h− n1
n (`− d). By the Law of Large

Numbers in probability theory, n1
n will be approximately equal to p (the probability of loss), so that the profit

per customer will be approximately equal to π(h,d) = h− p`+ pd as defined above.
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Figure 2.4 shows an isoprofit line and two contracts, A and B, on this line.

W1
(probability p)

0

(probability 1− p)

W2

45o line

A

B

W A
2

W A
1

W B
2

W B
1

isoprofit line

slope of
isoprofit line:
W A

2 −W B
2

W A
1 −W B

1
=− p

1−p

rise

run

Figure 2.4: The slope of an isoprofit line.

Thus

• isoprofit lines are straight lines,

• isoprofit lines are downward-sloping or decreasing, since the slope is negative:
− p

1−p < 0 because 0 < p < 1.

For each point in the (W1,W2) plane there is an isoprofit line that goes through that
point. Hence the plane is filled with parallel isoprofit lines (each with slope − p

1−p ).

Let A =
(
W A

1 ,W A
2
)

and C =
(
WC

1 ,WC
2
)

be two insurance contracts and suppose that

π(A) = (W0−W A
2 )− p[`− (W A

2 −W A
1 )] 6= π(C) = (W0−WC

2 )− p[`− (WC
2 −WC

1 )].

What is the relative position of the isoprofit line that goes through A and the isoprofit line
that goes through C? In other words, if the isoprofit line through one contract is below the
isoprofit line through another contract, which of the two lines corresponds to a higher level
of profit?
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To answer this question, start from a point A =
(
W A

1 ,W A
2
)

and draw a point
B =

(
W B

1 ,W B
2
)

vertically below it, as shown in Figure 2.5.

W1 (probability p)0

W2
(probability 1− p)

45o line

A

B

W0−hA

W0−hA−dA
=W0− (hA +∆)︸ ︷︷ ︸

hB−dB

hence dB−dA =−∆

W0− (hA +∆)︸ ︷︷ ︸
hB

∆

isoprofit line

isoprofit line π(B)−π(A)
= ∆− p∆

= (1− p)∆ > 0

Figure 2.5: A lower isoprofit line corresponds to a higher level of profit.

Since point B is vertically below point A, the horizontal coordinate of B coincides with
the horizontal coordinate of A: W B

1 = W A
1 ; furthermore, the vertical coordinate of B is

less than the vertical coordinate of A: W B
2 <W A

2 . From the latter fact we deduce that the
premium of contract B is higher than the premium of contract A. Let ∆ =W A

2 −W B
2 > 0 be

the amount by which B’s premium exceeds A’s premium. From the fact that W B
1 =W A

1 we
calculate the difference between the deductible of contract B and the deductible of contract
A as follows:

=W A
2 −∆︷︸︸︷

W B
2 −

=W A
1︷︸︸︷

W B
1︸ ︷︷ ︸

dB

= W A
2 −W A

1︸ ︷︷ ︸
dA

− ∆,

so that
dB−dA =−∆.

Thus, when contract B is vertically below contract A, then hB is greater than hA and, letting
∆ be the amount by which hB exceeds hA (∆ = hB− hA), dB− dA = −∆, that is, the
deductible of contract B is less than the deductible of contract A by an amount equal to
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∆. From this we deduce that contract B yields higher profits that contract A, because it
yields an extra $∆ for sure (the premium is received with probability 1) and involves an
extra payment of $∆ to the insured only with probability p (the payment is made with
probability p < 1), that is,7

π(B)−π(A) = ∆− p∆ = (1− p)∆ > 0.

Thus we have shown that moving from an isoprofit line to a lower one corresponds to
moving from lower profits to higher profits. This is illustrated in Figure 2.6.

W1
0

W2

π1
π2
π3

increasing profits
direction of

π3 > π2 > π1 isoprofit
lines

Figure 2.6: The direction of increasing profits.

Among the isoprofit lines there is one which is of particular interest, namely the zero-
profit line, that is, the line that joins all the contracts that yield zero profits. Like all the
other isoprofit lines, this is a straight line with slope − p

1−p . Furthermore, it goes through
the no-insurance point NI; in fact, NI can be thought of as a trivial contract with zero
premium and full deductible: such a contract obviously involves zero profits because the
insurance company receives no payment (hNI = 0) and makes no payment (dNI = ` so that
`−dNI = 0).

R The zero-profit line is also called the fair odds line.

7This conclusion can be verified directly, as follows: π(B) = W0 −W B
2 − p`+ p(W B

2 −W B
1 ) and

π(A) =W0−W A
2 − p`+ p(W A

2 −W A
1 ) so that (recall that W B

1 =W A
1 and thus pW B

1 = pW A
1 )

π(B)−π(A) = (W A
2 −W B

2 )− p(W A
2 −W B

2 ) = (1− p)(W A
2 −W B

2 )︸ ︷︷ ︸
∆

.
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The zero-profit line is shown in Figure 2.7. Points above the line represent contracts that
yield negative profits and points below the line represent contracts that yield positive profits.

W10

W2

45o lineNI
W0

W0− `

zero-profit line

B

A

C

π(B) = 0
π(A)> 0
π(C)< 0

Figure 2.7: The zero-profit line.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.7.4 at the end of this chapter.
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2.6 Profitable insurance requires risk aversion
2.6.1 Insuring a risk-neutral individual

Recall that the no-insurance option corresponds to the wealth lottery

NI =
(

W0 W0− `
1− p p

)
whose expected value is E[NI] =W0− p` (2.2)

where, as usual, W0 is the initial wealth, ` the potential loss and p the probability of loss.
Now suppose that the individual is risk neutral and is offered an insurance contract (h,d)
that yields positive profits, that is,

h− p`+ pd > 0 or, equivalently h+ pd > p`. (2.3)

For the potential customer, such a contract corresponds to the wealth lottery

A =

(
W0−h W0−h−d
1− p p

)
whose expected value is

E[A] =W0−h− pd =W0− (h+ pd) (2.4)

Using the fact that, by (2.3), h+ pd > p`, we get that

E[A]<W0− p`= E[NI]. (2.5)

By risk neutrality, the individual is indifferent between NI and E[NI] for sure and is also
indifferent between A and E[A] for sure. Assuming that the individual prefers more money
to less, by (2.5) she prefers E[NI] for sure to E[A] for sure: denoting, as before, indifference
by ∼ and strict preference by �, we can write this as

NI ∼ E[NI]� E[A]∼ A.

Assuming that the individual’s preferences are transitive, it follows that

NI � A,

that is, the individual strictly prefers not insuring to purchasing contract A. Hence it is not
possible for an insurance company to make positive profits by selling insurance contracts
to risk-neutral individuals: the individuals will simply not buy the offered insurance
contracts.

Although it is intuitively clear that also a risk-loving individual would reject any
insurance contract that would yield non-negative profits to the insurer, the proof requires
more tools than we have developed so far.8

Thus we are left with the case of a risk-averse individual, to which we now turn.

8In Exercise 2.22 (at the end of this chapter) the reader is asked to show that a risk-loving individual
would reject a full-insurance contract that yields zero profits to the insurance company.
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2.6.2 Insuring a risk-averse individual
In this section we show that, if an individual is risk averse, it is possible for an insurance
company to make positive profits by offering a contract that will be accepted by the
individual.

The argument assumes that the individual’s preferences are continuous, in the sense
that if she prefers contract B to contract A then contracts that are sufficiently close to B
are still better than A. This is shown in Figure 2.8. Suppose that contract B is preferred to
contract A; then continuity of preferences says that, if we take some other contract C in a
“sufficiently small disk” around B, then it will be true also for C that it is better than A.9

W2

W1

A

B

C

if B� A
then
C � A

Figure 2.8: Continuity of preferences.

Now consider a risk-averse individual. By definition of risk aversion, she will strictly prefer
the full-insurance contract B with premium h = p` to not insuring, since such contract
leaves her with a wealth of W0− p` for sure and W0− p` is the expected value of the
no-insurance lottery NI:

B� NI. (2.6)

Contract B yields zero profits for the insurer:10

π(B) = 0. (2.7)

By continuity of preferences and (2.6), any contract C sufficiently close to B will also be
such that

C � NI. (2.8)

9This is similar to the property of real numbers that, if b > a then any number c in a sufficiently small
interval around b will also be greater than a.

10In fact, contract B lies at the intersection of the zero-profit line and the 45o line.
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If we choose such a contract C which is below the zero-profit line, then – as we saw in
Section 2.5 – π(C)> π(B) and thus, by (2.7), π(C)> 0 and, by (2.8), the individual will
purchase contract C, since it makes her better off relative to not insuring. Hence it is
possible to sell a profitable contract to a risk-averse individual.

The above argument is illustrated graphically in Figure 2.9.

W2

W1
0

NI

BC

45o line
zero-profit line

Risk aversion⇒ B� NI
Continuity⇒C � NI
C below 0-π line⇒ π(C)> 0

Figure 2.9: Contract C yields positive profits and is better than no insurance.

2.6.3 The profit-maximizing contract for a monopolist
Suppose that the insurance industry is a monopoly, that is, there is only one firm in the
industry. Would a profit-maximizing monopolist want to offer a full insurance contract
or a partial insurance contract to a risk-averse individual? Extending the argument of the
previous section, we can show that for the monopolist the profit-maximizing choice is to
offer full insurance.

Consider any partial insurance contract B = (hB,dB) (thus dB > 0) that the potential
customer is willing to purchase (thus B� NI); note that the monopolist’s profit from this
contract is

π(B) = hB− p`+ pdB.

We want to show that there is a full-insurance contract C = (hC,0) which the potential
customer is willing to purchase (C � NI) and is such that π(C)> π(B), so that it cannot
be profit-maximizing to offer contract B.

Let A be the following full-insurance contract: A = (hB + pdB,0). The monopolist’s profit
from this contract would be

π(A) = hB + pdB− p`= π(B),
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that is, A and B lie on the same isoprofit line and hence the monopolist is indifferent
between these two contracts. The customer, however, would strictly prefer contract A to
contract B: A � B. In fact, purchasing contract B = (hB,dB) can be viewed as playing

the lottery
(

W0−hB W0−hB−dB
1− p p

)
whose expected value is W0−hB− pdB and the

full-insurance contract A guarantees this amount with certainty; thus, by the assumed risk-
aversion of the customer, A� B. By continuity of preferences, any contract C sufficiently
close to A would still be such that C � B and thus, by transitivity (since, by hypothesis,
B� NI) C� NI. Choosing such a contract below the isoprofit line going through contracts
A and B ensures that π(C)> π(B). Hence if the monopolist were to switch from contract
B to contract C the customer would still purchase insurance and the monopolist’s profits
would increase. The argument is illustrated in Figure 2.10.

W2

W1

B
A

C

45o line

isoprofit line

Hypothesis: B�NI

Risk aversion⇒ A�B

Continuity⇒ C�B

Transitivity⇒ C�NI

C below isoprofit line⇒ π(C)>π(B)

Figure 2.10: Contract C yields higher profits than contract B and is still better than NI.

Thus a monopolist would offer a full-insurance contract to the potential customer. What
is the maximum premium that the monopolist would be able to charge for full-insurance
without turning the customer away? We can answer this question by appealing to the
notion of risk premium (Definition 2.3.2): the monopolist can set the premium up to the
amount

hmax = p`+RNI

where RNI is the customer’s risk premium for the no-insurance lottery NI =
(

W0 W0− `
1− p p

)
;

that is, the maximum premium the customer would be willing to pay for full insur-
ance is equal to the expected loss, p`, augmented by the risk premium, RNI . In fact,
E[NI] =W0− p` and thus, by definition of risk premium,

NI ∼
(

W0− p`−RNI
1

)
.
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In other words, if the customer purchases insurance at premium hmax = p`+RNI then she
is guaranteed the certainty equivalent of the no-insurance lottery. If offered full insurance
at this premium, the potential customer would be indifferent between insuring and not
insuring; thus the monopolist might want to offer full insurance at a slightly lower premium
in order to provide the customer with an incentive to purchase insurance.

2.6.4 Perfectly competitive industry with free entry

In the previous section we considered the extreme case of complete absence of competition,
that is, the case where the insurance industry is a monopoly. In this section we consider the
opposite extreme, namely an insurance industry where competition is so intense that profits
are driven down to zero. The story that is often told for such a mythical industry is that
there is free entry into the industry and thus, if firms in the industry are making positive
profits, then some new entrepreneur will enter seeking to share in these profits; entry of new
firms intensifies competition and drives profits down. We shall assume that all the potential
customers in the industry are identical, in the sense that they have the same preferences,
the same initial wealth and face the same potential loss with the same probability (the case
where potential customers are not identical will be analysed in Chapter 7). Furthermore,
we assume that if a new contract is introduced that the insured customers prefer to their
current contract, then they will switch to the new contract.

Define a free-entry competitive equilibrium as a situation where

1. each firm in the industry makes zero profits, and

2. there is no unexploited profit opportunity in the industry, that is, there is no currently
not offered contract that would yield positive profits to a (existing or new) firm that
offered that contract.

By adopting a simple extension of the argument used in the previous section, we now show
that at a competitive free-entry equilibrium all the active firms, that is, all the firms that
are actually selling insurance,11 offer the same contract, namely the “fair” full-insurance
contract with premium h = p`.

11There could be inactive firms whose contracts nobody purchases: these firms are also trivially making
zero profits.
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The first step in the argument is that – by the zero-profit condition – any actually
purchased contract must lie on the zero-profit line. Suppose that there is a contract, call
it A, that is currently being purchased by some customers (thus A% NI) and is different
from the “fair” full-insurance contract with premium h = p`; call the latter contract B: see
Figure 2.11. By definition of risk aversion, it must be that B � A and, by continuity of
preferences, any contract sufficiently close to B must also be better than A (thus, since
A% NI, by transitivity of preferences such a contract is better than no insurance). Pick a
contract C sufficiently close to B and below the zero-profit line (see Figure 2.11). Then
π(C)> 0 and thus a firm that offered this contract would attract all the customers who are
currently purchasing contract A and would make positive profit, so that the initial situation
cannot be a free-entry competitive equilibrium.

W2

W1
0

NI

BC

45o line
zero-profit line

Hypothesis: A%NI

Risk aversion⇒ B�A

Continuity⇒ C�A

C below 0-π line⇒ π(C)>0

A

Figure 2.11: Contract C yields positive profits and is better than NI.

We have seen that, no matter whether the insurance industry is a monopoly or a
perfectly competitive industry, the outcome is qualitatively the same, namely that potential
customers are offered full insurance (and only full insurance). There is an important
difference, however: in a perfectly competitive industry the premium of the full-insurance
contract is the “fair” premium h = p`, while the premium that the monopolist charges for
full insurance is higher, namely h = p`+RNI (recall that RNI is the risk premium of the
no-insurance lottery).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.7.5 at the end of this chapter.
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2.7 Exercises
The solutions to the following exercises are given in Section 2.8 at the end of this chapter.

2.7.1 Exercises for Section 2.2: Money lotteries and attitudes to risk

Exercise 2.1 Consider the following money lottery:(
$10 $15 $18 $20 $25 $30 $36

3
12

1
12 0 3

12
2
12 0 3

12

)
(a) What is its expected value?
(b) If a risk-neutral individual is given a choice between the above lottery and $23

for sure, what will she choose?
�

Exercise 2.2 Consider the lottery
(

o1 o2 o3
3

10
5
10

2
10

)
where

• o1 is the outcome where you get $100 and an A in the class on the Economics of
Uncertainty and Information,
• o2 is the outcome where you get a free trip to Disneyland (which would normally

cost $500) and a C in the class and
• o3 is the outcome where you get a $150 gift certificate at Amazon.com and a B in

the class.
If you are risk neutral, what sum of money would you consider to be just as good as the
lottery? �

Exercise 2.3 Given the choice between getting $18 for sure or playing the lottery(
$10 $20 $30

3
10

5
10

2
10

)
James – who likes money (that is, prefers more money to less) – chooses to get $18 for
sure. Is he risk neutral? �

Exercise 2.4 Find the expected value of the following lottery(
24 12 48 6
1
6

2
6

1
6

2
6

)
.

�
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Exercise 2.5 Consider the lottery
(

o1 o2 o3
1
4

1
2

1
4

)
where

• o1 = you get an invitation to have dinner at the White House,
• o2 = you get (for free) a puppy of your choice,
• o3 = you get $600.

What is the expected value of this lottery? �

Exercise 2.6 Consider the following money lottery

L =

(
$10 $15 $18 $20 $25 $30 $36

3
12

1
12 0 3

12
2

12 0 3
12

)
(a) What is the expected value of the lottery?
(b) Ann prefers more money to less and has transitive preferences. She says that,

between getting $20 for certain and playing the above lottery, she would prefer
$20 for certain. What is her attitude to risk?

(c) Bob prefers more money to less and has transitive preferences. He says that,
given the same choice as Ann, he would prefer playing the lottery. What is his
attitude to risk?

�

Exercise 2.7 Sam has a debilitating illness and has been offered two mutually exclusive
courses of action:

(1) take some well-known drugs which have been tested for a long time, or

(2) take a new experimental drug.

If he chooses (1) then for certain his pain will be reduced to a bearable level. If he
chooses (2) then he has a 50% chance of being completely cured and a 50% chance of
no benefits from the drug and possibly some harmful side effects. He chose (1). What
is his attitude to risk? �

Exercise 2.8 Shirley owns a house worth $200,000. The value of the building is
$75,000 and the value of the land is $125,000. In the area where she lives there is a
10% probability that a fire will completely destroy the building in a given year (on the
other hand, the land would not be affected by a fire). An insurance company offers a
policy that covers the full replacement cost of the building in the event of fire (that is,
there is no deductible). The premium for this policy is $7,500 per year. What attitude to
risk must Shirley have in order to purchase the insurance policy? [Hint: think in terms
of wealth levels.] �
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Exercise 2.9 Bill’s entire wealth consists of the money in his bank account: $12,000.
Bill’s friend Bob claims to have discovered a great investment opportunity, which
would require an investment of $10,000. Bob does not have any money and asks Bill
to provide the $10,000. According to Bob, the investment could yield a return of
$150,000, in which case Bob will return the initial $10,000 to Bill and then give him
50% of the remaining $140,000. According to Bob the probability that the investment
will be successful is 12% and the probability that the initial investment of $10,000
will be completely lost is 88%. Bill decides to go ahead with the investment and gives
$10,000 to Bob. What is Bill’s attitude to risk? �

2.7.2 Exercises for Section 2.3: Certainty equivalent and risk premium

Exercise 2.10 In Section 2.3 we defined three relations over money lotteries: the strict
preference relation (denoted by �), the indifference relation (denoted by ∼) and the ‘at
least as good’ relation (denoted by %). As a matter of fact, one can simply postulate
just one relation, the ‘at least as good’ relation %, and derive the other two from it as
follows:
• L1 � L2 if and only if L1 % L2 and it is not the case that L2 % L1,
• L1 ∼ L2 if and only if L1 % L2 and also L2 % L1.

Recall that a relation % over a set L of money lotteries is complete if, for every two
lotteries L1,L2 ∈L , either L1 % L2 or L2 % L1 (or both) and is transitive if, for every
three lotteries L1,L2,L3 ∈L , if L1 % L2 and L2 % L3 then L1 % L3.

Prove that if the ‘at least as good’ relation % is complete and transitive then the
derived ‘strict preference’ relation � is also transitive, that is, if L1 � L2 and L2 � L3
then L1 � L3. �

Exercise 2.11 As in Exercise 2.10 take the ‘at least as good’ relation% as primitive and
derive from it the indifference relation ∼. Prove that if the ‘at least as good’ relation %
is transitive then the derived indifference relation ∼ is also transitive, that is, if L1 ∼ L2
and L2 ∼ L3 then L1 ∼ L3. �

Exercise 2.12 As in Exercise 2.10 take the ‘at least as good’ relation % as primitive
and derive from it the ‘strict preference’ relation � and the indifference relation ∼.
Prove that if the ‘at least as good’ relation % is transitive then if L1 � L2 and L2 ∼ L3
then L1 � L3. �

Exercise 2.13 As in Exercise 2.10 take the ‘at least as good’ relation % as primitive
and derive from it the ‘strict preference’ relation � and the indifference relation ∼.
Prove that if the ‘at least as good’ relation % is transitive then if L1 ∼ L2 and L2 � L3
then L1 � L3. �
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2.7.3 Exercises for Section 2.4: Insurance: basic concepts

Exercise 2.14 Tom’s entire wealth consists of a boat which is worth $38,000. He is
worried about the possibility of a hurricane damaging the boat. Typically, restoring a
damaged boat costs $25,000. Unfortunately, because of global warming, the probability
of a hurricane hitting his area is not negligible: it is 12%. The diagrams requested below
should all be drawn, as usual, in the cartesian plane where on the horizontal axis you
measure wealth in the bad state (W1) and on the vertical axis wealth in the good state
(W2). Call such a diagram a “wealth diagram”.

(a) Represent the no-insurance option (NI) as a point in a wealth diagram.
(b) Suppose that an insurance company offers the following insurance contract, call

it B: the premium is $2,000 and the deductible is $9,000. Represent contract B
in the wealth diagram of Part (a).

(c) Suppose that another insurance company offers the following full-insurance
contract, call it C: the premium is $3,000. Represent contract C in the wealth
diagram of Part (a).

(d) If Tom is risk neutral, how will he rank the three options: NI, B and C?
(e) If Tom is risk averse, has transitive preferences and prefers more money to less,

how will he rank the three options: NI, B and C?
�

Exercise 2.15 Refer to the diagram shown in Figure 2.12.
(a) Calculate the potential loss `.
(b) Calculate the premium hA and the deductible dA of contract A.
(c) Calculate the premium hB and the deductible dB of contract B.
(d) For each of the two contracts state whether it is a partial-insurance contract or a

full-insurance contract.
�

good state
W2

W1
bad state

NI
600

100

A
500

250

B
450

425

Figure 2.12: The diagram for Exercise 2.15
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2.7.4 Exercises for Section 2.5: Isoprofit lines

Exercise 2.16 Consider again the information given in Exercise 2.14: Tom’s entire
wealth consists of a boat which is worth $38,000; he is worried about the possibility
of a hurricane damaging the boat, in which case it would cost him $25,000 to repair
the boat; the probability of a hurricane hitting his area is 12%. He is considering two
insurance contracts: contract B, with premium $2,000 and deductible $9,000, and
contract C, with premium $3,000 and zero deductible.

(a) If Tom were to purchase contract B, what would the expected profit be for the
insurance company?

(b) If Tom were to purchase contract C, what would the expected profit be for the
insurance company?

(c) What is the slope of an isoprofit line?
(d) Find the equation of the isoprofit line that goes through contract B and draw it in

a wealth diagram.
(e) Find the equation of the isoprofit line that goes through contract C and draw it in

a wealth diagram.
�

Exercise 2.17 Consider again the information given in Exercise 2.15 (shown in Figure
2.12). Assume that the probability of loss is 20%.

(a) Calculate the expected profit from contract A.
(b) Calculate the expected profit from contract B.
(c) Draw the zero-profit line.
(d) Draw the isoprofit line that goes through contract A.
(e) Draw the isoprofit line that goes through contract B.

�

Exercise 2.18 The equation of the zero-profit line is W2 = 8,100− 1
9W1. The individ-

ual’s initial wealth is $7,600.
(a) What is the probability of loss?
(b) Calculate the potential loss `.
(c) Find a full-insurance contract, call it A, that yields a profit of $40.
(d) Find a contract, call it B, that lies on the isoprofit line through A and has a

deductible of $1,500.
(e) Find a contract, call it C, with deductible d = 2,000 that yields a profit of $25.
(f) Write the equation of the isoprofit line that goes through contract A (in the wealth

diagram).
(g) Write the equation of the isoprofit line that goes through contract C (in the wealth

diagram).
�
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Exercise 2.19 Consider the wealth diagram shown in Figure 2.13. Let p = 0.2.
(a) Interpret each point (including NI) as an insurance contract and express it in

terms of premium and deductible.
(b) Calculate the expected profit from each contract.
(c) Find the equation of the isoprofit line that goes through each contract (including

the one that goes through point NI).
�

(good state)

W2

W1
(bad state)

NI

0

45o line

1,600

1,024

A1,556

1,390

B1,480

C

Figure 2.13: The wealth diagram for Exercise 2.19

Exercise 2.20 In a wealth diagram
(a) show the subset of the set of insurance contracts that contains the contracts that

yield non-negative profits to the insurer (recall that the set of insurance contracts
is the shaded triangle shown in Figure 2.1 on page 17),

(b) of all the contracts that yield non-negative profits to the insurer, find the one that
is most preferred by a risk-averse individual and explain why there is only one
such contract,

(c) of all the contracts that yield non-negative profits to the insurer, find the ones that
are most preferred by a risk-neural individual.

�
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2.7.5 Exercises for Section 2.6: Profitable insurance requires risk aversion

Exercise 2.21 Prove that a risk-neutral individual is indifferent between no insurance
and a full-insurance contract that yields zero profits to the insurance company. �

Exercise 2.22 Prove that a risk-loving individual strictly prefers no insurance to a “fair”
full-insurance contract (that is, a full-insurance contract that yields zero profits to the
insurance company). �

Exercise 2.23 Ann has an initial wealth of $24,000 and faces a potential loss of
$15,000 with probability 20%. The risk premium of the no-insurance lottery for Ann is
$2,000. If Ann is offered full insurance for a premium of $4,920 will she take it? �

Exercise 2.24 Bob has an initial wealth of $18,000 and faces a potential loss of
$10,000 . The risk premium of the no-insurance lottery for Bob is $900. The maximum
premium that he is willing to pay for full insurance is $4,000. What is the probability
of loss? �

2.8 Solutions to Exercises

Solution to Exercise 2.1.
(a) The expected value is

3
12

10+
1

12
15+0 (18)+

3
12

20+
2

12
25+0 (30)+

3
12

36 =
263
12

= $21.92.

(b) A risk-neutral person is indifferent between the lottery and $21.92 for sure. Assum-
ing that she prefers more money to less, she will prefer $23 to $21.92. Thus, if her
preferences are transitive, she will prefer $23 to the lottery. �

Solution to Exercise 2.2. One might be tempted to compute the “expected value” 3
10100+

5
10500+ 2

10150 = 310 and answer: $310. However, this answer would be wrong, because
the given lottery is not a money lottery: the outcomes are not just sums of money (they do
involve sums of money but also what grade you get in the class). The definition of risk
neutrality can only be applied to money lotteries. �

Solution to Exercise 2.3. The expected value of the lottery is 3
1010+ 5

1020+ 2
1030 = 19.

If James were risk-neutral he would consider the lottery to be just as good as getting $19
for sure and would therefore choose the lottery (since getting $19 is better than getting
$18). Hence, he is not risk neutral. �
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Solution to Exercise 2.4 The expected value of the lottery
(

24 12 48 6
1
6

2
6

1
6

2
6

)
is

1
624+ 2

612+ 1
648+ 2

66 = 18. �

Solution to Exercise 2.5 This was a trick question! There is no expected value because
the outcomes are not numbers. �

Solution to Exercise 2.6
(a) As already computed in Exercise 2.1, the expected value of the lottery

L =

(
$10 $15 $18 $20 $25 $30 $36

3
12

1
12 0 3

12
2

12 0 3
12

)

is E[L] = 3
1210+ 1

1215+0 (18) + 3
1220+ 2

1225+0 (30) + 3
1236 = 263

12 = $21.92.

(b) Since Ann prefers more money to less, she prefers $21.92 to $20 ($21.92� $20).
She said that she prefers $20 to lottery L ($20� L). Thus, since her preferences are
transitive, she prefers $21.92 to lottery L ($21.92� L). Hence, she is risk averse.

(c) The answer is: we cannot tell. First of all, since Bob prefers more money to less,
he prefers $21.92 to $20 ($21.92� $20). Bob could be risk neutral, because a risk
neutral person would be indifferent between L and $21.92 (L∼ $21.92); since Bob
prefers $21.92 to $20 and has transitive preferences, if risk neutral he would prefer
L to $20. However, Bob could also be risk loving: a risk-loving person prefers L to
$21.92 (L� $21.92) and we know that he prefers $21.92 to $20; thus, by transitivity,
he would prefer L to $20. But Bob could also be risk averse: he could consistently
prefer $21.92 to L and L to $20 (for example, he could consider L to be just as good
as $20.50). �

Solution to Exercise 2.7 Just like Exercise 2.5, this was a trick question! Here the basic
outcomes are not sums of money but states of health. Since the described choice is
not one between money lotteries, the definitions of risk aversion/neutrality/love are not
applicable. �

Solution to Exercise 2.8 The decision not to buy insurance is the decision to face the fol-
lowing lottery: with probability 0.9 Shirley’s wealth will be $200,000, with probability 0.1
it will be $125,000. The expected value of this lottery is: 0.9(200,000)+0.1(125,000) =
$192,500. The insurance policy guarantees a wealth of $200,000− 7,500 = 192,500.
Hence Shirley will buy the insurance policy if she is risk-averse, will be indifferent be-
tween buying and not buying if she is risk-neutral and will prefer not to buy if she is
risk-loving. �
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Solution to Exercise 2.9 If Bill refuses to invest, his wealth is $12,000 for sure. If Bill

gives $10,000 to Bob to invest then he faces the following lottery: L=

(
$2,000 $82,000

0.88 0.12

)
.

The expected value of L is E[L] = 88
1002,000+ 12

10082,000 = $11,600. If Bill were risk
averse he would prefer $11,600 for sure to the investment (lottery L) and obviously he
will prefer $12,000 to $11,600; thus he would prefer $12,000 for sure to the investment;
since he decides to go ahead with the investment he is not risk averse. If Bill were risk
neutral he would be indifferent between $11,600 for sure and the investment (lottery L)
and obviously he will prefer $12,000 to $11,600; thus he would prefer $12,000 for sure
to the investment; since he decides to go ahead with the investment he is not risk neutral
either. Hence Bill is risk-loving. �

Solution to Exercise 2.10 Let L1,L2,L3 ∈L be such that L1 � L2 and L2 � L3. We need
to show that L1 � L3. Since L1 � L2, L1 % L2 and since L2 � L3, L2 % L3. Thus, by
transitivity of %, L1 % L3. It remains to prove that it is not the case that L3 % L1. Suppose
that L3 % L1; then, since L1 % L2 it would follow from transitivity of % that L3 % L2,
contradicting the hypothesis that L2 � L3. �

Solution to Exercise 2.11 Let L1,L2,L3 ∈ L be such that L1 ∼ L2 and L2 ∼ L3. We
need to show that L1 ∼ L3. Since L1 ∼ L2, L1 % L2 and since L2 ∼ L3, L2 % L3; thus, by
transitivity of %, L1 % L3. Similarly, since L1 ∼ L2, L2 % L1 and since L2 ∼ L3, L3 % L2;
thus, by transitivity of %, L3 % L1. It follows from L1 % L3 and L3 % L1 that L1 ∼ L3. �

Solution to Exercise 2.12 Let L1,L2,L3 ∈ L be such that L1 � L2 and L2 ∼ L3. We
need to show that L1 � L3. Since L1 � L2, L1 % L2 and since L2 ∼ L3, L2 % L3; thus, by
transitivity of %, L1 % L3. It remains to show that it is not the case that L3 % L1. Suppose
that L3 % L1; then, in conjunction with L1 % L3, we get that L3 ∼ L1; since, by hypothesis,
L2 ∼ L3, it would follow from transitivity of ∼ (proved in Exercise 2.11) that L1 ∼ L2

contradicting the hypothesis that L1 � L2. �

Solution to Exercise 2.13 Let L1,L2,L3 ∈ L be such that L1 ∼ L2 and L2 � L3. We
need to show that L1 � L3. Since L1 ∼ L2, L1 % L2 and since L2 � L3, L2 % L3; thus, by
transitivity of %, L1 % L3. It remains to show that it is not the case that L3 % L1. Suppose
that L3 % L1; then, in conjunction with L1 % L3, we get that L3 ∼ L1; since, by hypothesis,
L2 ∼ L1, it would follow from transitivity of ∼ (proved in Exercise 2.11) that L2 ∼ L3

contradicting the hypothesis that L2 � L3. �
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Solution to Exercise 2.14
(a) See Figure 2.14.

(b) W B
1 = 38,000−2,000−9,000= 27,000 and W B

2 = 38,000−2,000= 36,000. Con-
tract B is shown in Figure 2.14.

(c) WC
1 = 38,000−3,000 = 35,000 =WC

2 . Contract C is shown in Figure 2.12.

(d) NI represents the lottery
(

13,000 38,000
12

100
88
100

)
whose expected value is 12

10013,000+

88
10038,000= 35,000. Contract B represents the lottery

(
27,000 36,000

12
100

88
100

)
whose

expected value is 12
10027,000 + 88

10036,000 = 34,920. Contract C represents the

lottery
(

35,000
1

)
whose expected value is 35,000. Thus if Tom is risk neutral

then he is indifferent between NI and C and prefers either of them to B.

(e) By risk aversion, Tom strictly prefers C to NI. He also strictly prefers C to B: since
he prefers more money to less, he prefers $35,000 to $34,920 and, by risk aversion,
he prefers $34,920 for sure to B; hence, by transitivity, he prefers C to B. On the
other hand, we cannot tell how he ranks NI relative to B. �

wealth in
good state

W2

W1
wealth in
bad state

NI

0

45o line
38,000

13,000

B
36,000

27,000

C
35,000

35,000

Figure 2.14: The diagram for Exercise 2.14
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Solution to Exercise 2.15
(a) `= 600−100 = 500.

(b) hA = 600−500 = 100, dA = 500−250 = 250.

(c) hB = 600−450 = 150, dB = 450−425 = 25.

(d) Both contracts are partial-insurance contracts (neither of them lies on the 45o line).
�

Solution to Exercise 2.16

(a) π(B) = hB− p`+ p dB = 2,000− 12
10025,000+ 12

1009,000 = 80.

(b) π(C) = hC− p`= 3,000− 12
10025,000 = 0.

(c) The slope of each isoprofit line is − p
1−p =−

12
100
88
100

=− 3
22 =−0.136.

(d) Since isoprofit lines are straight lines with slope − 3
22 , they are of the form

W2 = a− 3
22W1. To find the value of a replace W2 with 36,000 and W1 with 27,000

and solve for a to get a = 436,500
11 = 39,681.82. The isoprofit line is shown in Figure

2.15.

(e) This is the zero-profit line and thus it goes through the no-insurance point NI. Again,
it is of the form W2 = a− 3

22W1. To find the value of a replace both W1 and W2 with
35,000 and solve for a to get a = 437,500

11 = 39,772.73. The isoprofit line is shown
in Figure 2.15. �

(good state)

W2

W1 (bad state)

NI

0

45o line

B
C

Figure 2.15: The diagram for Exercise 2.16
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Solution to Exercise 2.17

(a) π(A) = hA− p(`−dA) = 100− 1
5(500−250) = 50.

(b) π(B) = hB− p(`−dB) = 150− 1
5(500−25) = 55.

(c) See Figure 2.16. All three profit lines have a slope of −0.2
0.8 =−1

4 . The equation of
the zero-profit line is W2 = 625− 1

4W1.

(d) See Figure 2.16. The equation of the line is W2 = 562.5− 1
4W1.

(e) See Figure 2.16. The equation of the line is W2 = 556.25− 1
4W1. �

(good state)
W2

W1
(bad state)0

NI
600

100

A
500

250

B
450

425

π = 0

π = 50
π = 55

Figure 2.16: The diagram for Exercise 2.17
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Solution to Exercise 2.18

(a) Let p be the probability of loss. We know that the slope of any isoprofit line is− p
1−p .

Thus, since the slope of the zero-profit line is −1
9 , it must be that p

1−p = 1
9 . Solving

for p we get that p = 1
10 .

(b) The no-insurance point is on the zero-profit line. We know that the vertical coordinate

of the no-insurance point is W0 = 7,600. Thus, to find the horizontal coordinate,

which is equal to W0− `, we must solve the equation 7,600 = 8,100− 1
9W1 which

gives W1 = 4,500. Thus `= 7,600−4,500 = 3,100.

(c) A full-insurance contract with premium h yields a profit of h− p`= h− 1
103,100 =

h−310. Thus we want h to solve the equation h−310 = 40. Hence contract A has

a premium of 350 (and, of course, zero deductible).

(d) A contract with premium h and deductible 1,500 yields a profit of h− p`+1,500p=

h−310+150 = h−160. Hence, since B is on the same isoprofit line as A, it must

be that h−160 = 40, that is, h = 200. Thus contract B has a premium of 200 and a

deductible of 1,500.

(e) Similar reasoning as in Part (d): we need h− p`+2,000p to be equal to 25. Hence

we must solve h− 310+ 200 = 25, which gives h = 135. Thus contract C has a

premium of 135 and a deductible of 2,000.

(f) The equation of an isoprofit line is of the form W2 = a− 1
9W1. To find the value of

a for the isoprofit line that goes through contract A we must solve 7,600−350 =

a− 1
9(7,600−350) to get a = 72,500

9 = 8,055.56. Thus the equation of the isoprofit

line that goes through contract A is W2 = 8,055.56− 1
9W1.

(g) Again, the equation of an isoprofit line is of the form W2 = a− 1
9W1. To find

the value of a for the isoprofit line that goes through contract C we must solve

7,600−135 = a− 1
9(7,600−135−2,000) to get a = 72,650

9 = 8,072.22. Thus the

equation the isoprofit line that goes through contract C is W2 = 8,072.22− 1
9W1.
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Solution to Exercise 2.19

(a) First of all, note that the initial wealth is W0 = 1,600 and the potential loss is

`= 1,600−1,024 = 576. Let us write each point as a pair (h,d) where h =W0−W2

is the premium and d =W2−W1 is the deductible. Thus

NI = (0,576),

A = (1600−1556, 1556−1390) = (44,166),

B = (1600−1480, 1480−1390) = (120,90),

C = (1600−1390, 0) = (210,0).

(b) The expected profit from contract (h,d) is π = h− p(`− d). Thus π(NI) = 0,

π(A) =−38, π(B) = 22.8 and π(C) = 94.8.

(c) All the isoprofit lines are straight lines and all have the same slope given by − p
1−p =

−
1
5
4
5

=−1
4 . Thus starting at a point (W1,W2), if you reduce W1 to 0 then the vertical

coordinate changes to W2 +
1
4W1, yielding the vertical intercept. Applying this to

point NI we get that by reducing the horizontal coordinate by 1,024, the vertical

coordinate increases by 1,024
4 = 256 to 1,600+256 = 1,856. Hence the equation

of the isoprofit line that goes through point NI (which is the zero-profit line) is

W2 = 1,856− 1
4W1. Applying the same procedure we get that

Equation of isoprofit line through A: W2 = 1,903.5− 1
4W1

Equation of isoprofit line through B: W2 = 1,827.5− 1
4W1

Equation of isoprofit line through C: W2 = 1,737.5− 1
4W1
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Solution to Exercise 2.20

W10

W2

(good state,
probability 1− p)

(bad state,
probability p)

45o line

zero-profit line
NI

W0

W0− `

C

set of contracts
with π ≥ 0

A
B

Figure 2.17: The diagram for Exercise 2.20

(a) The set of contracts that yield non-negative profits is shown as a shaded triangle in
Figure 2.17.

(b) Contract C shown in Figure 2.17 is the contract that is most preferred by a risk-averse
individual among the contracts in the shaded triangle. C is a full-insurance contract
with premium h = p` guaranteeing a wealth of W0− p`. Any other contract on the
zero-profit line is worse than contract C because it gives rise to a non-degenerate
lottery with expected value W0− p`. Any other contract on the thick part of the 45o

line is worse than contract C because it has a higher premium (while still being a
full-insurance contract). Finally, any contract, say A, inside the shaded area lies on
an isoprofit line that goes through a contract which is on the thick part of the 45o

line below point C, call this point B (see Figure 2.17); then B is better than A (since
it guarantees the expected value of A) but is worse than C, so that C is better than A.

(c) The contracts on the thick line from NI to C: the individual is indifferent among all
these contracts, because they correspond to lotteries that have the same expected
value as the NI lottery. On the other hand, contracts below this line have an expected
value which is less than the expected value of the NI lottery and thus are worse than
NI.
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Solution to Exercise 2.21 The no-insurance option corresponds to the wealth lottery

NI =
(

W0 W0− `
1− p p

)
whose expected value is

E[NI] =W0− p`. (2.9)

Suppose that the individual is risk neutral and is offered a full-insurance contract (h,0)
which yields zero profits, that is,

h− p`= 0 or, equivalently, h = p`. (2.10)

For the potential customer, such a contract corresponds to the wealth lottery C =

(
W0−h

1

)
whose expected value is

E[C] =W0−h =︸︷︷︸
using (2.9) and (2.10)

E[NI]. (2.11)

By risk neutrality, the individual is indifferent between NI and E[NI] for sure (NI ∼ E[NI])
and is also indifferent between C and E[NI] for sure (since – by (2.11) – C and E[NI] for
sure are the same contract):

NI ∼ E[NI]∼C.

Assuming that the individual’s preferences are transitive, it follows that

NI ∼C.

Solution to Exercise 2.22 The proof is a simple modification of the proof for Exercise

2.21: the no-insurance option corresponds to the wealth lottery NI =
(

W0 W0− `
1− p p

)
whose expected value is

E[NI] =W0− p`. (2.12)

Suppose that the individual is risk loving and is offered a full-insurance contract (h,0)
that yields zero profits, that is,

h = p`. (2.13)

For the potential customer, such a contract corresponds to the wealth lottery C =

(
W0−h

1

)
which is the same as

(
E[C]

1

)
= E[C] =W0−h =︸︷︷︸

by (2.13)

E[NI]. Since the individual is risk

loving, he prefers NI to E[NI] for sure (NI � E[NI]) and is indifferent between C and
E[NI] for sure, since it is the same lottery (C ∼ E[NI]); thus NI � E[NI]∼C. Assuming
that the individual’s preferences are transitive, it follows that NI �C.
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Solution to Exercise 2.23 The maximum premium that Ann is willing to pay for full

insurance is hmax = p`+ RNI =
1
515,000 + 2,000 = 5,000. Since she is offered full

insurance at a lower premium, namely 4,920, she will take it (she is better off with full

insurance at this premium than with no insurance).

Solution to Exercise 2.24 The maximum premium that Bob is willing to pay for full insur-

ance is hmax = p`+RNI = p10,000+900. We are told that this is equal to 4,000. Thus, to

find p we solve the equation p10,000 + 900 = 4,000 whose solution is

p = 3,100
10,000 = 0.31.





3. Expected Utility Theory

3.1 Expected utility: theorems

As noted in the previous chapter, with the exception of risk-neutral individuals, even if
we restrict attention to money lotteries we are not able to say much – in general – about
how an individual would choose among lotteries. What we need is a theory of “rational”
preferences over lotteries that

(1) is general enough to cover lotteries whose outcomes are not necessarily sums of money
and
(2) is capable of accounting for different attitudes to risk in the case of money lotteries.

One such theory is the theory of expected utility, to which we now turn.

The theory of expected utility was developed by the founders of Game Theory, namely
John von Neumann and Oskar Morgenstern, in their 1944 book Theory of Games and
Economic Behavior. In a rather unconventional way, we shall first (in this section) state
the main result of the theory (which we split into two theorems) and then (in the following
section) explain the assumptions (or axioms) behind that result. The reader who is not
interested in understanding the conceptual foundations of expected utility theory, but wants
to understand what the theory says and how it can be used, can study this section and skip
the next.

Let O be a set of basic outcomes. Note that a basic outcome need not be a sum of
money: it could be the state of an individual’s health, or whether the individual under
consideration receives an award, or whether it will rain on the day of a planned outdoor
party, etc. Let L (O) be the set of simple lotteries (or probability distributions) over O.
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We will assume throughout this chapter that O is a finite set: O = {o1,o2, ...,om} (m≥ 1).

Thus, an element of L (O) is of the form

(
o1 o2 ... om

p1 p2 ... pm

)
with 0≤ pi ≤ 1, for all

i = 1,2, ...,m, and p1 + p2 + ...+ pm = 1. We will use the symbol L (with or without
subscript) to denote an element of L (O), that is, a simple lottery. Lotteries are used to
represent situations of uncertainty. For example, if m = 4 and the individual faces the

lottery L =

(
o1 o2 o3 o4
2
5 0 1

5
2
5

)
then she knows that, eventually, the outcome will be

one and only one of o1,o2,o3,o4, but does not know which one; furthermore, she is able
to quantify her uncertainty by assigning probabilities to these outcomes. We interpret
these probabilities either as objectively obtained from relevant (past) data or as subjective
estimates by the individual, as explained in Chapter 2 (Section 2.1).

The assignment of zero probability to a particular basic outcome is taken to be an
expression of belief, not impossibility: the individual is confident that the outcome will not
arise, but she cannot rule out that outcome on logical grounds or by appealing to the laws
of nature.

Among the elements of L (O) there are the degenerate lotteries that assign probability 1

to one basic outcome: for example, if m= 4 one degenerate lottery is

(
o1 o2 o3 o4

0 0 1 0

)
.

To simplify the notation we will often denote degenerate lotteries as basic outcomes, that

is, instead of writing

(
o1 o2 o3 o4

0 0 1 0

)
we will simply write o3. Thus, in general,

the degenerate lottery

(
o1 ... oi−1 oi oi+1 ... om

0 0 0 1 0 0 0

)
will be denoted by oi. As

another simplification, we will often omit those outcomes that are assigned zero probability.

For example, if m = 4, the lottery

(
o1 o2 o3 o4
1
3 0 2

3 0

)
will be written more simply as(

o1 o3
1
3

2
3

)
.

Throughout this chapter we shall call the individual under consideration the Decision-
Maker, or DM for short. The theory of expected utility assumes that the DM has a complete
and transitive ranking % of the elements of L (O) (indeed, this is one of the axioms listed
in the next section). As in Chapter 2, the interpretation of L% L′ is that the DM considers
L to be at least as good as L′. By completeness, given any two lotteries L and L′, either
L � L′ (the DM prefers L to L′) or L′ � L (the DM prefers L′ to L) or L ∼ L′ (the DM is
indifferent between L and L′). Furthermore, by transitivity, for any three lotteries L1,L2

and L3, if L1 % L2 and L2 % L3, then L1 % L3. Besides completeness and transitivity, a
number of other “rationality” constraints are postulated on the ranking % of the elements
of L (O); these constraints are the so-called Expected Utility Axioms and are discussed in
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the next section.

Definition 3.1.1 A ranking % of the elements of L (O) that satisfies the Expected
Utility Axioms (listed in the next section) is called a von Neumann-Morgenstern ranking.

The two theorems in this section are the key results in the theory of expected utility.

Theorem 3.1.1 [von Neumann-Morgenstern, 1944].
Let O = {o1,o2, ...,om} be a set of basic outcomes and L (O) the set of simple lotteries
over O. If % is a von Neumann-Morgenstern ranking of the elements of L (O) then
there exists a function U : O→ R, called a von Neumann-Morgenstern utility function,
that assigns a number (called utility) to every basic outcome and is such that, for any

two lotteries L =

(
o1 o2 ... om

p1 p2 ... pm

)
and L′ =

 o1 o2 ... om

q1 q2 ... qm

,

L� L′ if and only if E[U(L)]> E[U(L′)], and

L∼ L′ if and only if E[U(L)] = E[U(L′)]

where

U(L) =

(
U(o1) U(o2) ... U(om)

p1 p2 ... pm

)
, U(L′) =

(
U(o1) U(o2) ... U(om)

q1 q2 ... qm

)
,

E[U(L)] is the expected value of the lottery U(L) and E[U(L′)] is the expected value of
the lottery U(L′), that is,

E[U(L)] = p1U(o1)+ p2U(o2)+ ...+ pmU(om), and

E[U(L′)] = q1U(o1)+q2U(o2)+ ...+qmU(om).

E[U(L)] is called the expected utility of lottery L (and E[U(L′)] the expected utility of
lottery L′).

We say that any function U : O→ R that satisfies the property that, for any two lotteries
L and L′, L % L′ if and only if E[U(L)] ≥ E[U(L′)] represents the preferences (or
ranking) %.

Before we comment on Theorem 3.1.1 we give an example of how one can use it.
Theorem 3.1.1 sometimes allows us to predict an individual’s choice between two lotteries
C and D if we know how that individual ranks two different lotteries A and B.
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For example, suppose we observe that Susan is faced with the choice between lotteries A
and B below and she says that she prefers A to B:

A =

(
o1 o2 o3

0 0.25 0.75

)
B =

(
o1 o2 o3

0.2 0 0.8

)
With this information we can predict which of the following two lotteries C and D she will
choose, if she has von Neumann-Morgenstern preferences:

C =

(
o1 o2 o3

0.8 0 0.2

)
D =

(
o1 o2 o3

0 1 0

)
= o2.

Let U be a von Neumann-Morgenstern utility function whose existence is guaranteed
by Theorem 3.1.1. Let U(o1) = a, U(o2) = b and U(o3) = c (where a, b and c are
numbers). Then, since Susan prefers A to B, the expected utility of A must be greater than
the expected utility of B: 0.25b+ 0.75c > 0.2a+ 0.8c. This inequality is equivalent to
0.25b > 0.2a+0.05c or, dividing both sides by 0.25, b > 0.8a+0.2c. It follows from this
and Theorem 3.1.1 that Susan prefers D to C, because the expected utility of D is b and the
expected utility of C is 0.8a+0.2c. Note that, in this example, we merely used the fact
that a von Neumann-Morgenstern utility function exists, even though we do not know what
the values of this function are.

Theorem 3.1.1 is an example of a “representation theorem” and is a generalization
of a similar result for the case of the ranking of a finite set of basic outcomes O. It is
not difficult to prove that if % is a complete and transitive ranking of O then there exists
a function U : O→ R, called a utility function, such that, for any two basic outcomes
o,o′ ∈ O, U(o)≥U(o′) if and only if o% o′. Now, it is quite possible that an individual
has a complete and transitive ranking of O, is fully aware of her ranking and yet she is not
able to answer the question “what is your utility function?”, perhaps because she has never
heard about utility functions. A utility function is a tool that we can use to represent her
ranking, nothing more than that. The same applies to von Neumann-Morgenstern rankings:
Theorem 3.1.1 tells us that if an individual has a von Neumann-Morgenstern ranking of
the set of lotteries L (O) then there exists a von Neumann-Morgenstern utility function
that we can use to represent her preferences, but it would not make sense for us to ask the
individual “what is your von Neumann-Morgenstern utility function?” (indeed this was a
question that could not even be conceived before von Neumann and Morgenstern stated
and proved Theorem 3.1.1 in 1944!).

Theorem 3.1.1 tells us that a von Neumann-Morgenstern utility function exists; the
next theorem can be used to actually construct such a function, by asking the individual to
answer a few questions, formulated in a way that is fully comprehensible to her (that is,
without using the word ‘utility’). The theorem says that, although there are many utility
functions that represent a given von Neumann-Morgenstern ranking, once you know one
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function you “know them all”, in the sense that there is a simple operation that transforms
one function into the other.

Theorem 3.1.2 [von Neumann-Morgenstern, 1944].
Let % be a von Neumann-Morgenstern ranking of the set of basic lotteries L (O), where
O = {o1,o2, ...,om}. Then the following are true.

(A) If U : O→ R is a von Neumann-Morgenstern utility function that represents %,
then, for any two real numbers a and b, with a > 0, the function V : O→R defined
by V (oi) = aU(oi)+b (for every i= 1, . . . ,m) is also a von Neumann-Morgenstern
utility function that represents %.

(B) If U : O→ R and V : O→ R are two von Neumann-Morgenstern utility functions
that represent %, then there exist two real numbers a and b, with a > 0, such that
V (oi) = aU(oi)+b (for every i = 1, . . . ,m).

Proof. The proof of Part A of Theorem 3.1.2 is very simple. Let a and b be two numbers,
with a > 0. The hypothesis is that U : O→ R is a von Neumann-Morgenstern utility

function that represents %, that is, that, for any two lotteries L =

(
o1 ... om

p1 ... pm

)
and

L′ =

(
o1 ... om

q1 ... qm

)
,

L% L′ if and only if p1U(o1)+ ...+ pmU(om) ≥ q1U(o1)+ ...+qmU(om) (3.1)

Multiplying both sides of inequality (3.1) by a > 0 and adding (p1 + · · ·+ pm)b to the
left-hand side and (q1 + · · ·+qm)b to the right-hand side1 we obtain

p1 [aU(o1)+b]+ ...+ pm [aU(om)+b] ≥ q1 [aU(o1)+b]+ ...+qm [aU(om)+b] (3.2)

Defining V (oi) = aU(oi)+b, it follows from (3.1) and (3.2) that

L% L′ if and only if p1V (o1)+ ...+ pmV (om) ≥ q1V (o1)+ ...+qmV (om),

that is, the function V is a von Neumann-Morgenstern utility function that represents the
ranking %. The proof of Part B will be given later, after introducing more notation and
some observations. �

1Note that (p1 + · · ·+ pm) = (q1 + · · ·+qm) = 1.
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Suppose that the DM has a von Neumann-Morgenstern ranking of the set of lotteries
L (O). Since among the lotteries there are the degenerate ones that assign probability 1 to
a single basic outcome, it follows that the DM has a complete and transitive ranking of
the basic outcomes. We shall write obest for a best basic outcome, that is, a basic outcome
which is at least as good as any other basic outcome (obest % o, for every o ∈O) and oworst

for a worst basic outcome, that is, a basic outcome such that every other outcome is at least
as good as it (o% oworst , for every o ∈ O). Note that there may be several best outcomes
(then the DM would be indifferent among them) and several worst outcomes; then obest

will denote an arbitrary best outcome and oworst an arbitrary worst outcome. We shall
assume throughout that the DM is not indifferent among all the outcomes, that is, we shall
assume that obest � oworst .

We now show that, in virtue of Theorem 3.1.2, among the von Neumann-Morgenstern
utility functions that represent a given von Neumann-Morgenstern ranking % of L (O),
there is one that assigns the value 1 to the best basic outcome(s) and the value 0 to the worst
basic outcome(s). To see this, consider an arbitrary von Neumann-Morgenstern utility
function F : O→ R that represents % and define G : O→ R as follows: for every o ∈ O,
G(o) = F(o)−F(oworst). Then, by Theorem 3.1.2 (with a = 1 and b = −F(oworst)), G
is also a utility function that represents % and, by construction, G(oworst) = F(oworst)−
F(oworst) = 0; note also that, since obest � oworst , it follows that G(obest) > 0. Finally,
define U : O→ R as follows: for every o ∈ O, U(o) = G(o)

G(obest)
. Then, by Theorem

3.1.2 (with a = 1
G(obest)

and b = 0), U is a utility function that represents % and, by
construction, U(oworst) = 0 and U(obest) = 1. For example, if there are six basic outcomes
and the ranking of the basic outcomes is o3 ∼ o6 � o1 � o4 � o2 ∼ o5, then one can
take as obest either o3 or o6 and as oworst either o2 or o5; furthermore, if F is given by
o1 o2 o3 o4 o5 o6

2 −2 8 0 −2 8
then G is the function

o1 o2 o3 o4 o5 o6

4 0 10 2 0 10
and U is

the function
o1 o2 o3 o4 o5 o6

0.4 0 1 0.2 0 1
.

Definition 3.1.2 Let U : O → R be a utility function that represents a given von
Neumann-Morgenstern ranking % of the set of lotteries L (O). We say that U is
normalized if U(oworst) = 0 and U(obest) = 1.

The transformations described above show how to normalize any given utility function.
Armed with the notion of a normalized utility function we can now complete the proof of
Theorem 3.1.2.
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Proof of Part B of Theorem 3.1.2. Let F : O→ R and G : O→ R be two von
Neumann-Morgenstern utility functions that represent a given von Neumann-Morgenstern
ranking of L (O). Let U : O→ R be the normalization of F and V : O→ R be the
normalization of G. First we show that it must be that U = V , that is, U(o) = V (o) for
every o ∈ O. Suppose, by contradiction, that there is an ô ∈ O such that U(ô) 6= V (ô).
Without loss of generality we can assume that U(ô) > V (ô). Construct the following

lottery: L =

(
obest oworst

p̂ 1− p̂

)
with p̂ =U(ô) (recall that U is normalized and thus takes

on values in the interval from 0 to 1). Then E[U(L)] = E[V (L)] =U(ô). Hence, according
to U it must be that ô∼ L (this follows from Theorem 3.1.1), while according to V it must
be (again, by Theorem 3.1.1) that L � ô (since E[V (L)] = U(ô) > V (ô)). Then U and
V cannot be two representations of the same ranking. Now let a1 =

1
F(obest)−F(oworst)

and

b1 =− F(oworst)
F(obest)−F(oworst)

. Note that a1 > 0. Then it is easy to verify that, for every o ∈ O,

U(o) = a1F(o)+b1. Similarly let a2 =
1

G(obest)−G(oworst)
and b2 =− G(oworst)

G(obest)−G(oworst)
; again,

a2 > 0 and, for every o ∈ O, V (o) = a2G(o)+b2. We can invert the latter transformation

and obtain that, for every o ∈ O, G(o) = V (o)
a2
− b2

a2
. Thus, we can transform F into U ,

which – as proved above – is the same as V , and then transform V into G thus obtaining
the following transformation of F into G:

G(o) = aF(o)+b where a =
a1

a2
> 0 and b =

b1−b2

a2
.

�

R Theorem 3.1.2 is often stated as follows: a utility function that represents a von
Neumann-Morgenstern ranking % of L (O) is unique up to a positive affine transfor-
mation. An affine transformation is a function f : R→ R of the form f (x) = ax+b
with a,b ∈ R. The affine transformation is positive if a > 0.
Because of Theorem 3.1.2, a von Neumann-Morgenstern utility function is usually
referred to as a cardinal utility function.

Theorem 3.1.1 guarantees the existence of a utility function that represents a given
von Neumann-Morgenstern ranking % of L (O) and Theorem 3.1.2 characterizes the set
of such functions. Can one actually construct a utility function that represents a given
ranking? The answer is affirmative: if there are m basic outcomes one can construct an
individual’s von Neumann-Morgenstern utility function by asking her at most (m− 1)
questions. The first question is “what is your ranking of the basic outcomes?”. Then
we can construct the normalized utility function by first assigning the value 1 to the
best outcome(s) and the value 0 to the worst outcome(s). This leaves us with at most
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(m−2) values to determine. For this we appeal to one of the axioms discussed in the next
section, namely the Continuity Axiom, which says that, for every basic outcome oi there
is a probability pi ∈ [0,1] such that the DM is indifferent between oi for certain and the
lottery that gives a best outcome with probability pi and a worst outcome with probability

(1− pi): oi ∼

(
obest oworst

pi 1− pi

)
. Thus, for each basic outcome oi for which a utility has

not been determined yet, we should ask the individual to tell us the value of pi such that

oi ∼

(
obest oworst

pi 1− pi

)
; then we can set Ui(oi) = pi, because the expected utility of the

lottery

(
obest oworst

pi 1− pi

)
is piUi(obest)+(1− pi)Ui(oworst) = pi(1)+(1− pi)0 = pi.

� Example 3.1 Suppose that there are five basic outcomes, that is, O = {o1,o2,o3,o4,o5}
and the DM, who has von Neumann-Morgenstern preferences, tells us that her ranking
of the basic outcomes is as follows: o2 � o1 ∼ o5 � o3 ∼ o4. Then we can begin by
assigning utility 1 to the best outcome o2 and utility 0 to the worst outcomes o3 and

o4:

(
outcome: o1 o2 o3 o4 o5

utility: ? 1 0 0 ?

)
. There is only one value left to be determined,

namely the utility of o1 (which is also the utility of o5, since o1 ∼ o5). To find this
value, we ask the DM to tell us what value of p makes her indifferent between the lottery

L =

(
o2 o3

p 1− p

)
and outcome o1 with certainty. Suppose that her answer is: 0.4. Then

her normalized von Neumann-Morgenstern utility function is(
outcome: o1 o2 o3 o4 o5

utility: 0.4 1 0 0 0.4

)
.

Knowing this, we can predict her choice among any set of lotteries over these five basic
outcomes. �

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 3.3.2 at the end of this chapter.
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3.2 Expected utility: the axioms

We can now turn to the list of rationality axioms proposed by von Neumann and Morgen-
stern. This section makes heavy use of mathematical notation and, as mentioned in the
previous section, if the reader is not interested in understanding in what sense the theory
of expected utility captures the notion of rationality, he/she can skip it without affecting
his/her ability to understand the rest of this book.

Let O = {o1,o2, . . . ,om} be the set of basic outcomes and L (O) the set of simple
lotteries, that is, the set of probability distributions over O. Let % be a binary relation on
L (O). We say that % is a von Neumann-Morgenstern ranking of L (O) if it satisfies the
following four axioms or properties.

Axiom 1 [Completeness and transitivity]. % is complete (for every two lotteries L and
L′ either L% L′ or L′ % L or both) and transitive (for any three lotteries L1,L2 and L3, if
L1 % L2 and L2 % L3 then L1 % L3).

As noted in the previous section, Axiom 1 implies that there is a complete and transitive
ranking of the basic outcomes. Recall that obest denotes a best basic outcome and oworst

denotes a worst basic outcome and that we are assuming that obest � oworst , that is, that the
DM is not indifferent among all the basic outcomes.

Axiom 2 [Monotonicity].

(
obest oworst

p 1− p

)
%

(
obest oworst

q 1−q

)
if and only if p≥ q.

Axiom 3 [Continuity]. For every basic outcome oi there is a pi ∈ [0,1] such that

oi ∼

(
obest oworst

pi 1− pi

)
.

Before we introduce the last axiom we need to define a compound lottery.

Definition 3.2.1 A compound lottery is a lottery of the form

(
x1 x2 ... xr

p1 p2 ... pr

)
where each xi is either an element of O or an element of L (O).

For example, let m = 4. Then L =

(
o1 o2 o3 o4
2
5 0 1

5
2
5

)
is a simple lottery (an element of
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L (O)), while

C =


(

o1 o2 o3 o4
1
3

1
6

1
3

1
6

)
o1

(
o1 o2 o3 o4
1
5 0 1

5
3
5

)
1
2

1
4

1
4


is a compound lottery.2 The compound lottery C can be viewed graphically as a tree, as
shown in Figure 3.1.

1
2

o1

1
4

1
4

o1

1
3

o2

1
6

o3

1
3

o4

1
6

o1

1
5

o3

1
5

o4

3
5

Figure 3.1: A compound lottery

Next we define the simple lottery L(C) corresponding to a compound lottery C. Before
introducing the formal definition, we shall explain in an example how to construct such
a simple lottery. Continuing with the example of the compound lottery C given above
and illustrated in Figure 3.1, first we replace a sequence of edges with a single edge and
associate with it the product of the probabilities along the sequence of edges, as shown in
Figure 3.2.

o1 o2 o3 o4 o1 o1 o3 o4

1
6

1
12

1
6

1
12

1
4

1
20

1
20

3
20

Figure 3.2: Simplification of Figure 3.1 obtained by merging paths into simple edges and
associating with the simple edges the products of the probabilities along the path.

2With r = 3, x1 =

(
o1 o2 o3 o4
1
3

1
6

1
3

1
6

)
, x2 = o1, x3 =

(
o1 o2 o3 o4
1
5 0 1

5
3
5

)
, p1 = 1

2 , p2 = 1
4 and

p3 =
1
4 .
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Then we add up the probabilities of each outcome, as shown in Figure 3.3. Thus, the

simple lottery L(C) that corresponds to C is L(C) =

(
o1 o2 o3 o4
28
60

5
60

13
60

14
60

)
, namely the

lottery shown in Figure 3.3.

o1 o2 o3 o4

28
60

5
60

13
60

14
60

Figure 3.3: Simplification of Figure 3.2 obtained by adding, for each outcome, the proba-
bilities of that outcome.

Definition 3.2.2 Given a compound lottery C =

(
x1 x2 ... xr
p1 p2 ... pr

)
the correspond-

ing simple lottery L(C) =

(
o1 o2 ... om
q1 q2 ... qm

)
is defined as follows. First of all, for

i = 1, . . . ,m and j = 1, . . . ,r, define

oi(x j) =


1 if x j = oi
0 if x j = ok with k 6= i

si if x j =

(
o1 ... oi−1 oi oi+1 ... om
s1 ... si−1 si si+1 ... sm

)

Then qi =
r
∑
j=1

p j oi(x j).

Continuing the above example where

C =


(

o1 o2 o3 o4
1
3

1
6

1
3

1
6

)
o1

(
o1 o2 o3 o4
1
5 0 1

5
3
5

)
1
2

1
4

1
4


we have that

r = 3, x1 =

(
o1 o2 o3 o4
1
3

1
6

1
3

1
6

)
, x2 = o1 and x3 =

(
o1 o2 o3 o4
1
5 0 1

5
3
5

)
,

so that
o1(x1) =

1
3 , o1(x2) = 1, and o1(x3) =

1
5
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and thus q1 =
1
2

(1
3

)
+ 1

4 (1) + 1
4

(1
5

)
= 28

60 . Similarly, q2 =
1
2

(1
6

)
+ 1

4 (0) + 1
4 (0) =

1
12 = 5

60 ,

q3 =
1
2

(1
3

)
+ 1

4 (0) + 1
4

(1
5

)
= 13

60 and q4 =
1
2

(1
6

)
+ 1

4 (0) + 1
4

(3
5

)
= 14

60 .

Axiom 4 [Independence or substitutability]. Consider an arbitrary basic outcome oi and

an arbitrary simple lottery L =

(
o1 ... oi−1 oi oi+1 ... om

p1 ... pi−1 pi pi+1 ... pm

)
. If L̂ is a simple

lottery such that oi ∼ L̂, then L∼M where M is the simple lottery corresponding to the

compound lottery C =

(
o1 ... oi−1 L̂ oi+1 ... om

p1 ... pi−1 pi pi+1 ... pm

)
obtained by replacing oi

with L̂ in L.

We can now prove the first theorem of the previous section.

Proof of Theorem 3.1.1. To simplify the notation, throughout this proof we will assume
that we have renumbered the basic outcomes in such a way that obest = o1 and oworst = om.

First of all, for every basic outcome oi, let ui ∈ [0,1] be such that oi ∼

(
o1 om

ui 1−ui

)
.

The existence of such a value ui is guaranteed by the Continuity Axiom (Axiom 3); clearly
u1 = 1 and um = 0. Now consider an arbitrary lottery

L1 =

(
o1 ... om

p1 ... pm

)
.

First we show that

L1 ∼

 o1 om
m
∑

i=1
piui 1−

m
∑

i=1
piui

 (3.3)

This is done through a repeated application of the Independence Axiom (Axiom 4), as
follows. Consider the compound lottery

C2 =

 o1

(
o1 om

u2 1−u2

)
o3 ... om

p1 p2 p3 ... pm



obtained by replacing o2 in lottery L1 with the lottery

(
o1 om

u2 1−u2

)
that the DM
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considers to be just as good as o2. The simple lottery corresponding to C2 is

L2 =

(
o1 o3 ... om−1 om

p1 + p2u2 p3 ... pm−1 pm + p2(1−u2)

)
.

Note that o2 is assigned probability 0 in L2 and thus we have omitted it. By Axiom 4,
L1 ∼ L2. Now apply the same argument to L2: let

C3 =

 o1

(
o1 om

u3 1−u3

)
... om−1 om

p1 + p2u2 p3 ... pm−1 pm + p2(1−u2)


whose corresponding simple lottery is

L3 =

(
o1 ... om

p1 + p2u2 + p3u3 ... pm + p2(1−u2)+ p3(1−u3)

)
.

Note, again, that o3 is assigned probability zero in L3. By Axiom 4, L2 ∼ L3; thus, by
transitivity (since L1 ∼ L2 and L2 ∼ L3) we have that L1 ∼ L3. Repeating this argument
we get that L1 ∼ Lm−1, where

Lm−1 =

(
o1 om

p1 + p2u2 + ...+ pm−1um−1 pm + p2(1−u2)+ ...+ pm−1(1−um−1)

)
.

Since u1 = 1 (so that p1u1 = p1) and um = 0 (so that pmum = 0),

p1 + p2u2 + ...+ pm−1um−1 =
m

∑
i=1

piui

and

p2(1−u2)+ ...+ pm−1(1−um−1)+ pm =
m

∑
i=2

pi−
m−1

∑
i=2

piui = p1+
m

∑
i=2

pi−
m−1

∑
i=2

piui− p1

= (since u1=1 and um=0)

m

∑
i=1

pi−
m−1

∑
i=2

piui− p1u1− pmum = (
since

m
∑

i=1
pi=1

) 1−
m

∑
i=1

piui.
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Thus, Lm−1 =


o1 om

m
∑

i=1
piui 1−

m
∑

i=1
piui

, which proves (3.3). Now define the following

utility function U : {o1, ...,om} → [0,1]: U(oi) = ui, where, as before, for every basic

outcome oi, ui ∈ [0,1] is such that oi ∼


o1 om

ui 1−ui

. Consider two arbitrary lotteries

L=


o1 ... om

p1 ... pm

 and L′=


o1 ... om

q1 ... qm

. We want to show that L% L′ if and only

if E [U(L)]≥ E [U(L′)], that is, if and only if
m
∑

i=1
piui ≥

m
∑

i=1
qiui. By (3.3), L ∼M, where

M =


o1 om

m
∑

i=1
piui 1−

m
∑

i=1
piui

 and also L′∼M′, where M′=


o1 om

m
∑

i=1
qiui 1−

m
∑

i=1
qiui

.

Thus, by transitivity of %, L % L′ if and only if M % M′; by the Monotonicity Axiom

(Axiom 2), M %M′ if and only if
m
∑

i=1
piui ≥

m
∑

i=1
qiui. �

The following example, known as the Allais paradox, suggests that one should view
expected utility theory as a “prescriptive” or “normative” theory (that is, as a theory
about how rational people should choose) rather than as a descriptive theory (that is,
as a theory about the actual behavior of individuals). In 1953 the French economist
Maurice Allais published a paper regarding a survey he had conducted in 1952 concerning
a hypothetical decision problem. Subjects “with good training in and knowledge of the
theory of probability, so that they could be considered to behave rationally” were asked to
rank the following pairs of lotteries:

A =

(
$5 Million $0

89
100

11
100

)
versus B =

(
$1 Million $0

90
100

10
100

)
and

C =

(
$5 Million $1 Million $0

89
100

10
100

1
100

)
versus D =

(
$1 Million

1

)
.
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Most subjects reported the following ranking: A� B and D�C. Such ranking violates
the axioms of expected utility. To see this, let O = {o1,o2,o3} with o1 = $5 Million,
o2 = $1 Million and o3 = $0. Let us assume that the individual in question prefers more
money to less, so that o1 � o2 � o3 and has a von Neumann-Morgenstern ranking of

the lotteries over L (O) . Let u2 ∈ (0,1) be such that D∼

(
$5 Million $0

u2 1−u2

)
(the

existence of such u2 is guaranteed by the Continuity Axiom). Then, since D � C, by
transitivity(

$5 Million $0
u2 1−u2

)
� C. (3.4)

Let C′ be the simple lottery corresponding to the compound lottery $5 Million

(
$5 Million $0

u2 1−u2

)
$0

89
100

10
100

1
100

.

Then C′ =

(
$5 Million $0
89
100 +

10
100u2 1−

( 89
100 +

10
100u2

) ).

By the Independence Axiom, C ∼C′ and thus, by (3.4) and transitivity,(
$5 Million $0

u2 1−u2

)
�

(
$5 Million $0
89

100 +
10
100u2 1−

( 89
100 +

10
100u2

) ) .

Hence, by the Monotonicity Axiom, u2 >
89

100 +
10

100u2, that is,

u2 >
89
90 . (3.5)

Let B′ be the simple lottery corresponding to the following compound lottery, constructed

from B by replacing the basic outcome ‘$1 Million’ with

(
$5 Million $0

u2 1−u2

)
:


(

$5 Million $0
u2 1−u2

)
$0

90
100

10
100

 .

Then

B′ =

(
$5 Million $0

90
100u2 1− 90

100u2

)
.

By the Independence Axiom, B∼B′; thus, since A�B, by transitivity, A�B′ and therefore,
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by the Monotonicity Axiom, 89
100 > 90

100u2, that is, u2 <
89
90 , contradicting (3.5).

Thus, if one finds the expected utility axioms compelling as axioms of rationality, then one
cannot consistently express a preference for A over B and also a preference for D over C.

Another well-known paradox is the Ellsberg paradox. Suppose that you are told that an
urn contains 30 red balls and 60 more balls that are either blue or yellow. You don’t know
how many blue or how many yellow balls there are, but the number of blue balls plus the
number of yellow ball equals 60 (they could be all blue or all yellow or any combination
of the two). The balls are well mixed so that each individual ball is as likely to be drawn as
any other. You are given a choice between bets A and B, where

A = you get $100 if you pick a red ball and nothing otherwise,

B = you get $100 if you pick a blue ball and nothing otherwise.

Many subjects in experiments state a strict preference for A over B: A� B. Consider now
the following bets:

C = you get $100 if you pick a red or yellow ball and nothing otherwise,

D = you get $100 if you pick a blue or yellow ball and nothing otherwise.

Do the axioms of expected utility constrain your ranking of C and D? Many subjects in
experiments state the following ranking: A � B and D %C. All such people violate the
axioms of expected utility. The fraction of red balls in the urn is 30

90 = 1
3 . Let p2 be the

fraction of blue balls and p3 the fraction of yellow balls (either of these can be zero: all
we know is that p2 + p3 =

60
90 = 2

3 ). Then A,B,C and D can be viewed as the following
lotteries:

A =

(
$100 $0

1
3 p2 + p3

)
, B =

(
$100 $0

p2
1
3 + p3

)

C =

(
$100 $0

1
3 + p3 p2

)
, D =

(
$100 $0

p2 + p3 =
2
3

1
3

)
Let U be the normalized von Neumann-Morgenstern utility function that represents the
individual’s ranking; then U($100) = 1 and U(0) = 0. Thus,

E [U(A)] = 1
3 , E [U(B)] = p2, E [U(C)] = 1

3 + p3, and E [U(D)] = p2 + p3 =
2
3 .

Hence, A� B if and only if 1
3 > p2, which implies that p3 >

1
3 , so that E [U(C)] = 1

3 + p3 >

E [U(D)] = 2
3 and thus C � D (similarly, B� A if and only if 1

3 < p2, which implies that

E [U(C)]< E [U(D)] and thus D�C).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 3.3.2 at the end of this chapter.
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3.3 Exercises

The solutions to the following exercises are given in Section 3.4 at the end of this chapter.

3.3.1 Exercises for Section 3.1: Expected utility: theorems

Exercise 3.1 Ben is offered a choice between the following two money lotteries:

A =

(
$4,000 $0

0.8 0.2

)
and B =

(
$3,000

1

)
.

He says he strictly prefers B to A. Which of the following two lotteries, C and D, will
Ben choose if he satisfies the axioms of expected utility and prefers more money to
less?

C =

(
$4,000 $0

0.2 0.8

)
, D =

(
$3,000 $0

0.25 0.75

)
.

�

Exercise 3.2 There are three basic outcomes, o1,o2 and o3. Ann satisfies the axioms of
expected utility theory and her preferences over lotteries involving these three outcomes
can be represented by the following von Neumann-Morgenstern utility function:

V (o2) = a >V (o1) = b >V (o3) = c.

Normalize the utility function. �

Exercise 3.3 Consider the following lotteries:

L1 =

(
$3000 $500

5
6

1
6

)
, L2 =

(
$3000 $500

2
3

1
3

)
,

L3 =

(
$3000 $2000 $1000 $500

1
4

1
4

1
4

1
4

)
, L4 =

(
$2000 $1000

1
2

1
2

)
.

Jennifer says that she is indifferent between lottery L1 and getting $2,000 for certain.
She is also indifferent between lottery L2 and getting $1,000 for certain. Finally, she
says that between L3 and L4 she would chose L3. Is she rational according to the theory
of expected utility? [Assume that she prefers more money to less.] �
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Exercise 3.4 Consider the following basic outcomes:

• o1 = a Summer internship at the White House,

• o2 = a free one-week vacation in Europe,

• o3 = $800,

• o4 = a free ticket to a concert.

Rachel says that her ranking of these outcomes is o1 � o2 � o3 � o4. She also says

that (1) she is indifferent between

(
o2

1

)
and

(
o1 o4
4
5

1
5

)
and (2) she is indifferent

between

(
o3

1

)
and

(
o1 o4
1
2

1
2

)
. If she satisfies the axioms of expected utility theory,

which of the two lotteries L1 =

(
o1 o2 o3 o4
1
8

2
8

3
8

2
8

)
and L2 =

(
o1 o2 o3
1
5

3
5

1
5

)
will

she choose? �

Exercise 3.5 Consider the following lotteries:

L1 =

(
$30 $28 $24 $18 $8

2
10

1
10

1
10

2
10

4
10

)
and L2 =

(
$30 $28 $8

1
10

4
10

5
10

)
.

(a) Which lottery would a risk neutral person choose?
(b) Paul’s von Neumann-Morgenstern utility-of-money function is U($m) = ln(m),

where ln denotes the natural logarithm. Which lottery would Paul choose?
�

Exercise 3.6 There are five basic outcomes. Jane has a von Neumann-Morgenstern
ranking of the set of lotteries over basic outcomes that can be represented by either of

the following utility functions U and V :

 o1 o2 o3 o4 o5

U : 44 170 −10 26 98
V : 32 95 5 23 59

.

(a) Show how to normalize each of U and V and verify that you get the same
normalized utility function.

(b) Show how to transform U into V with a positive affine transformation of the form
x 7→ ax+b with a,b ∈ R and a > 0.

�
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Exercise 3.7 Consider the following lotteries: L3 =

(
$28
1

)
, L4 =

(
$10 $50

1
2

1
2

)
.

(a) Ann has the following von Neumann-Morgenstern utility function: UAnn($m) =
√

m. How does she rank the two lotteries?

(b) Bob has the following von Neumann-Morgenstern utility function: UBob($m) =

2m− m4

1003 . How does he rank the two lotteries?

(c) Verify that both Ann and Bob are risk averse, by determining what they would
choose between lottery L4 and its expected value for certain.

�

3.3.2 Exercises for Section 3.2: Expected utility: the axioms

Exercise 3.8 Let O = {o1,o2,o3,o4}. Find the simple lottery corresponding to the
following compound lottery

(
o1 o2 o3 o4
2
5

1
10

3
10

1
5

)
o2

(
o1 o3 o4
1
5

1
5

3
5

) (
o2 o3
1
3

2
3

)
1
8

1
4

1
8

1
2


�

Exercise 3.9 Let O = {o1,o2,o3,o4}. Suppose that the DM has a von Neumann-
Morgenstern ranking of L (O) and states the following indifference:

o1 ∼

(
o2 o4
1
4

3
4

)
and o2 ∼

(
o3 o4
3
5

2
5

)
.

Find a lottery that the DM considers just as good as

L =

(
o1 o2 o3 o4
1
3

2
9

1
9

1
3

)
.

Do not add any information to what is given above (in particular, do not make any
assumptions about which outcome is best and which is worst). �
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Exercise 3.10 — More difficult. Would you be willing to pay more in order to reduce
the probability of dying within the next hour from one sixth to zero or from four sixths
to three sixths? Unfortunately, this is not a hypothetical question: you accidentally
entered the office of a mad scientist and have been overpowered and tied to a chair. The
mad scientist has put six glasses in front of you, numbered 1 to 6, and tells you that
one of them contains a deadly poison and the other five contain a harmless liquid. He
says that he is going to roll a die and make you drink from the glass whose number
matches the number that shows up from the rolling of the die. You beg to be exempted
and he asks you “what is the largest amount of money that you would be willing to
pay to replace the glass containing the poison with one containing a harmless liquid?”.
Interpret this question as “what sum of money x makes you indifferent between

(1) leaving the poison in whichever glass contains it and rolling the die, and

(2) reducing your wealth by $x and rolling the die after the poison has been replaced by
a harmless liquid”. Your answer is: $X .

Then he asks you “suppose that instead of one glass with poison there had been four
glasses with poison (and two with a harmless liquid); what is the largest amount of
money that you would be willing to pay to replace one glass with poison with a glass
containing a harmless liquid (and thus roll the die with 3 glasses with poison and 3 with
a harmless liquid)?”. Your answer is: $Y .

Show that if X > Y then you do not satisfy the axioms of Expected Utility Theory.

[Hint: think about what the basic outcomes are; assume that you do not care about
how much money is left in your estate if you die and that, when alive, you prefer more
money to less.] �

3.4 Solutions to Exercises

Solution to Exercise 3.1 Since Ben prefers B to A, he must prefer D to C.
Proof. Let U be a von Neumann-Morgenstern utility function that represents Ben’s
preferences. Let U($4,000) = a,U($3,000) = b and U($0) = c. Since Ben prefers more
money to less, a > b > c. Then E[U(A)] = 0.8U($4,000)+0.2U($0) = 0.8a+0.2c and
E[U(B)] =U($3,000) = b. Since Ben prefers B to A, it must be that b > 0.8a+0.2c. Let
us now compare C and D: E[U(C)] = 0.2a+0.8c and E[U(D)] = 0.25b+0.75c. Since
b> 0.8a+0.2c, 0.25b> 0.25(0.8a+0.2c) = 0.2a+0.05c and thus, adding 0.75c to both
sides, we get that 0.25b+0.75c > 0.2a+0.8c, that is, E[U(D)]>E[U(C)], so that D�C.

Note that the proof would have been somewhat easier if we had taken the normalized utility
function, so that a = 1 and c = 0. �
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Solution to Exercise 3.2 Define the function U as follows: U(x) = 1
a−cV (x)− c

a−c =
V (x)−c

a−c (note that, by hypothesis, a > c and thus 1
a−c > 0). Then U represents the same

preferences as V . Then U(o2) =
V (o2)−c

a−c = a−c
a−c = 1, U(o1) =

V (o1)−c
a−c = b−c

a−c , and U(o3) =
V (o3)−c

a−c = c−c
a−c = 0. Note that, since a > b > c, 0 < b−c

a−c < 1. �

Solution to Exercise 3.3 We can take the set of basic outcomes to be {$3000,$2000,$1000,
$500}. Suppose that there is a von Neumann-Morgenstern utility function U that represents
Jennifer’s preferences. We can normalize it so that U($3000) = 1 and U($500) = 0. Since
Jennifer is indifferent between L1 and $2000, U($2000) = 5

6 (since the expected utility
of L1 is 5

6(1)+
1
6(0) =

5
6). Since she is indifferent between L2 and $1000, U($1000) = 2

3
(since the expected utility of L2 is 2

3(1)+
1
3(0) =

2
3). Thus, E[U(L3)] =

1
4 (1)+

1
4

(5
6

)
+

1
4

(2
3

)
+ 1

4 (0) =
5
8 and E[U(L4)] =

1
2

(5
6

)
+ 1

2

(2
3

)
= 3

4 . Since 3
4 > 5

8 , Jennifer should prefer

L4 to L3. Hence, she is not rational according to the theory of expected utility. �

Solution to Exercise 3.4 Normalize her utility function so that U(o1) = 1 and U(o4) = 0.

Then, since Rachel is indifferent between

(
o2

1

)
and

(
o1 o4
4
5

1
5

)
, we have that U(o2) =

4
5 . Similarly, since she is indifferent between

(
o3

1

)
and

(
o1 o4
1
2

1
2

)
, U(o3) =

1
2 . Then

the expected utility of L1 =

(
o1 o2 o3 o4
1
8

2
8

3
8

2
8

)
is 1

8(1)+
2
8(

4
5)+

3
8(

1
2)+

2
8(0) =

41
80 =

0.5125, while the expected utility of L2 =

(
o1 o2 o3
1
5

3
5

1
5

)
is 1

5(1) +
3
5(

4
5) +

1
5(

1
2) =.

39
50 = 0.78. Hence, she prefers L2 to L1. �

Solution to Exercise 3.5

(a) The expected value of L1 is 2
10(30)+ 1

10(28)+ 1
10(24)+ 2

10(18)+ 4
10(8) = 18 and

the expected value of L2 is 1
10(30)+ 4

10(28)+ 5
108 = 18.2. Hence, a risk-neutral

person would prefer L2 to L1.

(b) The expected utility of L1 is 1
5 ln(30)+ 1

10 ln(28)+ 1
10 ln(24)+ 1

5 ln(18)+ 2
5 ln(8) =

2.741 while the expected utility of L2 is 1
10 ln(30)+ 2

5 ln(28)+ 1
2 ln(8) = 2.713. Thus,

Paul would choose L1 (since he prefers L1 to L2). �
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Solution to Exercise 3.6

(a) To normalize U first add 10 to each value and then divide by 180. Denote the
normalization of U by Ū . Then

o1 o2 o3 o4 o5

Ū : 54
180 = 0.3 180

180 = 1 0
180 = 0 36

180 = 0.2 108
180 = 0.6

To normalize V first subtract 5 from each value and then divide by 90. Denote the
normalization of V by V̄ . Then

o1 o2 o3 o4 o5

V̄ : 27
90 = 0.3 90

90 = 1 0
90 = 0 18

90 = 0.2 54
90 = 0.6

(b) The transformation is of the form V (o) = aU(o)+ b. To find the values of a and

b plug in two sets of values and solve the system of equations

{
44a+b = 32

170a+b = 95
.

The solution is a = 1
2 , b = 10. Thus, V (o) = 1

2U(o)+10. �

Solution to Exercise 3.7

(a) Ann prefers L3 to L4 (L3 �Ann L4). In fact, E [UAnn(L3)] =
√

28 = 5.2915 while

E [UAnn(L4)] =
1
2

√
10+ 1

2

√
50 = 5.1167.

(b) Bob prefers L4 to L3 (L4 �Bob L3). In fact, E [UBob(L3)] = 2(28)− 284

1003 = 55.3853

while E [UBob(L4)] =
1
2

[
2(10)− 104

1003

]
+ 1

2

[
2(50)− 504

1003

]
= 56.87.

(c) The expected value of lottery L4 is 1
210+ 1

250 = 30; thus, a risk-averse person
would strictly prefer $30 with certainty to lottery L4. We saw in Part (a) that for
Ann the expected utility of lottery L4 is 5.1167; the utility of $30 is

√
30 = 5.4772.

Thus, Ann would indeed choose $30 for certain over the lottery L4. We saw in
Part (b) that for Bob the expected utility of lottery L4 is 56.87; the utility of $30
is 2(30)− 304

1003 = 59.19 . Thus, Bob would indeed choose $30 for certain over the
lottery L4. �

Solution to Exercise 3.8 The simple lottery is

(
o1 o2 o3 o4
18

240
103
240

95
240

24
240

)
. For example, the

probability of o2 is computed as follows: 1
8

( 1
10

)
+ 1

4(1)+
1
8(0)+

1
2

(1
3

)
= 103

240 . �
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Solution to Exercise 3.9 Using the stated indifference, use lottery L to construct the
compound lottery 

(
o2 o4
1
4

3
4

) (
o3 o4
3
5

2
5

)
o3 o4

1
3

2
9

1
9

1
3

 ,

whose corresponding simple lottery is L′ =

(
o1 o2 o3 o4

0 1
12

11
45

121
180

)
. Then, by the Indepen-

dence Axiom, L∼ L′. �

Solution to Exercise 3.10 Let W be your initial wealth. The basic outcomes are:

1. you do not pay any money, do not die and live to enjoy your wealth W (denote this
outcome by A0),

2. you pay $Y , do not die and live to enjoy your remaining wealth W −Y (call this
outcome AY ),

3. you pay $X , do not die and live to enjoy your remaining wealth W −X (call this
outcome AX ),

4. you die (call this outcome D); this could happen because (a) you do not pay any
money, roll the die and drink the poison or (b) you pay $Y , roll the die and drink the
poison; we assume that you are indifferent between these two outcomes.

Since, by hypothesis, X > Y , your ranking of these outcomes must be A0 � AY � AX �
D. If you satisfy the von Neumann-Morgenstern axioms, then your preferences can be
represented by a von Neumann-Morgenstern utility function U defined on the set of basic
outcomes. We can normalize your utility function by setting U(A0) = 1 and U(D) = 0.
Furthermore, it must be that

U(AY )>U(AX). (3.6)

The maximum amount $P that you are willing to pay is that amount that makes you
indifferent between (1) rolling the die with the initial number of poisoned glasses and (2)
giving up $P and rolling the die with one less poisoned glass.

Thus – based on your answers – you are indifferent between the two lotteries(
D A0
1
6

5
6

)
and

(
AX

1

)
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and you are indifferent between the two lotteries:(
D A0
4
6

2
6

)
and

(
D AY
3
6

3
6

)
.

Thus,

1
6U(D)+ 5

6U(A0)︸ ︷︷ ︸
=

1
6 0+5

6 1=5
6

=U(AX) and 4
6U(D)+ 2

6U(A0)︸ ︷︷ ︸
=

4
6 0+2

6 1=2
6

= 3
6U(D)+ 3

6U(AY )︸ ︷︷ ︸
=

3
6 0+3

6U(AY )

.

Hence, U(AX) =
5
6 and U(AY ) =

2
3 = 4

6 , so that U(AX)>U(AY ), contradicting (3.6). �



4. Money lotteries revisited

4.1 von Neumann Morgenstern preferences over money lotteries
In this section we revisit the notions of risk aversion/neutrality/love in the context of von
Neumann-Morgenstern preferences. From now on we will use the abbreviation “vNM” for
“von Neumann Morgenstern” and, unless explicitly stated otherwise, we will assume that
the individual in question has vNM preferences.

4.1.1 The vNM utility-of-money function of a risk-neutral agent

Recall from Chapter 2 (Section 2.2) that, given a money lottery L=

(
$m1 $m2 ... $mn
p1 p2 ... pn

)
,

an individual is said to be risk neutral relative to L if she is indifferent between L and the

expected value of L for sure: L∼
(

$E[L]
1

)
. If the individual has vNM preferences over

money lotteries then, by Theorem 3.1.1 (Chapter 3), there exists a utility function U (that
assigns a real number to each sums of money) such that

L∼
(

$E[L]
1

)
︸ ︷︷ ︸
L is as good as E[L]

if and only if E[U(L)] =U (E[L]) , that is, if and only if,

p1U(m1)+ ...+ pnU(mn)︸ ︷︷ ︸
E[U(L)]

= U

p1m1 + ...+ pnmn︸ ︷︷ ︸
E[L]

 .

(4.1)

It is clear that one utility function that satisfies (4.1) is the identity function U(m) = m. In
fact, when U is the identity function

p1U(m1)+ ...+ pnU(mn) = p1m1 + ...+ pnmn =U (p1m1 + ...+ pnmn) . (4.2)
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R The utility-of-money function U(m) = m represents the vNM preferences of an
individual who is risk neutral relative to all money lotteries, or risk neutral for short.
Hence, by Theorem 3.1.1 (Chapter 3), any function of the form U(m) = am+ b
with a > 0 is an alternative vNM utility function representing the preferences of a
risk-neutral person.

In Chapter 3 we assumed that the set of possible monetary outcomes (over which lotteries
were defined) was finite. If we allow for any non-negative amount of money then the vNM
utility-of-money function of a risk-neutral individual is represented by the 45o line, as
shown in Figure 4.1.

utility
U

m
money

0

45o line

Figure 4.1: The identity function U(m) = m represents the vNM preferences of a risk-
neutral individual.

4.1.2 Concavity and risk aversion

In Chapter 2 we said that, given a non-degenerate money lottery L=

(
$m1 $m2 ... $mn
p1 p2 ... pn

)
,

an individual is defined to be risk averse relative to L if she prefers the expected value of
L for sure to the lottery: E[L] � L.1 If the individual has vNM preferences over money
lotteries then, by Theorem 3.1.1 (Chapter 3), there exists a utility-of-money function U

1It would be more precise to write
(

$E[L]
1

)
� L instead of E[L]� L, but from now on we shall use

the latter, simpler, notation.
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such that

E[L]� L if and only if U (E[L])> E[U(L)], that is, if and only if,

U

p1m1 + ...+ pnmn︸ ︷︷ ︸
E[L]

 > p1U(m1)+ ...+ pnU(mn)︸ ︷︷ ︸
E[U(L)]

.
(4.3)

The inequality in (4.3) is shown graphically in Figure 4.2 when n= 2, that is, with reference

to the lottery L =

(
$m1 $m2

p 1− p

)
with m1 < m2 and 0 < p < 1.

utility
U

m
money

U(m1)

m1

U(m2)

m2

E[U(L)] = pU(m1)+(1− p)U(m2)

pm1 +(1− p)m2︸ ︷︷ ︸
E[L]

U (E[L]) =U (pm1 +(1− p)m2)

L =

(
$m1 $m2

p 1− p

)
0

Figure 4.2: A graphical representation of the inequality U (E[L]) > E[U(L)], that is
U (pm1 +(1− p)m2)> pU(m1)+(1− p)U(m2).

In Figure 4.2, the point pm1 +(1− p)m2 is a point on the horizontal axis between m1

and m2 (the closer to m1, the closer p is to 1). Since the individual is assumed to prefer

more money to less, U(m1)<U(m2). The point pU(m1)+(1− p)U(m2) is a point on the

vertical axis between U(m1) and U(m2). To find that point, draw a straight-line segment

from the point (m1,U(m1)) to the point (m2,U(m2)) (the dashed line in Figure 4.2) and

go vertically up from the point pm1 +(1− p)m2 on the horizontal axis to the dashed line

and from there horizontally to the vertical axis. By (4.3) this point must be below the point

U (pm1 +(1− p)m2).
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It follows from the above discussion that, if we draw a continuous vNM utility-of-
money function for a risk-averse individual, the corresponding curve must lie above the
straight-line segment joining any two points on the graph, as shown in Figure 4.3. This
property is know as strict concavity.

utility
U

m
money

U(m1)

m1

U(m2)

m2

pU(m1)+(1− p)U(m2)

pm1 +(1− p)m2

U (pm1 +(1− p)m2)

0

Figure 4.3: The utility function of a risk-averse individual is strictly concave.

Definition 4.1.1 A function f : R+→ R (where R+ denotes the set of non-negative
real numbers) is stricly concave if, for every x,y ∈ R and for every p ∈ (0,1),

f (px+(1− p)y)> p f (x)+(1− p) f (y).

R The vNM utility-of-money function of a risk-averse individual (that is, of an individual
who is risk averse relative to every non-degenerate money lottery) is strictly concave.
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4.1.3 Convexity and risk loving

Given a non-degenerate money lottery L =

(
$m1 $m2 ... $mn
p1 p2 ... pn

)
, a risk-loving indi-

vidual prefers the lottery L to its expected value for sure: L� E[L]. If the individual has
vNM preferences over money lotteries then, by Theorem 3.1.1 (Chapter 3), there exists a
utility-of-money function U such that

L� E[L] if and only if E[U(L)]>U (E[L]) , that is, if and only if,

p1U(m1)+ ...+ pnU(mn)︸ ︷︷ ︸
E[U(L)]

> U

p1m1 + ...+ pnmn︸ ︷︷ ︸
E[L]

 .
(4.4)

An argument similar to the one used in the previous section leads to the conclusion that,
if we draw a continuous vNM utility-of-money function for a risk-loving individual, the
graph must lie below the straight-line segment joining any two points on the graph, as
shown in Figure 4.4. This property is know as strict convexity.

utility
U

m
money

U(m1)

m1

U(m2)

m2

U (E[L]) =U (pm1 +(1− p)m2)

pm1 +(1− p)m2

E[U(L)] = pU(m1)+(1− p)U(m2)

0

Figure 4.4: The utility function of a risk-averse individual is strictly concave.

Definition 4.1.2 A function f : R+→ R is strictly convex if, for every x,y ∈ R and for
every p ∈ (0,1),

f (px+(1− p)y)< p f (x)+(1− p) f (y).

R The vNM utility-of-money function of a risk-loving individual (that is, of an individual
who is risk loving relative to every non-degenerate money lottery) is strictly convex.
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4.1.4 Mixtures of risk attitudes
While we will tend to concentrate on risk neutrality and risk aversion – and we will typically
assume that an individual is risk-neutral or risk-averse relative to every non-degenerate
money lottery – it is possible for people to display different attitudes to risk for different
money lotteries. Consider, for example, an individual whose vNM utility-of-money
function is as shown in Figure 4.5. This individual displays risk love for money lotteries
that involve small sums of money, risk neutrality for lotteries involving intermediate sums
of money and risk aversion for lotteries involving “big stakes”: the function is strictly
convex for values of m between 0 and m1, a straight line for values of m between m1 and
m2 and strictly concave for values of m larger than m2. Such an individual might be willing
to buy a Powerball lottery ticket for $1 (thus displaying risk love) while at the same time
purchasing fire insurance for her house worth $400,000 (thus displaying risk aversion).

utility
U

m
money

m1 m20

Figure 4.5: The utility function of an individual with different attitudes to risk for different
lotteries.
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4.1.5 Attitude to risk and the second derivative of the utility function

If the vNM utility-of-money function of an individual is a smooth function (or, at least,
twice differentiable) then we can relate the attitude to risk (that is, the shape of the graph
of the function) to the second-derivative of the utility function, using the following result
from calculus.

Let f : R+→ R be a twice differentiable function, then

• f is strictly concave if and only if d2 f
dx2

(x)< 0, for every x ∈ R+,

• f is strictly convex if and only if d2 f
dx2

(x)> 0, for every x ∈ R+,

• the graph of f is a straight line if and only if d2 f
dx2

(x) = 0, for every x ∈ R+.

For example, an individual whose vNM utility-of-money function is U(m) =
√

m is risk
averse, since dU

dm = 1
2
√

m and thus d2U
dm2 =− 1

4
√

m3 which is negative for every m > 0. Figure
4.6 shows the graph of this function.

utility
U(m) =

√
m

m
money

0

Figure 4.6: The graph of the utility function U(m) =
√

m.
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On the other hand, an individual whose vNM utility-of-money function is U(m) = m2

8

is risk averse, since dU
dm = m

4 and thus d2U
dm2 = 1

4 > 0 . Figure 4.7 shows the graph of this
function.

utility
U(m) =

√
m

m
money

0

Figure 4.7: The graph of the utility function U(m) = m2

8 .

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 4.5.1 at the end of this chapter.

4.2 Measures of risk aversion
Let us now focus on the case of risk aversion. Is it possible to measure the degree of risk
aversion of an individual?

One possible measure of risk aversion is provided by the notion of risk premium defined
in Chapter 2 (Section2.3), which we can now re-write using the notion of expected utility.

Consider an individual, whose initial wealth is $W ≥ 0, and a non-degenerate money lot-

tery M =

(
$x1 $x2 ... $xn
p1 p2 ... pn

)
(if xi < 0 then we assume that |xi| ≤W , that is, if xi rep-

resents a loss then we assume that the loss is not larger than the initial wealth). As usual, let
E[M] = p1x1 + · · ·+ pnxn be the expected value of M. In terms of wealth levels, lottery M

corresponds to the non-degenerate lottery L=

(
$(W + x1) $(W + x2) ... $(W + xn)

p1 p2 ... pn

)
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(given our assumption about the size of potential losses, W +xi ≥ 0, for every i = 1, . . . ,n),
whose expected value is

E[L] =W +E[M].

If the individual has vNM preferences represented by the utility-of-money function U(m),
the expected utility of L is

E[U(L)] = p1U(W + x1)+ · · ·+ pnU(W + xn).

The risk premium associated with lottery L and utility function U is that amount of
money RLU such that the agent is indifferent between lottery L and the sum of money
$(E[L]−RLU) for sure:

U (E[L]−RLU) = E[U(L)].

Thus RLU is the maximum amount that an individual with vNM utility function U is willing
to forego to exchange the risky prospect L for a non-risky (i.e. certain) one with the same
expected value.

For example, consider the money lottery

M =

(
$11 $20

3
5

2
5

)
whose expected value is E[M] = 3

511+ 2
520= $14.6, and an individual whose initial wealth

is W = $5 and whose vNM preferences can be represented by the utility-of-money function
U(m) =

√
m. Then, in terms of wealth levels, the individual is facing the lottery

L =

(
$16 $25

3
5

2
5

)
whose expected value is E[L] = $(14.6+ 5) = $19.6; the expected utility of lottery L
is E[U(L)] = 3

5

√
16+ 2

5

√
25 = 4.4. Thus, for this lottery and this individual, the risk

premium is the solution to the equation
√

19.6−RLU = 4.4, which is RLU = $0.24.
On the other hand, if the individual’s initial wealth is $110 then lottery M corresponds

to the wealth lottery

L′ =
(

$121 $130
3
5

2
5

)
whose expected value is E[L′] = $(14.6+110) = $124.6; the expected utility of lottery
L′ is E[U(L′)] = 3

5

√
121+ 2

5

√
130 = 11.1607. Hence, for this lottery and this individual,

the risk premium is the solution to the equation
√

124.6−RL′U = 11.1607, which is
RL′U = $0.0388.

Thus – as measured by the risk premium– the degree of risk aversion (incorporated
in a given vNM utility function U) towards a given money lottery M, varies with the
individual’s initial wealth. In the above example, when the individual’s initial wealth is
only $5, she is prepared to avoid the risky prospect M by reducing the expected value of
the corresponding wealth lottery by an amount of up to 24 cents, but if her initial wealth is
$110 then she is only prepared to reduce the expected value of the corresponding wealth
lottery by up to 4 cents.
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R From now on we will use the expression wealth lottery to refer to a lottery whose
outcomes are levels of wealth for the individual (such as lotteries L and L′ above,
constructed from the money lottery M by adding the individual’s initial wealth to
every outcome in M).

The reader should try to prove the following: suppose that, given a wealth lottery L
and a vNM utility function U , the risk premium is $r; then the risk premium remains
$r if the utility-of-money function U is replaced by a positive affine transformation
V of U , that is, for every m, V (m) = aU(m)+b, with a > 0. In other words, if, for
every m, V (m) = aU(m)+b, with a > 0, then RLV = RLU .

Instead of comparing, for a fixed utility function, the risk premium of a given money
lottery across different levels of initial wealth, we can also compare the risk premium,
for a fixed wealth lottery, for different utility functions (representing different prefer-
ences, hence different individuals). Figure 4.8 shows the risk premium for the wealth

lottery L =

(
$m1 $m2

p 1− p

)
and two different utility functions, U and V . Let RLU be the

risk premium associated with U and RLV be the risk premium associated with V ; then
RLV = [pm1 +(1− p)m2]− m̂V > RLU = [pm1 +(1− p)m2]− m̂U , where m̂V is the cer-
tainty equivalent of lottery L for V and m̂U is the certainty equivalent of lottery L for U
(see Chapter 2, Section 2.3 for the notion of certainty equivalent).

utility

wealth

U(m2) =V (m2)

m2

UV

U(m1) =V (m1)

m1

E[U(L)] = E[V (L)]
=U(m̂U) =V (m̂V )

pm1 +(1− p)m2︸ ︷︷ ︸
E[L]

m̂Um̂V

risk premium for U

risk premium for V

Figure 4.8: The graphs of two utility functions U and V and the risk premia corresponding
to the wealth lottery that gives $m1 with probability p and $m2 with probability (1− p).
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Let us now focus on the issue of comparing different utility functions in terms of the
the extent to which they express risk aversion. Using the notion of risk premium, one
possibility is given in the following definition.

Definition 4.2.1 Let U and V be two concave vNM utility-of-money functions. We
say that V incorporates more risk aversion than U if, for every non-degenerate wealth
lottery L, RLV ≥ RLU (with strict inequality for at least one lottery).

Since we identified risk aversion with concavity of the vNM utility function, it seems
that the more concave the utility function, the more risk averse the individual is. This
intuition is confirmed in Figure 4.8 (on page 82): V is more concave than U and indeed it
incorporates more risk aversion, as measured by the size of the risk premium.
Since we identified concavity with negativity of the second derivative of the utility function,
one might be tempted to conclude that an individual with vNM utility-of-money function V
is more risk-averse than an individual with vNM utility-of-money function U if, in absolute
value, the second derivative of V is larger than the second derivative of U :

∣∣∣d2V
dm2

∣∣∣> ∣∣∣d2U
dm2

∣∣∣.
Unfortunately, this is not correct, because it violates the requirement that, if V is a positive
affine transformation of U , then V and U represent the same preferences and thus the same
degree of risk aversion (as was pointed out in the remark on page 82). For example, let
V (m) = 2U(m), for every m≥ 0. Then, for every m,

∣∣∣d2V
dm2 (m)

∣∣∣= ∣∣∣2d2U
dm2 (m)

∣∣∣> ∣∣∣d2U
dm2 (m)

∣∣∣
and yet V and U represent the same preferences.

An expression involving the second derivative of the utility function is the following,
which is known as the Arrow-Pratt measure of absolute risk aversion, denoted by AU(m):2

AU(m) =−U ′′(m)

U ′(m)
.

The minus sign makes this expression positive (since U ′(m)> 0, because the individual is
assumed to prefer more money to less, and U ′′(m)< 0, since the individual is assumed to
be risk averse).

Note that the Arrow-Pratt measure of absolute risk aversion is a local measure, since it
varies with the amount of money considered; that is, typically, if m1 6= m2 then AU(m1) 6=
AU(m2).

Let us verify that the Arrow-Pratt measure of risk aversion is invariant to affine
transformations. Let a and b be real numbers, with a > 0, and let V (m) = aU(m)+b, for

every m≥ 0. Then V ′(m) = aU ′(m) and V ′′(m) = aU ′′(m), so that V ′′(m)
V ′(m) =

aU ′′(m)
aU ′(m) =

U ′′(m)
U ′(m)

and thus AV (m) = AU(m).
Using the Arrow-Pratt measure of risk aversion we can introduce a second definition

of “more risk averse”.

2We denote the first derivative of U interchangeably by either U ′(m) or dU
dm (m) and the second derivative

interchangeably by either U ′′(m) or d2U
dm2 (m)
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Definition 4.2.2 Let U and V be two concave vNM utility-of-money functions. We
say that V incorporates more risk aversion than U if, for every level of wealth m > 0,
AV (m)≥ AU(m) (with strict inequality for at least one m).

For example, according to Definition 4.2.2, which of
√

m and ln(m) incorporates
greater risk aversion? Let us compute the Arrow-Pratt measure of risk aversion for these
two functions.

Since d
dm
√

m =− 1
2
√

m and d2

dm2

√
m =− 1

4
√

m3 , A√ (m) = 1
2m .

On the other hand, since d
dm ln(m) = 1

m and d2

dm2 ln(m) =− 1
m2 , Aln(m) = 1

m .

Thus, since, for every m > 0, 1
m > 1

2m we have that, for every m > 0, Aln(m) > A√ (m)

and thus, according to Definition 4.2.2, the utility function ln(m) incorporates more risk
aversion than the utility function

√
m.

Note that, in general, there may be utility functions U and V that cannot be ranked
according to Definition 4.2.2. For example, it may be that case AU(m)> AV (m) for values
of m in some interval and AU(m) < AV (m) for values of m in some other interval: see
Exercise 4.11.

Yet a third definition of “more risk averse” relies on the intuition that “more concave”
means “more risk averse”:

Definition 4.2.3 Let U and V be two concave vNM utility-of-money functions. We say
that V incorporates more risk aversion than U if there exists a strictly increasing and
concave function f : R→ R such that, for every m≥ 0, V (m) = f (U(m)). In this case
we say that V is a concave transformation of U .

For example, since ln(x) is a strictly increasing, concave function, V (m) = ln(
√

m)
is a concave transformation of U(m) =

√
m and thus, according to Definition 4.2.3, V

incorporates more risk aversion than U .

Of course, having three different definitions of greater risk aversion is rather confusing:
which of the three is the “correct” definition? Furthermore, while the condition in Definition
4.2.2 is somewhat easier to verify, the condition in Definition 4.2.1 is not very practical,
since it would require considering all possible wealth lotteries, and the condition in
Definition 4.2.3 is also hard to verify: how can one tell if one function is a concave
transformation of another? Luckily, it turns out that the three definitions are in fact
equivalent. The following theorem was proved by John Pratt in 1964.3

3John W. Pratt, Risk aversion in the small and in the large, Econometrica, Vol. 32, No. 1/2, 1964, pp.
122-136.
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Theorem 4.2.1 Let U(m) and V (m) be two functions. Then the following conditions
are equivalent:

1. RLV ≥ RLU , for every non-degenerate wealth lottery L.

2. AV (m)≥ AU(m), for every m.

3. There exists a strictly increasing and concave function f : R → R such that
V (m) = f (U(m)), for every m≥ 0.

The Arrow-Pratt measure of absolute risk aversion is not invariant to a change in
the units of measurement. For example, if the agent’s vNM utility-of-money function is
U(m) =

√
m, where m is wealth measured in dollars, then her Arrow-Pratt measure of

absolute risk aversion is, as we saw above, A√ (m) = 1
2m ; for example,when the agent’s

wealth is $10, her Arrow-Pratt measure of absolute risk aversion is A√ (10) = 1
2(10) =

1
20 =

0.05. Suppose now that we want to change our units of measurement from dollars to cents.
The utility function then would be written as V (y)=

√
y where y is wealth measured in cents

(thus y = 100m) and her Arrow-Pratt measure of absolute risk aversion is A√ (y) = 1
2y ; so

that when y = 1,000cents, that is, $10, her Arrow-Pratt measure of absolute risk aversion
is A√ (1,000) = 1

2(1,000) =
1

2,000 = 0.0005: a different number, despite the fact that we are
looking at the same preferences and the same wealth.

A related measure of risk aversion, which is immune from this problem (that is, is
invariant to changes in units of measurement) is the Arrow-Pratt measure of relative risk
aversion, denoted by rU(m):

rU(m) =−m
U ′′(m)

U ′(m)
.

Thus rU(m) = mAU(m).

While the Arrow-Pratt measure of absolute risk aversion measures the rate at which
marginal utility (that is, the first derivative of the utility function) decreases when wealth is
increased by one monetary unit (e.g. $1), the Arrow-Pratt measure of relative risk aversion
measures the rate at which marginal utility decreases when wealth is increased by 1%.4

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 4.5.2 at the end of this chapter.

4In other words, rU (m) is the absolute value of the wealth elasticity of marginal utility, U ′(m), with
respect to m.
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4.3 Some noteworthy utility functions
In the previous section we considered some specific utility-of-money functions.

For the square root function
√

m we found that the Arrow-Pratt measure of absolute risk
aversion is A√ (m) = 1

2m , which is decreasing in m. Thus an individual with this vNM
utility function displays less and less risk aversion as her wealth increases.5

The natural logarithm function ln(m) is similar: the Arrow-Pratt measure of absolute risk
aversion is also decreasing in m: Aln(m) = 1

m .6

Consider now the following utility-of-money function, whose graph is shown in Figure
4.9:

U(m) = 1− e−m = 1− 1
em .

utility
U(m) = 1− e−m

m
money

0

Figure 4.9: The graphs of the utility function U(m) = 1− e−m .

Since d
dm (1− e−m) = e−m and d2

dm2 (1− e−m) =−e−m it follows that the Arrow-Pratt

measure of absolute risk aversion for this function is a constant:

A(m) =−−e−m

e−m = 1.

5On the other hand, the Arrow-Pratt measure of relative risk aversion is constant: r√ (m) = mA√ (m) =

m 1
2m = 1

2 .

6And the Arrow-Pratt measure of relative risk aversion is constant: rln(m) = mAln(m) = m 1
m = 1.
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Indeed, this is a special case of the class of CARA (Constant Absolute Risk Aversion)
utility functions, which is the class of functions of the form

U(m) = 1− e−λm = 1− 1
eλm

where λ is a positive constant. In fact, d
dm

(
1− e−λm

)
= λe−λm and d2

dm2

(
1− e−λm

)
=

−λ 2e−λm so that the Arrow-Pratt measure of absolute risk aversion is equal to λ .

We saw above that the utility function ln(m) is characterized by constant relative risk
aversion. That is not the only function with this property. The class of CRRA (Constant
Relative Risk Aversion) utility functions contains, besides the natural logarithm function,7

the functions of the form

U(m) =
m(1−λ )

1−λ
with λ > 0, λ 6= 1.

For these functions the Arrow-Pratt measure of absolute risk aversion is AU(m) = λ

m so
that the Arrow-Pratt measure of relative risk aversion is rU(m) = mAU(m) = λ .

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 4.5.3 at the end of this chapter.

4.4 Higher risk
In the previous section we answered the following questions:

- For a given money lottery M involving changes in wealth, how does a risk-averse
individual view the corresponding wealth lottery at different levels of initial wealth?
Typically (but not necessarily), individuals display less risk aversion as their initial
wealth increases.

- How can we determine if one individual, whose utility-of-money function is U(m),
is more or less risk averse than another individual, whose utility-of-money function
is V (m)? We considered three alternative definitions of “more risk averse” and saw
that they are equivalent.

In this section we ask a different question, namely: when can we say that a money
lottery, L, is “more risky” than another money lottery, M?

In order to address this issue we fix a set of non-negative monetary prizes, $m1,$m2, . . . ,$mn
with the convention that they are ordered from smallest to largest, that is,

0≤ m1 < m2 < · · ·< mn.

A lottery over {m1,m2, . . . ,mn} coincides with a probability distribution over this set.

7And, more generally, the logarithmic functions loga(m) with a > 1.
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Let L be one such lottery, whose probabilities are {p1, p2, . . . , pn} (pi is the probability of
prize $mi, for every i = 1,2, . . . ,n)8 and let M be another lottery, whose probabilities are
{q1,q2, . . . ,qn}:

L =

(
$m1 $m2 . . . $mn
p1 p2 . . . pn

)
and M =

(
$m1 $m2 . . . $mn
q1 q2 . . . qn

)
.

R Note that we allow for the possibility that some of the pi’s and qi’s are zero.

We shall denote by P : {m1,m2, . . . ,mn} → [0,1] the cumulative distribution corre-
sponding to the distribution {p1, p2, . . . , pn} and by Q : {m1,m2, . . . ,mn} → [0,1] the
cumulative distribution corresponding to the distribution {q1,q2, . . . ,qn}, that is, for every
i = 1,2, . . . ,n (denoting P(mi) by Pi and Q(mi) by Qi)

Pi = p1 + · · ·+ pi and Qi = q1 + · · ·+qi

(clearly, P1 = p1, Q1 = q1 and Pn = Qn = 1). For example, if

L =

(
$12 $26 $40 $58 $80 $96

1
20

7
20 0 4

20 0 8
20

)

then the corresponding cumulative distribution is as follows:

$12 $26 $40 $58 $80 $96
cumulative P : 1

20
8
20

8
20

12
20

12
20

20
20

4.4.1 First-order stochastic dominance

The following definition captures one (rather obvious) way in which a lottery M can be
viewed as unambiguously better than another lottery L.

Definition 4.4.1 Given two lotteries

L =

(
$m1 $m2 . . . $mn
p1 p2 . . . pn

)
and M =

(
$m1 $m2 . . . $mn
q1 q2 . . . qn

)
we say that L first-order stochastically dominates M (and write L >FSD M) if

Pi ≤ Qi for ever i = 1,2, . . . ,n, with at least one strict inequality.

8Thus p is a function p : {m1, . . . ,mn}→ [0,1] and, for every i = 1, . . . ,m, we denote p(mi) by pi.
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For example,

L =

(
$26 $40 $58 $80 $96

7
20 0 3

20
1

20
9

20

)
>FSD M =

(
$26 $40 $58 $80 $96

7
20 0 4

20 0 9
20

)

as can be seen from the cumulative distributions:

$26 $40 $58 $80 $96

cumulative for L, P : 7
20

7
20

10
20

11
20 1

cumulative for M, Q : 7
20

7
20

11
20

11
20 1

It should be clear that if lottery L first-order stochastically dominates lottery M, then
L assigns higher probabilities to higher prizes relative to M. It follows that the expected
value of L is greater than the expected value of M: E[L]> E[M]; thus a risk-neutral person
prefers L to M. However, the same is true for any attitude to risk.9

Theorem 4.4.1 Let L and M be two money lotteries (over the same set of prizes). Then

L >FSD M

if and only if

E[U(L)]> E[U(M)], for every strictly increasing utility function U.

4.4.2 Mean preserving spread and second-order stochastic dominance

The notion of first-order stochastic dominance does not really capture the fact that a money
lottery is less risky than another one; it captures a different notion, namely that of a money
lottery being unambiguously better than another one. On the other hand, the notion of
second-order stochastic dominance does capture the property of being unambiguously less
risky. Second-order stochastic dominance is based on the notion of a “mean preserving
spread”.

Intuitively, a mean preserving spread of a probability distribution is an operation that
takes probability from a point and moves it to each side of that point in such a way that the
expected value remains the same.

9The theorem can be proved using Abel’s Lemma, which says that if a1, . . . ,an and b1, . . . ,bn are real

numbers, then, letting Ai = a1 + · · ·+ ai and Bi = b1 + · · ·+ bi,
n
∑

i=1
aibi =

n−1
∑

i=1
Ai(bi−bi+1)+Anbn (see

https://planetmath.org/abelslemma). To prove Theorem 4.4.1 using Abel’s Lemma, let ai = qi− pi
and bi =U(mi).

https://planetmath.org/abelslemma
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Let L be the following money lottery, whose expected value is E[L] = 5:

L =

(
$2 $3 $4 $5 $9
1
3 0 1

3 0 1
3

)
.

Now let us construct a new lottery M by taking the probability assigned to the prize $4,
namely 1

3 , and spreading it equally between the prizes $3 and $5, as shown inn Figure 4.10.
It is easy to check that the expected value of M is the same as the expected value of L,
namely 5.

$2 $3 $4 $5 $9
1
3 0 1

3 0 1
3L:

1
6

1
601

3
1
3

M:

Figure 4.10: A mean-preserving spread.

Intuitively, a risk-averse person should dislike the change from L to M because it involves
more risk: the prize of $4 has been replaced with a non-degenerate “sub-lottery” with
expected value of $4. By definition of risk aversion, the sub-lottery is worse than its
expected value.

To perform a ‘worsening” of lottery L it is not even necessary to spread out the entire
probability of prize $4; for example, we could merely take away half that probability,
namely 1

6 , and spread it equally between the prizes $3 and $5 thus obtaining the alternative
lottery

M′ =
(

$2 $3 $4 $5 $9
1
3

1
12

1
6

1
12

1
3

)
.

It is easy to check that also the expected value of M′ is 5. In Exercise 4.18 the reader
is asked to verify that an individual with utility-of-money function U(m) =

√
m strictly

prefers L to M′ and M′ to M.
In fact, according to the next definition, M is a mean-preserving spread of M′, which,

in turn, is a mean-preserving spread of L.

Before giving the formal definition of a mean-preserving spread, let us gain some
intuition, as follows. Start with a lottery

L =

(
$m1 $m2 . . . $mn
p1 p2 . . . pn

)
and fix three monetary prizes mi, m j and mk with mi < m j < mk and assume that m j has
positive probability in L, that is, p j > 0. Since m j is strictly between mi and mk, there is a
δ ∈ (0,1) such that m j = (1−δ )mi +δmk, in fact

δ =
m j−mi

mk−mi
. (�)
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Now focus on the part of lottery L that involves the three prizes mi, m j and mk:(
. . . $mi . . . $m j . . . $mk . . .
. . . $pi . . . $p j . . . $pk . . .

)
Let α ∈ (0,1) and let us reduce the probability of m j from p j to p j−α p j and spread the
probability α p j between mi and mk in the proportions (1−δ ) and δ , respectively, where
δ is given by (�). This is shown in Figure 4.11.

. . . $mi . . . $m j . . . $mk . . .

. . . pi . . . p j . . . pk . . .

pi+(1−δ )α p j pk+δα p jp j−α p j. . . . . . . . . . . .

Figure 4.11: A mean-preserving spread.

Let M be the new lottery so constructed. Thus L and M differ only in the probabilities
assigned to prizes mi, m j and mk. The contribution of these prizes to the calculation of the
expected value of the initial lottery L is

pimi + p jm j + pkmk

while the contribution of these prizes to the calculation of the expected value of the new
lottery M is[

pi +(1−δ )α p j
]

mi +
[
p j−α p j

]
m j +

[
pk +δα p j

]
mk

= pimi + p jm j + pkmk +α p j
[
(1−δ )mi +δmk−m j

]︸ ︷︷ ︸
=0 because (1−δ )mi+δmk=m j

= pimi + p jm j + pkmk.

Hence E[L] = E[M].
We are now ready to give the definition of a mean-preserving spread.10

10The notion of a mean preserving spread of a probability distribution was introduced by Michael
Rothschild and Joseph Stiglitz in “Increasing risk I: A definition”, Journal of Economic Theory, 1970, Vol.
2, pp. 225-243. Their definition involved re-assigning probabilities across four different points, but that
definition is equivalent to one that is based on reassigning probabilities across three different points, as
shown by Eric Rasmusen and Emmanuel Petrakis, “Defining the mean-preserving spread: 3-pt versus 4-pt”,
in: Decision making under risk and uncertainty: new models and empirical findings, edited by John Geweke,
Amsterdam: Kluwer, 1992. Rasmusen and Petrakis’ definition is different from ours, but equivalent to it.
Their definition is as follows. Take three points a1,a2,a3 with a1 < a2 < a3; a mean-preserving spread
is a triple of probabilities γ1,γ2,γ3 such that (1) γ1 + γ3 = γ2 ≤ p2 (where p2 is the initial probability of
a2) and (2) γ1a1− γ2a2 + γ3a3 = 0. The initial probability of ai is pi and the modified probabilities are
p1 + γ1, p2− γ2, p3 + γ3. To convert it into our definition let α = γ1+γ3

p2
and δ = a2−a1

a3−a1
. Invert the operations

to go from our definition to theirs.
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Definition 4.4.2 Let

L =

(
$m1 $m2 . . . $mn

p1 p2 . . . pn

)
and M =

(
$m1 $m2 . . . $mn

q1 q2 . . . qn

)
.

be two money lotteries. We say that M is obtained from L by a mean-preserving spread,

and write

L→MPS M

if there are three prizes mi,m j,mk with mi < m j < mk such that:

(1) for very t ∈ {1, . . . ,n}\{i, j,k}, qt = pt and

(2) for some α ∈ (0,1]

qi = pi +(1−δ )α p j, q j = p j−α p j, qk = pk +δα p j with δ =
m j−mi

mk−mi
.

Definition 4.4.3 Let

L =

(
$m1 $m2 . . . $mn

p1 p2 . . . pn

)
and M =

(
$m1 $m2 . . . $mn

q1 q2 . . . qn

)
.

be two money lotteries. We say that L second-order stochastically dominates M,stochastic

dominance!second-order and write

L >SSD M

if M can be obtained from L by a finite sequence of mean-preserving spreads, that is, if

there is a sequence of money lotteries 〈L1,L2, . . . ,Lm〉 (with m≥ 2) such that:

(1) L1 = L,

(2) Lm = M and

(3) for every i = 1, . . . ,m−1, Li→MPS Li+1.
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As remarked above, a risk-averse person ought to be made worse off by a mean
preserving spread. This intuition is confirmed by the following theorem.11

Theorem 4.4.2 Let L and M be two money lotteries (over the same set of prizes). Then

L >SSD M

if and only if

E[U(L)]> E[U(M)], for every strictly increasing and concave utility function U.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 4.5.4 at the end of this chapter.

4.5 Exercises
The solutions to the following exercises are given in Section 4.6 at the end of this chapter.

4.5.1 Exercises for Section 4.1: vNM preferences over money lotteries

Exercise 4.1 Jennifer’s von Neumann-Morgenstern utility-of-money function is U(m)=
20
√

m−4. Consider the following lottery, where the outcomes are possible levels of
wealth for Jennifer:

L =

(
$8 $18 $24 $28 $30
2
5

1
5

1
10

1
10

1
5

)
(a) What is the expected value of L?
(b) What is the expected utility of L?
(c) Calculate d

dmU(m).

(d) Calculate d2

dm2U(m).
(e) Is Jennifer risk-averse, risk-neutral or risk-loving?

�

11This result is best known to economists from the 1970 paper by Rothschild and Stiglitz mentioned in
Footnote 10. However, in a later article (Michael Rothschild and Joseph Stiglitz, Addendum to ‘Increasing
risk I: A definition’, Journal of Economic Theory, 1972, Vol. 5, p. 306) the authors themselves acknowledged
that their main result could have been derived from earlier contributions by mathematicians.
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Exercise 4.2 Consider again the wealth lottery of Exercise 4.1, but a different agent:
Jim, whose vNM utility-of-money function is U(m) =

√
m. Answer the same questions

as in Exercise 4.1 but referring to Jim. �

Exercise 4.3 What attitude to risk is incorporated in the following vNM utility-of-
money functions? Base your answer on the sign of the second derivative of the utility
function.

(a) ln(m+1)

(b) 8+m1.65

(c) 2+7m.
�

Exercise 4.4 Let m denote the amount of money (measured in millions of dollars) and
suppose that it varies in the interval [0,1]. John’s utility-of-money function is given by:

U(m) =−m2 +2m−4.

(a) What is John’s attitude to risk?

Jenny, on the other hand, has the following utility function:

V (m) =−3
(
m2−2m

)
.

(b) What is Jenny’s attitude to risk?

(c) Do John and Jenny have the same preferences?

(d) Give an example of two utility functions that incorporate the same attitude to risk
but do not represent the same preferences for lotteries.

�

4.5.2 Exercises for Section 4.2: Measures of risk aversion

Exercise 4.5 As in Exercise 4.1, consider Jennifer, whose vNM utility-of-money
function is U(m) = 20

√
m−4, and the lottery

L =

(
$8 $18 $24 $28 $30
2
5

1
5

1
10

1
10

1
5

)
(a) Calculate the risk premium for lottery L for Jennifer.
(b) Calculate Jennifer’s Arrow-Pratt measure of absolute risk aversion for m = 900

and for m = 1,600.
�
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Exercise 4.6 As in Exercise 4.2, consider Jim, whose vNM utility-of-money function
is V (m) =

√
m, and the lottery

L =

(
$8 $18 $24 $28 $30
2
5

1
5

1
10

1
10

1
5

)
(a) Calculate the risk premium for lottery L for Jim.
(b) Calculate Jim’s Arrow-Pratt measure of absolute risk aversion for m = 900 and

for m = 1,600.
�

Exercise 4.7 As in Exercise 4.4, let m denote the amount of money, measured in
millions of dollars, and suppose that it varies in the interval [0,1]. John’s utility-of-
money function is given by: U(m) =−m2 +2m−4 while Jenny’s utility function is:
V (m) = −3

(
m2−2m

)
. Calculate the Arrow-Pratt measures of absolute and relative

risk aversion for John and Jenny and compare them. �

Exercise 4.8 Amy faces the wealth lottery
(

$24 $12 $48
2
6

3
6

1
6

)
and tells you that she

considers it equivalent to getting $18 for sure.
(a) Calculate the risk premium for lottery L for Amy.
(b) What is Amy’s attitude to risk?
(c) Could Amy’s vNM utility-of-money function be U(m) =

√
m ?

�

Exercise 4.9 Bill is risk neutral.
(a) How does he rank the following lotteries?

L1 =

(
$24 $12 $48 $6

1
6

2
6

1
6

2
6

)
L2 =

(
$180 $0 $90

1
20

17
20

2
20

)
(b) What is the risk premium associated with lottery L1 for Bill?
(c) What is the risk premium associated with lottery L2 for Bill?

�
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Exercise 4.10 Consider the following money lottery, where the outcomes are changes
in wealth:

M =

(
−$50 $120

1
4

3
4

)
.

Berta’s vNM utility-of-money function is U(m) = ln(m).
(a) Suppose that Berta’s inital wealth is $80. Write the wealth lottery corresponding

to lottery M above and calculate the risk premium for this lottery for Berta.
(b) Suppose that Berta’s inital wealth is $200. Write the wealth lottery corresponding

to lottery M above and calculate the risk premium for this lottery for Berta.
�

Exercise 4.11 Consider the wealth lottery L =

(
$120 $180 $260

2
5

2
5

1
5

)
and the fol-

lowing vNM utility-of-money functions defined for m ∈ [0,300]:

U(m) =
√

m and V (m) =−
( m

10
−36

)2
+

m
20

+1,400.

(a) Write an equation whose solution gives RLU (the risk premium for lottery L and
utility function U) and verify that the solution is RLU = 3.6949.

(b) Write an equation whose solution gives RLV (the risk premium for lottery L and
utility function V ) and verify that the solution is RLV = 6.848.

(c) Using the Arrow-Pratt measure of absolute risk aversion, which of U and V
incorporates greater risk aversion?

�

4.5.3 Exercises for Section 4.3: Some noteworthy utility functions

Exercise 4.12 Plot the following utility functions in the same diagram:

U(m) = 1− e−m and V (m) = 1− e−3m.

�

Exercise 4.13 Consider the utility-of-money function U(m)=ma, where a is a constant
such that 0 < a < 1. For this function is the Arrow-Pratt measure of absolute risk
aversion decreasing, constant or increasing? �

Exercise 4.14 Consider the quadratic utility-of-money function U(m) = cm− m2

2 ,
where c is a positive constant and m ∈ [0,c). For this function is the Arrow-Pratt
measure of absolute risk aversion decreasing, constant or increasing? �
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4.5.4 Exercises for Section 4.4: Higher risk

Exercise 4.15 Consider the following lotteries:

L =

(
$26 $40 $58 $80 $96

6
20

4
20

2
20

1
20

7
20

)
and M =

(
$26 $40 $58 $80 $96

5
20

4
20

2
20

2
20

7
20

)
Does one dominate the other in terms of first-order stochastic dominance? �

Exercise 4.16 Consider the following lotteries:

L =

(
$26 $40 $58 $80 $96

6
20

4
20

2
20 0 8

20

)
and M =

(
$26 $40 $58 $80 $96

5
20

4
20

2
20

2
20

7
20

)
Does one dominate the other in terms of first-order stochastic dominance? �

Exercise 4.17 Consider the lotteries of Exercise 4.16. Since it is not the case that M
dominates L in terms of first-order stochastic dominance, by Theorem 4.4.1 there must
be an increasing utility-of-money function U such that E[U(L)]> E[U(M)]. Construct
such a function. Note that you don’t need to define a function over the entire set of non-
negative real numbers: it is enough to define a function over the set {26,40,58,80,96}.
�

Exercise 4.18 Consider the following lotteries, which were discussed at the beginning
of Section 4.4.2:

L =

(
$2 $3 $4 $5 $9
1
3 0 1

3 0 1
3

)
M′ =

(
$2 $3 $4 $5 $9
1
3

1
12

1
6

1
12

1
3

)
and M =

(
$2 $3 $4 $5 $9
1
3

1
6 0 1

6
1
3

)
.

Show that an individual with utility-of-money function U(m) =
√

m strictly prefers L
to M′ and M′ to M. �
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Exercise 4.19 Consider the following lotteries:

L =

(
$4 $16 $25 $36 $49
3

40
9

40
18
40

8
40

2
40

)
and M =

(
$4 $16 $25 $36 $49
23

200
9

40
3
8

8
40

17
200

)
.

(a) Calculate E[L].
(b) Calculate E[M].
(c) Calculate the expected utility of L for an individual whose utility-of-money

function is U(m) =
√

m.
(d) Calculate the expected utility of M for an individual whose utility-of-money

function is U(m) =
√

m.
(e) Show that M is a mean-preserving spread of L according to Definition 4.4.2.

�

Exercise 4.20 Show that L >SSD M, where

L =

(
$6 $23 $44 $51 $70
1
3

1
12

1
6

1
12

1
3

)
and M =

(
$6 $23 $44 $51 $70
77
192

11
94 0 0 4349

9024

)
by constructing a two-step mean-preserving spread from L to M.
[Hint: in the first step take the probability assigned to $44 and re-allocate it to $6 and
$70.] �

4.6 Solutions to Exercises

Solution to Exercise 4.1
(a) The expected value of L is 2

10 ×30+ 1
10 ×28+ 1

10 ×24+ 2
10 ×18+ 4

10 ×8 = 18.
(b) The expected utility of L is

2
10(20

√
30−4)+ 1

10(20
√

28−4)+ 1
10(20

√
24−4)+ 2

10(20
√

18−4)+ 4
10(20

√
8−4)

= 77.88.

(c) d
dm(20

√
m−4) = 20 1

2
√

m = 10√
m .

(d) d2

dm2 (20
√

m−4) = 10
(
−1

2

)
m−

3
2 =− 5√

m3 < 0, for every m > 0.

(e) Jennifer is risk-averse since the second derivative of her utility function is negative
for every m > 0. �
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Solution to Exercise 4.2
(a) The expected value is, of course, the same, namely 18.
(b) The expected utility of L is

2
10

√
30+ 1

10

√
28+ 1

10

√
24+ 2

10

√
18+ 4

10

√
8 = 4.094.

Note that this is equal to 77.88
20 + 1

5 (recall that 77.88 was the expected utility for Jen-
nifer). Indeed, Jim’s utility function, call it V , can be obtained from Jennifer’s
utility function, call it U(m), by applying the following affine transformation
V (m) = 1

20U(m)+ 1
5 ; hence Jennifer and Jim have the same preferences.

(c) d
√

m
dm = 1

2
√

m .

(d) d2√m
dm2 =− 1

4
√

m3 .

(e) Jim is risk-averse (he has the same preferences as Jennifer). �

Solution to Exercise 4.3

(a) d2

dm2 ln(m+1) =− 1
(m+1)2 < 0, for every m≥ 0. Thus risk aversion.

(b) d2

dm2 (8+m1.65) = 1.0725
m0.35 > 0, for every m > 0. Thus risk love.

(c) d2

dm2 (2+7m) = 0. Thus risk neutrality. �

Solution to Exercise 4.4

(a) U ′′(m) =−2 < 0. Thus John is risk averse.

(b) V ′′(m) =−6 < 0. Thus Jenny is risk averse.

(c) Since V (m) = 3U(m)+ 12, that is, V is an affine transformation of U , John and
Jenny have the same preferences.

(d) There are, of course, many examples. One example is U(m) =
√

m and
V (m) = ln(m+1). �

Solution to Exercise 4.5

(a) Recall from Exercise 4.1 that the expected value of L is 18. The risk premium is
the value of R that solves the equation 20

√
18−R− 4 = 77.88. The solution is

R = $1.24.
(b) The Arrow-Pratt measure of absolute risk aversion is

A(m) =−U ′′(m)

U ′(m)
=−
− 5√

m3

10√
m

=
1

2m

Thus A(900) = 1
1,800 and A(1,600) = 1

3,200 . �
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Solution to Exercise 4.6

(a) Again, the expected value of L is 18. The risk premium is the value of R that solves
the equation

√
18−R = 4.094. The solution is R = $1.24: the same as for Jennifer

(as it should be, since they have the same preferences).

(b) The Arrow-Pratt measure of absolute risk aversion is

A(m) =−V ′′(m)

V ′(m)
=−
− 1

4
√

m3

1
2
√

m

=
1

2m

the same as for Jennifer (as it should be, since they have the same preferences). Thus
A(900) = 1

1,800 and A(1,600) = 1
3,200 . �

Solution to Exercise 4.7
We already know from Exercise 4.4 that John and Jennifer have the same preferences. This
is confirmed by the fact that the Arrow-Pratt measures are the same for both individuals:

AU(m) = AV (m) =
1

1−m
and rU(m) = rV (m) =

m
1−m

.

�

Solution to Exercise 4.8

(a) The expected value of lottery
(

$24 $12 $48
2
6

3
6

1
6

)
is 2

624+ 3
612+ 1

648 = 22. Thus

the risk premium is $(22−18) = $4.

(b) Amy is risk-averse since she considers the lottery to be equivalent to a sum of money
which is less than the expected value of the lottery (hence she prefers the expected
value of the lottery for sure to the lottery).

(c) If U(m) is Amy’s vNM utility-of-money function, then it must be that

U(18) = E[U(L)], where E[U(L)] = 2
6U(24) + 3

6U(12) + 1
6U(48). Since

√
18 = 4.2426, while 2

6

√
24 + 3

6

√
12 + 1

6

√
48 = 4.5197, it cannot be that

U(m) =
√

m. �

Solution to Exercise 4.9
(a) The expected value of both lotteries is 18, hence Bill is indifferent between the two.

(b) Zero.

(c) Zero. �
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Solution to Exercise 4.10

(a) When Berta’s initial wealth is $80, the corresponding wealth lottery is

L =

(
$30 $200

1
4

3
4

)
, whose expected value is $157.5. The risk premium is given

by the solution to

ln(157.5−R) = 1
4 ln(30)+ 3

4 ln(200)

which is $33.0304.

(b) When Berta’s initial wealth is $200, the corresponding wealth lottery is

L =

(
$150 $320

1
4

3
4

)
, whose expected value is $277.5. The risk premium is given

by the solution to

ln(277.5−R) = 1
4 ln(150)+ 3

4 ln(320)

which is $12.7199. �

Solution to Exercise 4.11 We are considering the wealth lottery L=

(
$120 $180 $260

2
5

2
5

1
5

)
.

The expected value of L is 172.

(a) RLU is the solution to
√

172−R = 2
5

√
120 + 2

5

√
180 + 1

5

√
260. The solution is

RLU = 3.6949.

(b) RLV is the solution to

−
(172−R

10 −36
)2

+ 172−R
20 +1,400 =

2
5

[
−
(120

10 −36
)2

+ 120
20 +1,400

]
+ 2

5

[
−
(180

10 −36
)2

+ 180
20 +1,400

]
+ 1

5

[
−
(260

10 −36
)2

+ 260
20 +1,400

]
.

The solution is RLV = 6.848.

(c) AU(m) = 1
2m and AV (m) = 1

362.5−m . The two are equal when m = 120.833,

AU(m)> AV (m) for m ∈ (0,120.833) and AU(m)< AV (m) for m ∈ (120.833,300].
Thus U incorporates greater risk aversion than V for values of m in the interval
(0,120.833) and less risk aversion than V in the interval (120.833,300]. �
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Solution to Exercise 4.12 See Figure 4.12. �

utility

money
0

1− e−3m

1− e−m

Figure 4.12: The graphs of 1− e−m and 1− e−3m.

Solution to Exercise 4.13
d

dmma = a
m1−a and d2

dm2 ma = −a(1−a)
m2−a . Thus A(m) = 1−a

m which is decreasing in m. �

Solution to Exercise 4.14
d

dm

(
cm− m2

2

)
= c−m and d2

dm2

(
cm− m2

2

)
=−1. Thus A(m) = 1

c−m which is increasing

in m. In fact, d
dm

( 1
c−m

)
= 1

(c−m)2 > 0. �

Solution to Exercise 4.15
The lotteries are:

M =

(
$26 $40 $58 $80 $96

5
20

4
20

2
20

2
20

7
20

)
and L =

(
$26 $40 $58 $80 $96

6
20

4
20

2
20

1
20

7
20

)
By constructing the corresponding cumulative distribution functions one can see that
M >FSD L (Qi ≤ Pi for every i = 1, . . . ,5 and Q3 < P3):

m1 = $26 m2 = $40 m3 = $58 m4 = $80 m5 = $96

cumulative for L, P : 6
20

10
20

12
20

13
20 1

cumulative for M, Q : 5
20

9
20

11
20

13
20 1

�
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Solution to Exercise 4.16
The lotteries are:

L =

(
$26 $40 $58 $80 $96

6
20

4
20

2
20 0 8

20

)
and M =

(
$26 $40 $58 $80 $96

5
20

4
20

2
20

2
20

7
20

)
By constructing the corresponding cumulative distribution functions one can see that,
according to the criterion of first-order dominance, it is neither the case that L dominates
M (since, for example, P1 = 6

20 > Q1 = 5
20) nor the case that M dominates L (since

Q4 =
13
20 > P4 =

12
20 ):

$26 $40 $58 $80 $96

cumulative for L, P : 6
20

10
20

12
20

12
20 1

cumulative for M, Q : 5
20

9
20

11
20

13
20 1

�

Solution to Exercise 4.17
The lotteries are:

L =

(
$26 $40 $58 $80 $96

6
20

4
20

2
20 0 8

20

)
and M =

(
$26 $40 $58 $80 $96

5
20

4
20

2
20

2
20

7
20

)
Since L assigns an additional probability of 1

20 to $96 (relative to M), it is sufficient to have
a “big jump” in utility going from $80 to $96. For example, consider the folllowing utility
function:

$26 $40 $58 $80 $96
Utility U : 1 2 3 4 10

Then E[U(L)] = 6
201+ 4

202+ 2
203+ 8

2010 = 5 and E[U(M)] = 5
201+ 4

202+ 2
203++ 2

204+
7
2010 = 4.85. Thus an individual with this (strictly increasing) utility function prefers
lottery L to lottery M. One can also easily construct a strictly increasing utility function
according to which lottery M is preferred to lottery L (big jump at $80, small jump
at $96). �

Solution to Exercise 4.18
The lotteries are:

L =

(
$2 $3 $4 $5 $9
1
3 0 1

3 0 1
3

)
M′ =

(
$2 $3 $4 $5 $9
1
3

1
12

1
6

1
12

1
3

)
and M =

(
$2 $3 $4 $5 $9
1
3

1
6 0 1

6
1
3

)
.

E[U(L)] = 1
3

√
2+ 1

3

√
4+ 1

3

√
9 = 2.1381

> E[U(M′)] = 1
3

√
2+ 1

12

√
3+ 1

6

√
4+ 1

12

√
5+ 1

3

√
9 = 2.1354

> E[U(M)] = 1
3

√
2+ 1

6

√
3+ 1

16

√
5+ 1

3

√
9 = 2.1328.

�
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Solution to Exercise 4.19
The lotteries are:

L =

(
$4 $16 $25 $36 $49
3
40

9
40

18
40

8
40

2
40

)
and M =

(
$4 $16 $25 $36 $49
23
200

9
40

3
8

8
40

17
200

)
.

(a) E[L] = 3
404+ 9

4016+ 18
4025+ 8

4036+ 2
4049 = 24.8.

(b) E[M] = 23
2004+ 9

4016+ 3
825+ 8

4036+ 17
20049 = 24.8.

(c) E[U(L)] = 3
40

√
4+ 9

40

√
16+ 18

40

√
25+ 8

40

√
36+ 2

40

√
49 = 4.85

(d) E[U(M)] = 23
200

√
4+ 9

40

√
16+ 3

8

√
25+ 8

40

√
36+ 17

200

√
49 = 4.8.

(e) We have that m1 = 4,m2 = 16,m3 = 25,m4 = 36,m5 = 49, p2 = q2 and p4 = q4.

Thus the change involves prizes m1,m3 and m5, that is, i = 1, j = 3,

k = 5. To find α solve 18
40 − α

18
40 = 3

8 which gives α = 1
6 . Then verify that

p1 +
(

1− m3−m1
m5−m1

)
α p3 = q1 and p5 +

(
m3−m1
m5−m1

)
α p3 = q5;

indeed 3
40 +

(
1− 25−4

49−4

) 1
6

(18
40

)
= 23

200 and 2
40 +

(25−4
49−4

) 1
6

(18
40

)
= 17

200 �

Solution to Exercise 4.20

The lotteries are:

L =

 $6 $23 $44 $51 $70
1
3

1
12

1
6

1
12

1
3

 and M =

 $6 $23 $44 $51 $70
77

192
11
94 0 0 4349

9024

 .

Let us perform a first mean-preserving spread (MPS) on L by reducing the probability of

m3 = 44 to 0 (hence α = 1) and spreading it out to m1 = 6 and m5 = 70 (thus δ = 44−6
70−6 =

38
64); then the probability of m1 becomes 1

3 +
(
1− 38

64

) 1
6 = 77

192 and the probability of m5

becomes 1
3 +
(38

64

) 1
6 = 83

192 . Call the resulting lottery M′. Then

M′ =

 $6 $23 $44 $51 $70
77
192

1
12 0 1

12
83

192

 .

Now perform a second MPS on M′ by reducing the probability of m4 = 51 to 0 (hence

α = 1) and spreading it out to m2 = 23 and m5 = 70 (thus δ = 51−23
70−23 = 28

47); then the

probability of m2 becomes 1
12 +

(
1− 28

47

) 1
12 = 11

94 and the probability of m5 becomes
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83
192 +

(28
47

) 1
12 = 4349

9024 thus yielding

M =

 $6 $23 $44 $51 $70
77

192
11
94 0 0 4349

9024

 .

It can be verified that E[L] = E[M′] = E[M] = 38.8333. �





5. Insurance: Part 2

5.1 Binary lotteries and indifference curves
In this chapter we complete the analysis of insurance that we started in Chapter 2 by
considering the point view of the potential customer. Before we do so, we need to develop
the analysis of binary money lottery, which are lotteries that involve only two prizes.
Fix a value of p (with 0 < p < 1) and consider all the lotteries of the form(

$x $y
p 1− p

)
with x≥ 0 and y≥ 0.

Thus we think of x and y as variables, while p is a constant.
We can identify a binary lottery with a point (x,y) in the positive quadrant of the

cartesian plane. If x = y then the lottery (x,x) lies on the 45o-line out of the origin and
represents the situation where the individual gets x with probability p and x with probability
(1− p), that is, she gets x for sure; if x > y the point lies below the 45o-line and if x < y
the point lies above the 45o-line.

Consider an individual whose utility-of-money function is U(m). We assume that
U ′(m)> 0 (for every m≥ 0), that is, that the individual prefers more money to less. Given
a lottery (x,y), the individual’s expected utility is given by: pU(x)+(1− p)U(y). Given
two lotteries A = (x1,y1) and B = (x2,y2), the individual will prefer A to B if and only if

E[U(A)] = pU(x1)+(1− p)U(y1)> E[U(B)] = pU(x2)+(1− p)U(y2),

she will prefer B to A if the above inequality is reversed and will be indifferent between
A and B if E[U(A)] = E[U(B)]. For example, if p = 1

4 and the individual is risk neutral
(so that we can take the identity function U(m) = m as her vNM utility function) then the
individual will be indifferent among the following lotteries, since their expected value is
the same (namely 85): (130, 70), (100, 80), (85, 85) and (16, 108).
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Definition 5.1.1 An indifference curve is a set of points (lotteries) in the (x,y) plane
among which the individual is indifferent. For every point (x,y) there is an indifference
curve that goes through that point. Since U ′(m) > 0, for every m, each indifference
curve will be downward-sloping.a

aIn order for expected utility to remain constant, if one coordinate is increased then the other coordinate
must be decreased.

We want to relate the shape of the indifference curves of an individual to her attitude
towards risk.

5.1.1 Case 1: risk neutrality
As remarked above, for a risk-neutral person we can take the identity function U(m) = m
as her vNM utility-of-money function, so that expected utility and expected value coincide.
Fix an arbitrary lottery A = (xA,yA) and let us try to find another lottery B = (xB,yB) that
lies on the same indifference curve. Then it must be that pxA+(1− p)yA = pxB+(1− p)yB
which can be written as

rise︷ ︸︸ ︷
yA− yB

xA− xB︸ ︷︷ ︸
run

=− p
1− p

.

Thus indifference curves are straight lines with slope − p
1−p , as shown in Figure 5.1.

0

y
(probability 1− p)

x
(probability p)

yA

xA

A

yB

xB

B

slope: − p
1−p

︸ ︷︷ ︸
run

rise


yA−yB
xA−xB

=− p
1−p

Figure 5.1: An indifference curve for a risk-neutral individual.
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5.1.2 Case 2: risk aversion

Now consider the case of a risk-averse individual. Recall from Chapter 4 that the utility-
of-money function U(m) of a risk-averse individual is strictly concave, that is, for every
x > 0 and y > 0 and for every t ∈ (0,1),

U (tx+(1− t)y)> tU(x)+(1− t)U(y). (5.1)

We now show that, if we take two lotteries A and B that yield the same expected utility
(so that they lie on the same indifference curve) then all the lotteries on the line segment
joining A and B (apart from A and B themselves) correspond to higher levels of expected
utility than A and B . Hence, since the utility function is assumed to be strictly increasing,
it follows that the indifference curve to which A and B belong, must lie below the line
segment that joins A and B, that is, the indifference curve must be convex towards the
origin.

As before, fix an arbitrary p ∈ (0,1) and consider all the lotteries of the form(
$x $y
p 1− p

)

which can be identified with points in the positive quadrant of the cartesian plane (x,y).

Let A = (xA,yA) and B = (xB,yB) lie on the same indifference curve, that is,

pU(xA)+(1− p)U(yA)︸ ︷︷ ︸
=E[U(A)]

= pU(xB)+(1− p)U(yB)︸ ︷︷ ︸
=E[U(B)]

= û.

Fix an arbitrary t ∈ (0,1) and consider the point C = tA+(1− t)B on the line segment
joining A and B, which represents the lottery

C =

(
txA +(1− t)xB tyA +(1− t)yB

p 1− p

)
.

Then

E[U(C)] = p U (txA +(1− t)xB)+(1− p) U (tyA +(1− t)yB) . (5.2)

By (5.1),

U (txA +(1− t)xB)> tU(xA)+(1− t)U(xB) (5.3)
U (tyA +(1− t)yB)> tU(yA)+(1− t)U(yB). (5.4)
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Thus, from (5.2)-(5.4) we get that

E[U(C)]> p [tU(xA)+(1− t)U(xB)]+(1− p) [tU(yA)+(1− t)U(yB)]

= t [pU(xA)+(1− p)U(yA)]+(1− t) [pU(xB)+(1− p)U(yB)]

= tE[U(A)]+(1− t)E[U(B)]

= tû+(1− t)û = û.

All of this is illustrated in Figure 5.2.

0

y
(probability 1− p)

x
(probability p)

EU = û

AyA

xA

ByB

xB

C = tA+(1− t)B
E[U(C)]> û

tyA +(1− t)yB

txA +(1− t)xB

Figure 5.2: Indifference curves for a risk-averse individual are convex.
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5.1.3 Case 3: risk love

Now consider the case of a risk-loving individual. Recall from Chapter 4 that the utility-of-
money function U(m) of a risk-loving individual is strictly convex, that is, for every x > 0
and y > 0 and for every t ∈ (0,1),

U (tx+(1− t)y)< tU(x)+(1− t)U(y). (5.5)

With an argument similar to the one used in the previous section, one can show that, if
we take two lotteries A and B that yield the same expected utility – so that they lie on the
same indifference curve – all the lotteries on the line segment joining A and B (apart from
A and B themselves) correspond to lower levels of expected utility than A and B . Hence,
since the utility function is assumed to be strictly increasing, it follows that the indifference
curve to which A and B belong, must lie above the line segment that joins A and B, that is,
the indifference curve must be concave towards the origin, as shown in Figure 5.3.

0

y
(probability 1− p)

x
(probability p)

EU = û

A
yA

xA

ByB

xB

tA+(1− t)B =C
E[U(C)]< û

tyA +(1− t)yB

txA +(1− t)xB

Figure 5.3: Indifference curves for a risk-loving individual are concave.
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5.1.4 The slope of an indifference curve
We saw above that the indifference curves of a risk-neutral individual are straight lines and
thus have a constant slope, which is equal to − p

1−p . On the other hand, the indifference
curves of a risk-averse individual are convex towards the origin and thus do not have a
constant slope: indeed the slope decreases as we move along the curve in the direction of
an increase in the horizontal coordinate (and a decrease in the vertical coordinate). For a
risk-loving individual the opposite is true: the slope of an indifference curve increases as
we move along the curve in the direction of an increase in the horizontal coordinate.

How can we compute the slope of an indifference curve at a point? Let A = (xA,yA)
and consider a point B on the same indifference curve as A, so that E[U(A)] = E[U(B)].
Let us choose this point B to be “very close” to A, so that B = (xA +δ ,yA + ε) with δ and
ε close to 0 (one must be positive and the other negative). By hypothesis,

pU(xA)+(1− p)U(yA)︸ ︷︷ ︸
E[U(A)]

= pU(xA +δ )+(1− p)U(yA + ε)︸ ︷︷ ︸
E[U(B)]

(5.6)

Since B is close to A (that is, δ and ε are small), we can approximate the values of
U(xA + δ ) and U(yA + ε) using the derivative of U (that is, using a first-order Taylor
expansion):

U(xA +δ ) =U(xA)+U ′(xA) δ

U(yA + ε) =U(yA)+U ′(yA) ε.
(5.7)

Replacing (5.7) into (5.6) we get

pU(xA)+(1− p)U(yA) = p
[
U(xA)+U ′(xA)δ )

]
+(1− p)

[
U(yA)+U ′(yA)ε

]
= pU(xA)+(1− p)U(yA)+ pU ′(xA)δ +(1− p)U ′(yA)ε

(5.8)

from which we get that

pU ′(xA)δ +(1− p)U ′(yA)ε = 0,

that is,
rise︷︸︸︷
ε

δ︸︷︷︸
run

=− p
1− p

U ′(xA)

U ′(yA)
.

Thus the slope of an indifference curve at a point A = (xA,yA) is given by1

− p
1− p

U ′(xA)

U ′(yA)
(5.9)

1Alternatively, one can derive the slope of an indifference curve at a point by using the implicit func-
tion theorem, which says the following. Let F : R2 → R be a continuously differentiable function and
(x0,y0) ∈ R2 a point such that F(x0,y0) = c; if ∂F

∂y (x0,y0) 6= 0 then there is an interval (x0− ε,x0 + ε) and a
differentiable function f : (x0− ε,x0 + ε)→ R such that (1) F(x0, f (x0)) = y0, (2) F(x, f (x)) = c for every

x ∈ (x0− ε,x0 + ε) and (3) f ′(x0) =−
∂F
∂x (x0,y0)

∂F
∂y (x0,y0)

. To apply the implicit function theorem in this context, let

F(x,y) = pU(x)+(1− p)U(y) and let A = (xA,yA) be a point where pU(xA)+(1− p)U(yA) = û.
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In the case of risk neutrality U ′ is constant and thus U ′(xA) =U ′(yA) so that U ′(xA)
U ′(yA)

= 1;
hence the slope becomes − p

1−p at every point, consistently with what we saw above.

Now let us see what (5.9) implies for a concave utility-of-money function, that is, for
the case of risk aversion. When the utility function is concave, the second derivative is
negative (U ′′(m)< 0), which means that the first derivative is decreasing, that is,

if m1 < m2 then U ′(m1)>U ′(m2)

(
or

U ′(m1)

U ′(m2)
> 1
)
,

as shown in Figure 5.4.

0

Utility
U(m)

money
m

Marginal utility
U ′(m)

money
mm1

U ′(m1)

m2

U ′(m2)

Utility Marginal utility

Figure 5.4: When the utility function is concave, marginal utility is decreasing.

R At a point A = (x,y) above the 45o line (where x < y) we have that U ′(x)
U ′(y) > 1 so that

− p
1− p

U ′(x)
U ′(y)

<− p
1− p

or
p

1− p
U ′(x)
U ′(y)

>
p

1− p
.

Hence the indifference curve is steeper than the straight line with slope − p
1−p .

Conversely, at a point A = (x,y) below the 45o line (where x > y) we have that
U ′(x)
U ′(y) < 1 so that

− p
1− p

U ′(x)
U ′(y)

>− p
1− p

or
p

1− p
U ′(x)
U ′(y)

<
p

1− p
.

Hence the indifference curve is less steep than the straight line with slope − p
1−p .

Finally at a point on the 45o line (where x = y) we have that U ′(x)
U ′(y) = 1 so that

− p
1− p

U ′(x)
U ′(y)

=− p
1− p

;

hence the straight line with slope − p
1−p is tangent to the indifference curve.
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� Example 5.1 This example is illustrated in Figure 5.5. Let p = 2
5 and U(m) =

√
m and

consider all the lotteries of the form
(

$x $y
2
5

3
5

)
. Since, U ′(m) = 1

2
√

m , U ′(x)
U ′(y) =

√
y√
x (for

x > 0 and y > 0).

Consider three points: (25,100), (64,64) and (121,36). The expected utility of these three
lotteries is the same, namely 8; hence these three points belong to the same indifference
curve.2

• Point (64,64) is on the 45o line and the slope of the indifference curve at that point is

− p
1− p

(√
64√
64

)
=− p

1− p
=−2

3
.

• Point (25,100) is above the 45o line and the slope of the indifference curve at that
point is

− p
1− p

(√
100√
25

)
=−2

3

(
10
5

)
=−4

3
.

• Point (121,36) is below the 45o line and the slope of the indifference curve at that
point is

− p
1− p

( √
36√
121

)
=−2

3

(
6

11

)
=− 4

11
.

�

0

y
(probability 3

5 )

x
(probability 2

5 )

45o line
EU = 8

100

25

64

64

36

121
slope:

− 4
3

slope:

=− p
1−p

=− 2
3

slope: − 4
11

Figure 5.5: The graph for Example 5.1.

2The equation of the indifference curve is obtained by solving for y the equation 2
5
√

x+ 3
5
√

y = 8. The
solution is y = 4

9 (20−
√

x)2.
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We will omit the case of risk love (convex utility function, concave indifference curves).
The reader should convince himself/herself that in this case an indifference curve is less
steep than the line of slope − p

1−p at a point above the 45o line and steeper at a point below
the 45o line.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 5.5.1 at the end of this chapter.

5.2 Back to insurance
We can now return to the topic of insurance, which we partially analyzed in Chapter 2. We
begin by recalling the general set-up.

Consider an individual whose current wealth is $W0. She faces the possibility of a loss
in the amount of $` (0 < `≤W0) with probability p (0 < p < 1). An insurance contract
can be expressed as a pair of wealth levels (W1,W2), where W1 is wealth in the bad state (if
the loss occurs) and W2 is wealth in the good state (if the loss does not occur); the amount
(W0−W2) is the contract’s premium and the amount W2−W1 is the deductible. If W1 =W2
the contract offers full insurance, while if W1 <W2 the contract offers partial insurance.

We saw in Chapter 2 that, through any point in the (W1,W2) plane, we can draw an
isoprofit line which contains all the contracts that yield the same profit to the insurer. Recall
that

isoprofit lines are straight lines with slope − p
1− p

.

The isoprofit line that goes through the no-insurance point NI = (W0− `,W0) is the zero-
profit line. Points below the zero-profit line represent profitable contracts, while points
above the zero-profit line correspond to contracts that would involve a loss for the insurer.
Thus no insurer would be willing to offer a contract that lies above the zero-profit line.

We can now ask the question: what contracts would be acceptable to the individual
under consideration?

If the individual purchases insurance contract (W1,W2) then she faces the following
money lottery: (

$W1 $W2
p 1− p

)
.

We focus on a risk-averse individual who has von Neumann-Morgenstern preferences,
so that her preferences over possible insurance contracts can be represented by means
of a vNM utility-of-money function U(m) (which is increasing and strictly concave). A
contract (W1,W2) will be acceptable to the individual if it yields at least as high an expected
utility as the no-insurance option, that is, if

pU(W1)+(1− p)U(W2)≥ pU(W0− `)+(1− p)U(W0).

Using the tools developed in this chapter, we can draw the individual’s indifference curve



116 Chapter 5. Insurance: Part 2

that goes through the no-insurance point NI: it will be a decreasing and convex curve; we
shall call it the reservation indifference curve. Points below the reservation indifference
curve represent contracts that would yield lower expected utility than the no-insurance
option; thus the individual would reject any such contracts, if offered to her. Only contracts
represented by points on or above the reservation indifference curve will be acceptable to
the individual.

Thus the set of mutually beneficial insurance contracts is given by the area bounded
below by the reservation indifference curve, bounded above by the zero-profit line and
bounded on the right by the 450 line; it is shown as a shaded area in Figure 5.6.

0
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good state

(probability 1− p)

W2

W1
Wealth in
bad state

(probability p)

45o line

zero-profit
line
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indifference

curve

C

W0

W0− `

NI

Figure 5.6: The shaded area is the set of mutually beneficial insurance contracts.

Contract C in Figure 5.6 is above the reservation indifference curve and thus yields
higher expected utility than the no-insurance option (that is, C is strictly preferred to NI by
the potential customer) and is below the zero-profit line and thus yields positive profit to
the insurer.

In Figure 5.6 the reservation indifference curve that goes through the no-insurance (NI)
point is steeper at that point than the zero-profit line. This follows from the analysis in
Section 5.1.4. Indeed this is true of any point that lies above the 45o line. Let A= (W A

1 ,W A
2 )

be a contract that lies above the 45o line. Then, by (5.9) the slope, at point A, of the
indifference curve that goes through A is equal to

− p
1− p

(
U ′(W A

1 )

U ′(W A
2 )

)
(5.10)
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Recall that the slope of the isoprofit line that goes through any point in the wealth diagram
is − p

1−p . By the remark on page 113,

• At any point above the 45o line the indifference curve is steeper than the isoprofit
line that goes through that point.

• At any point on the 45o line the indifference curve is tangent to (has the same slope
as) the isoprofit line that goes through that point.

This is shown in Figure 5.7. Any contract that lies in the area above the indifference curve
that goes through contract A and below the isoprofit line through A, such as point B
in Figure 5.7, represents a contract that is better than A for the potential customer
(B yields higher expected utility than A) and is better than A for the insurance company (B
yields higher profits than A).
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Figure 5.7: The relative slope of an indifference curve and an isoprofit line.
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5.2.1 The profit-maximizing contract for a monopolist

Without making use of expected utility theory, we showed in Chapter 2 (Section 2.6.3)
that a profit-maximizing monopolist would offer a full-insurance contract to a potential
customer, at a premium that makes her indifferent between insuring and not insuring. We
can now confirm this result with the tools developed in this chapter. Consider an arbitrary
partial-insurance contract that is acceptable to the potential customer (that is, that lies
on or above the reservation indifference curve), such as point A in Figure 5.7. Such a
contract is not profit maximizing, because the monopolist could replace it with a contract
above the indifference curve through A and below the iso-profit line through A (such as
contract B in Figure 5.7) and (1) the potential customer would be even happier with the
new contract and (2) the monopolist would increase its profits. Since this argument applies
to any partial-insurance contract (that is, to any point above the 45o line), we deduce
that a profit-maximizing monopolist would offer a full-insurance contract.3 Of all the
full-insurance contracts that are acceptable to the potential customer (that is, that are not
below the reservation indifference curve) the one that yields the highest profit to the insurer
is at the intersection of the reservation indifference curve and the 45o line: contract C in
Figure 5.8. The corresponding premium, denoted by hmax, is such that:

U(W0−hmax) = pU(W0− `)+(1− p)U(W0). (5.11)
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Figure 5.8: Contract C is the full-insurance contract that would be offered by a monopolist.

3Recall that, at any point on the 45o line, the indifference curve is tangent to the isoprofit line.
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Recall the definition of risk premium, RL, of a money lottery L: it is the amount by
which the expected value of lottery L can be reduced to leave the individual indifferent
between the amount $(E[L]−RL) for sure and the lottery itself. Using this definition and
(5.11) it is clear that, since E[NI] =W0− p`,

hmax = p`+RNI

where NI =
(

W0− ` W0
p 1− p

)
is the no-insurance lottery. That is, hmax is equal to the

expected loss plus the risk premium of the no-insurance lottery.

For example, if W0 = 1,600, `= 700, p = 1
10 and U(m) =

√
m then hmax is given by

the solution to the equation√
1,600−h =

1
10

√
1,600−700+

9
10

√
1,600

which is hmax = 79. Hence the risk premium of the NI lottery is

RNI = hmax− p`= 79− 1
10

700 = $9.

5.2.2 Perfectly competitive industry with free entry

Without making use of expected utility theory, we showed in Chapter 2 (Section 2.6.4)
that, at an equilibrium in a perfectly competitive industry with free entry, all the insurance
firms offer the same contract, namely the full insurance contract with “fair” premium equal
to the expected loss p`. We can now confirm this result with the tools developed in this
chapter.

Recall that a free-entry competitive equilibrium is a situation where

1. each firm in the industry makes zero profits, and

2. there is no unexploited profit opportunity in the industry, that is, there is no currently-
not-offered contract that would attract some custmers and yield positive profit to a
firm that offered that contract.
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By the zero-profit condition (Point 1), any equilibrium contract must be on the zero-
profit line. By the no-profitable-opportunity condition (Point 2), it cannot be a partial-
insurance contract, such as contract A in Figure 5.9, because a new entrant (or an existing
firm) could offer a contract in the region above the indifference curve through point A
and below the iso-profit line through point A, such as contract B in Figure 5.9; such a
contract would induce all those customers who were purchasing contract A to switch to B
and would yield positive profits to the insurance firm offering it. The only contract that is
immune to this is the contract at the intersection of the zero-profit line and the 45o line
(contract D in Figure 5.9).
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Figure 5.9: Contract D is the full-insurance contract that would be offered at a free-entry
competitive equilibrium.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 5.5.2 at the end of this chapter.
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5.3 Choosing from a menu of contracts
It is often the case that insurance companies offer, not just a single contract, but a menu
of contracts and potential customers are allowed to choose which contract to purchase
from this menu. Typically, customers are given a choice between a higher premium with
higher coverage (= lower deductible) or a lower premium with lower coverage (= higher
deductible). The offered menu consists of either a list of contracts or a formula that relates
premium to deductible. In this section we discuss how the potential customer chooses a
contract from a given menu.

5.3.1 Choosing from a finite menu
In the case where the menu consists of a finite list of contracts, the potential customer
will first determine which of the offered contracts is best for her (that is, yields the
highest expected utility) then choose the best contract, provided that it is better than the
no-insurance alternative.

For example, consider an individual whose initial wealth is $1,000. He faces a potential
loss of $400, with probability 20% and has the following vNM utility-of-money function
U(m) =

√
m. Suppose that the insurance company offers the following options:

premium deductible

Contract 1: $82 0

Contract 2: $62 $100

Contract 3: $40 $200

The expected utility of each contract is as follows:

Contract 1:
√

1,000−82 = 30.2985

Contract 2: 0.2
√

1,000−162+0.8
√

1,000−62 = 30.2911

Contract 3: 0.2
√

1,000−240+0.8
√

1,000−40 = 30.3007

This if he decides to insure, he will choose Contract 3. To see if he does decide to insure
we need to compare the expected utility of the best contract, namely Contract 3, with
the expected utility of no insurance, which is 0.2

√
1,000−400+0.8

√
1,000 = 30.1972.

Since Contract 3 (the best of the three offered contracts) is better than no insurance, he
will purchase Contract 3.
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5.3.2 Choosing from a continuum of options
Suppose now that the insurance company offers a continuum of options in the form of
a formula relating premium and deductible. For example, consider an individual who is
facing a potential loss of $4,100 and is told by the insurance company that she can choose
any deductible d ∈ [0,4100]; the corresponding premium h is then calculated according to
the following formula:

h = 820− 1
5

d. (5.12)

Thus the following are some of the many possible contracts that the individual can choose
from:

deductible premium

0 $820

$100 $800

$140 $792

$260 $768

. . . . . .

The set of possible choices is infinite, since any d ∈ [0, 4100] can be chosen by the
individual. Thus we can think of (5.12) as a line, similar to the budget line faced by a
consumer. We shall call it the insurance budget line.
It is useful to translate the line of equation (5.12) – which is expressed in terms of premium
and deductible – into a line in the wealth diagram (W1,W2). This is easily done by recalling
that h =W0−W2 and d =W2−W1:

W0−W2 = 820− 1
5
(W2−W1) , that is, W2 =

(
5W0

4
−1025

)
−W1

4
. (5.13)

For example, if W0 = 6,000 then (5.13) becomes W0−W2 = 820− 1
5 (W2−W1), that is,

W2 = 6,475−W1

4
. (5.14)

Note that the line (in the wealth space) corresponding to equation (5.14) goes through the
no-insurance point NI = (1900,6000); in fact, replacing W1 with the value 1900 in (5.14)
we get W2 = 6000.
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The insurance budget line of equation (5.14) is shown in Figure 5.10.
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Figure 5.10: The insurance budget line W2 = 6,475− W1
4 .

We will consider insurance budget lines defined by equations of the form

h = a−bd with a > 0, b > 0, d ∈ [0, `] and a−b`≥ 0, (5.15)

which – translated into the wealth space (by replacing h with (W0−W2) and d with
(W2−W1)) – becomes

W2 =
W0−a
1−b

− b
1−b

W1. (5.16)

If (5.15) is such that a−b`= 0 then the insurance budget line in the wealth space (defined
by (5.16)) goes through the no-insurance point NI = (W0− `,W0),4 while if a− b` > 0
then the insurance budget line in the wealth space (defined by (5.16)) goes through a point
vertically below NI.5

4For example, the zero-profit line falls into this category.
5For example, an isoprofit line corresponding to a positive level of profit will fall into this category.
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What contract, if any, would the individual choose from the insurance budget line?

We start with the case where the insurance budget line goes through the NI point. There
are three cases to consider.

Case 1: the reservation indifference curve is, at NI, as steep as, or less steep than, the
insurance budget line, as shown in Figure 5.11. It follows that the entire insurance budget
line lies below the reservation indifference curve and thus the individual will choose not
to insure.
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Figure 5.11: Case 1: the insurance budget line lies below the reservation indifference
curve.

In the example above, where W0 = 6,000, `= 4,100 and the insurance budget line is

given by the equation W2 = 6,475− W1
4 , we will be in Case 1 if and only if

p
1− p

(
U ′(1,900)
U ′(6,000)

)
≤ 1

4
.

For instance, if U(m) = ln(m), then Case 1 occurs if and only if p≤ 19
259 = 0.0734.
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For Cases 2 and 3 below we assume that reservation indifference curve
is steeper at NI than the insurance budget line.

Case 2: the indifference curve that goes through the point at the intersection of the 45o

line and the insurance budget line is steeper than, or as steep as, the insurance budget line
at that point, as shown in Figure 5.12.6
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Figure 5.12: Case 2: the individual chooses full insurance.

In this case, insurance is better than no insurance and the best contract (that is, the
contract that yields the highest expected utility) is the full insurance contract (the point at
the intersection of the 45o line and the insurance budget).

In the example above, where the insurance budget line is given by the equation
W2 = 6,475− W1

4 , we will be in Case 2 if and only if (recall that the slope of any in-
difference curve at any point on the 45o line is − p

1−p )

p
1− p

≥ 1
4

i.e. p≥ 1
5
.

6The indifference curve will be, at that point, as steep as the insurance budget line if and only if the
insurance budget line is the zero-profit line, since that slope will be − p

1−p . It is steeper if and only if
the insurance budget line is less steep than the zero-profit line, which implies that all the contracts on the
insurance budget line – with the exception of the NI point – yield negative profits; thus it is unlikely that an
insurance company would offer such menu (unless it is subsidized by the government).
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Case 3: the indifference curve that goes through the point at the intersection of the 45o

line and the insurance budget line is less steep than the insurance budget line at that point,
as shown in Figure 5.13.
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Figure 5.13: Case 3: the individual chooses partial insurance.

In this case, there are partial-insurance contracts on the insurance budget line that are
better than full insurance (and than no insurance). Thus the individual will choose a partial
insurance contract.

Which of the many partial-insurance contracts will she choose? It cannot be a contract
where the indifference curve through it is either steeper, or less steep, than the insurance
budget line: in the former case there would be contracts on the budget line to the right of
that contract that would be better and in the latter case there would be contracts on the
budget line to the left of that contract that would be better. Hence the best contract is the
one at which the slope of the indifference curve at that point is equal to the slope of the
insurance budget line, that is, it is a contract at which the indifference curve through it is
tangent to the insurance budget line: it is that contract C =

(
WC

1 ,WC
2
)

such that, letting
W2 = α−βW1 be the equation of the budget line (with α > 0 and β > 0),

WC
2 = α−βWC

1 and
p

1− p

(
U ′(WC

1 )

U ′(WC
2 )

)
= β . (5.17)
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The optimal contract (which satisfies (5.17)) is shown in Figure 5.14.
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Figure 5.14: The best contract in Case 3.

In the example above, where W0 = 6,000, `= 4,100 and the insurance budget line is
given by the equation W2 = 6,475− W1

4 , we will be in Case 3 if and only if7

p
1− p

(
U ′(1,900)
U ′(6,000)

)
>

1
4

and
p

1− p
<

1
4
.

For instance, if U(m) = ln(m), then Case 3 occurs if and only if p > 19
259 and p < 1

5 , that

is, if and only if p ∈
[ 19

259 ,
1
5

]
. Fix a value of p in this range and continue to assume that

U(m) = ln(m). Then the optimal contract C = (WC
1 ,WC

2 ) is given by the solution to

W2 = 6,475−W1

4
and

p
1− p

(
W2

W1

)
=

1
4
.

For example, if p = 1
7 then the optimal contract is C = (3700, 5550), that is, the individual

will choose a deductible of 5,550− 3,700 = $1,850 with a corresponding premium of
6,000−5,550 = $450.

7The first inequality says that the reservation indifference curve is steeper at NI than the insurance budget
line. The second inequality says that the indifference curve that goes through the point on the 45o line that
lies on the insurance budget line is less steep at that point than the budget line.
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So far we have assumed that the insurance budget line goes through the no-insurance
point NI. If it does not then, given the assumptions stated in (5.15) on page 123, it will go
through a point vertically below the no-insurance point. There are several possibilities.

A first possibility is that the insurance budget line lies entirely below the reservation
indifference curve (this situation is similar to Case 1 considered above). In such a case
the individual will choose not to insure, since any of the offered contracts yields a lower
expected utility than no insurance.

A second possibility is that there are points on the insurance budget line that are
above the reservation indifference curve, as well as points that are below the reservation
indifference curve. This case can be further subdivided into two sub-cases.

The first sub-case is that there is only one point of intersection between the insurance
budget line and the reservation indifference curve, as shown in Figure 5.15. In this case
the entire segment of the budget line to the right of the intersection point lies above the
reservation indifference curve.
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Figure 5.15: The case where the insurance budget line does not go through NI.
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In this case,

• if the indifference curve that goes through the point at the intersection of the 45o

line and the insurance budget line is - at that point - steeper than, or as steep as,
the insurance budget line (as shown in the left panel of Figure 5.16), then the best
contract for the individual is the full-insurance contract;

• if the indifference curve that goes through the point at the intersection of the 45o

line and the insurance budget line is - at that point - less steep than the insurance
budget line (as shown in the right panel of Figure 5.16), then the best contract for the
individual is a partial-insurance contract, namely a point at which there is a tangency
between the budget line and the indifference curve that goes through that point (point
C in the right panel of Figure 5.16).
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Figure 5.16: In this case the individual chooses full insurance.

For example, let W0 = 3,600, ` = 1,100 and p = 1
5 . Suppose that the insurance

company is willing to offer any contact that yields a profit of $10. Then premium and
deductible are related by the equation h− p(`− d) = 10, that is, h = 230− d

5 . Let us
translate it into a line in the wealth space: 3,600−W2 = 230− 1

5 (W2−W1), that is,

W2 = 4,212.5−W1

4
.

This is the equation of the isoprofit line corresponding to a profit-level of 10. Call B the
point of intersection of the budget line and the 45o line. Then the slope of the isoprofit
line is equal to the slope, at point B, of the indifference curve that goes through point B.
Hence we are in the subcase shown in the left panel of Figure 5.16 and the individual will
choose the full-insurance contract, with a premium of $230 (assuming, of course, that
the utility-of-money function is such that the reservation indifference curve crosses the
insurance budget line).

On the other hand, if the insurance budget line is steeper than an isoprofit line, then
we are in the case shown in the right panel of Figure 5.16 and the individual will choose a
partial-insurance contract.
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The second sub-case is that there are two points of intersection between the insurance
budget line and the reservation indifference curve, as shown in Figure 5.17.

0

Wealth in
good state

(probability 1− p)

W2

W1
Wealth in
bad state

(probability p)

45o lineNI
W0

W0− `

C

Figure 5.17: In this case the individual chooses partial insurance.

In this case the individual will choose a partial-insurance contract, namely the contract
on the insurance budget line at which there is a tangency between the budget line and the
indifference curve that goes through that point (shown as point C in Figure 5.17).

We will not consider cases where the insurance budget line does not cover the entire
range [0, `] of possible deductibles and is thus a smaller segment than considered so far; it
should be clear, however, that the method would be the same, namely based on comparing
the relative slopes of indifference curves and the budget line. An example of this is given
in Exercise 5.16.
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We can summarize the discussion of this section as follows. Let

W2 = α−βW1

be the equation of the insurance budget line (with α > 0 and β > 0). To determine whether
the individual will buy insurance and, if so, what contract she will choose, we can proceed
as follows.8

Let B be the full-insurance contract on the insurance budget line (thus W B
1 =W B

2 = α

1+β
)

and recall that the slope, at point B, of the indifference curve that goes through B is p
1−p

(where, as usual, p denotes the probability of loss).

1. If E[U(B)]≥ E[U(NI)], then the individual will buy insurance9 and

(a) if p
1−p ≥ β she will choose the full-insurance contract B;

(b) if p
1−p < β she will choose partial insurance, namely that contract C =(

WC
1 ,WC

2
)

such that

WC
2 = α−βWC

1 and
p

1− p

(
U ′(WC

1 )

U ′(WC
2 )

)
= β .

2. If E[U(B)]< E[U(NI)] then

(a) if the insurance budget line does not intersect the reservation indifference
curve, that is, if the there is no solution to the equation

pU(W0− `)+(1− p)U(W0) = pU(W1)+(1− p)U(α−βW1)

in the range (W0− `,W0), then the individual will not buy insurance;

(b) if the insurance budget line intersects the reservation indifference curve at two
points, that is, if the there are two solutions to the equation

pU(W0− `)+(1− p)U(W0) = pU(W1)+(1− p)U(α−βW1)

in the range (W0− `,W0), then the individual will choose partial insurance,
namely the contract C =

(
WC

1 ,WC
2
)

such that

WC
2 = α−βWC

1 and
p

1− p

(
U ′(WC

1 )

U ′(WC
2 )

)
= β .

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 5.5.3 at the end of this chapter.

8The reader should convince herself/himself that, indeed, the following steps cover all the cases considered
in this section.

9Here and elsewhere we are implicitly assuming that if the individual is indifferent between insuring and
not insuring then she will choose to insure.
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5.4 Mutual insurance
After an exceptional spate of wildfires in the western United States in 2017 and 2018,
several insurance companies notified residents in brush-heavy areas that their homeowner-
insurance policies would not be renewed because the location of their homes posed an
unacceptable fire risk. For example, on August 6, 2018, CBS News reported that10

facing mounting losses, some property insurers are pulling back from selling
policies in California and other western states where wildfire risk is elevated.
In California alone, damages had mounted to at least $12 billion by early
2018.

Clearly, the unavailability of insurance makes a risk-averse individual worse off. Is there
anything that he/she can do mitigate the welfare loss due to the inability to but insurance?

Imagine that Ann and Bob are friends who live in high-risk areas that insurers have
decided to no longer cover. To make things simple, imagine that Ann and Bob have the
same initial wealth $W0 and their homes are of equal value, so that they both face the same
potential loss of $` if a fire occurs; furthermore, assume that they face the same probability
p of a fire occurring. Without insurance they both face the same money lottery, namely

NI =
(

W0 W0− `
1− p p

)
One possible course of action for Ann and Bob is to resort to mutual-insurance, that is, to
insure each other by signing the following contract:

I agree to the following:
1. in the event that we both suffer a loss (due to a fire) or in the event

that none of us suffers a loss, then no transfer of money will take place
between us,

2. in the event that only one of us suffers a loss of $` (due to a fire), the
other one (who did not suffer a loss) will give $ `

2 to the person who
suffered the loss, that is, will cover 50% of his/her loss.

Would such a contract make them better off relative to no insurance? Let us assume
they leave in locations that are far apart, so that the event of a fire in Ann’s area can
plausibly be treated as independent of the event of a fire in Bob’s area. When two events
are independent, the probability of them jointly occurring is equal to the product of the
individual probabilities. Thus the probabilities can be computed as follows:

event: no fire fire only fire only fire at
at Ann’s at Bob’s both locations

probability: (1− p)2 p(1− p) p(1− p) p2

Thus, each individual will suffers a loss of $ `
2 (either in the form of a payment to a less

lucky friend or in the form of a loss of ` followed by a reimbursement, in the amount of `
2 ,

10https://www.cbsnews.com/news/california-wildfires-property-insurers-cancel-policies-because-of-risk/

https://www.cbsnews.com/news/california-wildfires-property-insurers-cancel-policies-because-of-risk/
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from the luckier friend) with probability 2p(1− p), so that the contract will give rise to
the following money lottery for each of them (‘MI’ stands for ‘Mutual Insurance’):

MI =
(

W0 W0− `
2 W0− `

(1− p)2 2p(1− p) p2

)
Assuming that Ann has vNM preferences over money lotteries and prefers more money to
less (a similar argument applies to Bob), we can represent her preferences by means of a
normalized vNM utility function as follows, with 0 < a < 1:

money: W0 W0− `
2 W0− `

utility: 1 a 0

Then the expected utilities of the two lotteries are:

E[U(NI)] = 1− p, and

E[U(MI)] = (1− p)2 +2p(1− p)a = (1− p)[1+ p(2a−1)].

Consider first the case where Ann is risk neutral. Then it must be that a = 1
2 . In fact,

the lottery
(

W0− `
2

1

)
and the lottery

(
W0 W0− `

1
2

1
2

)
have the same expected value,

namely W0− `
2 and thus Ann must be indifferent between them. The expected utility of the

former is a and the expected utility of the latter is 1
2 ; thus a = 1

2 . When a = 1
2 , (2a−1) = 0

and thus E[U(NI)] = E[U(MI)] so that Ann does not gain from signing the contract: with
the contract she is as well off as without the contract.

Next consider first the case where Ann is risk averse. Then it must be that a > 1
2 . In

fact, the lottery
(

W0− `
2

1

)
, whose expected utility is a, gives for sure the expected value

of the lottery
(

W0 W0− `
1
2

1
2

)
, whose expected utility is 1

2 . By definition of risk aversion,

Ann prefers the former lottery to the latter. Hence a > 1
2 . When a > 1

2 , (2a−1)> 0 and
thus (1− p)[1+ p(2a−1)]> 1− p so that E[U(MI)]> E[U(NI)], that is, Ann is better
off with the contract than without the contract.

Thus we have shown that two risk-averse individuals can make themselves better off by
signing a mutual-insurance agreement, according to which they share the losses equally,
whoever incurs the losses.

The astute reader will have realized that there was no need for a detailed proof of
the fact that a risk-averse individual will prefer lottery MI to lottery NI, since it follows
from the analysis of Chapter 4 (Section 4.4.2): lottery NI can be obtained from lottery
MI by means of a mean-preserving spread. First of all, the reader should verify that
E[NI] = E[MI] = W0− p`. Secondly, by taking the probability of outcome

(
W0− `

2

)
,

namely 2p(1− p), and spreading it equally to each of the other outcomes we obtain lottery
NI; in fact, (1− p)2 + 1

2 2p(1− p) = 1− p and p2 + 1
2 2p(1− p) = p.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 5.5.4 at the end of this chapter.
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5.5 Exercises

The solutions to the following exercises are given in Section 5.6 at the end of this chapter.

5.5.1 Exercises for Section 5.1: Binary lotteries and indifference curves

Exercise 5.1 Consider all the lotteries of the form
(

$x $y
1
3

2
3

)
with x≥ 0 and y≥ 0.

Assume that the individual in question is risk neutral.
(a) Write the equation of the indifference curve that goes through point

(x = 6,y = 10).
(b) Write the equation of the indifference curve that goes through point (10,8).
(c) Write the equation of the indifference curve that goes through point (4,9).

�

Exercise 5.2 Consider all the lotteries of the form
(

$x $y
1
3

2
3

)
with x≥ 0 and y≥ 0.

Consider an individual with von Neumann-Morgenstern utility-of-money function
U(m) = ln(m).

(a) Calculate the expected utility of lottery A =

(
$10 $40

1
3

2
3

)
.

(b) Calculate the expected utility of lottery B =

(
$10 $10

1
3

2
3

)
.

(c) Calculate the slope of the indifference curve at point A = (10,40).

(d) Calculate the slope of the indifference curve at point B = (10,10).

(e) In the (x,y)-plane draw the indifference curve that goes to point A = (10,40) and
the indifference curve that goes to point B = (10,10).

�

Exercise 5.3 Repeat Parts (a)-(e) of the previous question for the case of an individual
who is risk neutral. �
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Exercise 5.4 Consider all the lotteries of the form
(

$x $y
2
3

1
3

)
with x≥ 0 and y≥ 0.

Consider an individual with von Neumann-Morgenstern utility-of-money function
U(m) = ln(m).

(a) Write an equation whose solutions give the set of lotteries that the individual

considers just as good as lottery A =

(
$4 $4
2
3

1
3

)
.

(b) Solve the equation of Part (a) and obtain a function y = f (x) whose graph is the
indifference curve that goes through point (4,4).

(c) Write an equation whose solutions give the set of lotteries that the individual

considers just as good as lottery B =

(
$9 $4
2
3

1
3

)
.

(d) Solve the equation of Part (c) and obtain a function y = g(x) whose graph is the
indifference curve that goes through point (9,4).

(e) Calculate the slope of the indifference curve at point A = (4,4).

(f) Calculate the slope of the indifference curve at point B = (9,4).

�

Exercise 5.5 Consider all the lotteries of the form
(

$x $y
1
5

4
5

)
with x≥ 0 and y≥ 0.

Let A = (100,25), B = (4,49) and C = (40,40).
(a) Draw the indifference curves that go through points A, B and C for an individual

with von Neumann-Morgenstern utility-of-money function U(m) =
√

m.
(b) Draw the indifference curves that go through points A, B and C for a risk-neutral

individual.
�

5.5.2 Exercises for Section 5.2: Back to insurance

Exercise 5.6 Adam’s current wealth is $80,000. With probability 1
20 he faces a loss of

$30,000. His vNM utility-of-money function is U(m) = ln(m).
(a) Calculate the slope of Adam’s reservation indifference curve at the no-insurance

point NI.
(b) Calculate the slope of the iso-profit curve that goes through point NI.
(c) Calculate the maximum premium that Adam is willing to pay for full insurance.
(d) Calculate the increase in Adam’s utility relative to no insurance if he obtains full

insurance at the “fair” premium (that is, at a premium that yields zero profits to
the insurer).

(e) Consider contract A = (80,000−h, 80,000−h). Calculate the slope at point A
of Adam’s indifference curve that goes through point A.

�
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Exercise 5.7 Frank has a wealth of $W0. With probability p = 1
10 he faces a loss of

$`. The maximum he is willing to pay for full insurance is $800. The risk premium
associated with the lottery corresponding to no insurance is $500.

(a) What is the value of `?
(b) What is the maximum profit that a monopolist can make by selling insurance to

Frank?
�

Exercise 5.8 Bob owns a house. The value of the land is $75,000 while the value of
the building is $110,000. The rest of his wealth consists of the balance of his bank
account, which is $10,000. Thus his current wealth is $195,000. Bob lives in an area
where there is a 5% probability that a fire will completely destroy his house during any
year (while the land will not be affected by a fire). Bob’s utility function is given by:

U(m) = 800− (20−m)2

where m ∈ [0,20] denotes money measured in $10,000 (thus, for example, m = 11
means $110,000).

(a) What is Bob’s expected loss if he does not insure?
(b) What is Bob’s expected wealth if he does not insure?
(c) What is Bob’s expected utility if he does not insure?
(d) What is Bob’s expected utility if he purchases an insurance contract with premium

$1,200 and deductible $20,000?
(e) What is the slope of Bob’s reservation indifference curve at the no-insurance

point?
(f) Let A be the point in the wealth diagram that corresponds to the insurance contract

with premium $1,200 and deductible $20,000. What is the slope, at point A, of
Bob’s indifference curve that goes through point A?

(g) Does the indifference curve that goes through point A of Part (f) lie above or
below the reservation indifference curve?

(h) What is the maximum premium that Bob would be willing to pay for full insur-
ance?

�

Exercise 5.9 Beth’s vNM utility-of-money function is U(m) = α−β e−m, where α

and β are positive constants. [Recall that e≈ 2.71828 and d
dxex = ex.]

(a) What is Beth’s attitude to risk?
(b) What is Beth’s Arrow-Pratt measure of absolute risk aversion?
(c) Show that if Beth’s initial wealth is W0 and she is faced with a potential loss

` with probability p, the maximum premium that she is willing to pay for full
insurance is the same whatever her initial wealth, that is, it is independent of W0.

�
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5.5.3 Exercises for Section 5.3: Choosing from a menu of contracts

Exercise 5.10 Barbara has a wealth of $80,000 and faces a potential loss of $20,000
with probability 10%. Her utility-of-money function is U(m) =

√
m . An insurance

company offers her the following menu of contracts:

premium deductible

Contract 1: $2,340 $500

Contract 2: $2,280 $1,000

Contract 3: $2,220 $1,500

Contract 4: $2,160 $2,000

(a) What is Barbara’s expected utility if she does not insure?
(b) For each contract calculate the corresponding expected utility and determine

which contract, if any, Barbara will choose.
�

Exercise 5.11 You have the following vNM utility-of-money function: U(m) = ln(m).
Your initial wealth is $10,000 and you face a potential loss of $4,000 with probability
1
6 . An insurance company offers you the following menu of choices: if you choose
deductible d (with 0≤ d ≤ 4,000) then your premium is h = 800−0.2d.

(a) Translate the equation h = 800−0.2d into an equation in terms of wealth levels.
(b) Compare the slope of the reservation indifference curve at the no-insurance point

NI to the slope of the insurance budget line. Are there contracts that are better for
you than no insurance?

(c) Which contract will you choose from the menu?
(d) Compare expected utility if you do not insure with expected utility if you purchase

the best contract from the menu.
(e) What is the insurance company’s expected profit from the contract of Part (c)?
(f) Prove the result of Part (c) directly by expressing expected utility as a function of

the deductible d and by maximizing that expression.
�

Exercise 5.12 You have the following vNM utility-of-money function: U(m) =
√

m.
Your initial wealth is $576 and you face a potential loss of $176 with probability 1

16 . An
insurance company offers you the following menu of choices: if you choose deductible
d (with 0≤ d ≤ 176) then your premium is h = 1

9(176−d).

(a) Translate the equation h = 1
9(176−d) into an equation in terms of wealth levels.

(b) Compare the slope of the reservation indifference curve at the no-insurance point
NI to the slope of the insurance budget line. Are there contracts that are better for
you than no insurance?

�
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Exercise 5.13 [Note: in this exercise the data is the same as in Exercise 5.12, but we
have changed the probability of loss from 1

16 to 1
7 .]

Your vNM utility-of-money function is U(m) =
√

m; your initial wealth is $576 and
you face a potential loss of $176 with probability 1

7 . An insurance company offers you
the following menu of choices: if you choose deductible d (with 0 ≤ d ≤ 176) then
your premium is h = 1

9(176−d).

(a) Translate the equation h = 1
9(176−d) into an equation in terms of wealth levels.

(b) Compare the slope of the reservation indifference curve at the no-insurance point
NI to the slope of the insurance budget line. Are there contracts that are better for
you than no insurance?

(c) Which contract will you choose from the menu?
(d) Compare expected utility if you do not insure with expected utility if you purchase

the best contract from the menu.
(e) What is the insurance company’s expected profit from the contract of Part (c)?
(f) Confirm the result of Part (c) by expressing expected utility as a function of the

deductible d and by finding the maximum of that function in the interval [0,400].
�

Exercise 5.14 David’s vNM utility-of-money function is U(m) = 1− (m + 1)−1,
where m is money measured in thousands of dollars (thus, for example, m = 6 means
$6,000).

(a) What is David’s attitude to risk?
(b) Calculate the Arrow-Pratt measure of absolute risk aversion for David.

David’s initial wealth is $8,000 and he faces a potential loss of $3,000 with probability
1

10 . An insurance company offers him insurance at the following terms:

choose the amount (of your potential loss) that you would like to be covered
(thus a number in the range from 0 to 3,000); for every dollar of coverage
you will pay $γ as premium (with 0 < γ < 1).

(c) Write an equation that expresses the premium in terms of the deductible. [Recall
that the deductible is that part of the loss that is not covered.].

(d) Translate the equation of Part (c) into an equation in terms od David’s wealth
levels.

(e) Does the insurance budget line of Part (d) go through the no-insurance point NI?
(f) For what values of γ will David choose not to insure?
(g) For what values of γ will Davis purchase full insurance?
(h) Assuming that the value of γ is in the range where David chooses partial insurance,

write a system of two equations whose solution gives the contract that David will
choose.

�
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Exercise 5.15 Anna’s vNM utility-of-money function is U(m) = ln(m). Her initial
wealth is $3,600 and she faces a potential loss of $2,700 with 25% probability. An
insurance company is offering Anna any contract such that premium h and deductible d
satisfy the following equation: h = 810− 3

10d.

(a) Translate the equation h = 810− 3
10d into an equation in terms of wealth levels.

(b) Does the equation found in Part (a) correspond to an isoprofit line?
(c) Does the insurance budget line of Part (a) go through the no-insurance point?
(d) Are there any contracts on the insurance budget line that Anna prefers to no

insurance?
(e) What is the best contract on the insurance budget line for Anna?
(f) Calculate Anna’s expected utility at the following points:

(1) NI (no insurance),
(2) the full-insurance contracts that belongs to the budget line, and
(3) the contract found in Part (e).

(g) Prove the result of Part (e) directly by expressing expected utility as a function of
the deductible d and by maximizing that expression.

�

Exercise 5.16 Kate has an initial wealth of W0 = $1,600 and faces a potential loss
of ` = $576 with probability 20%. Her von Neumann-Morgenstern utility-of-money
function is U(m) =

√
m. An insurance company is offering the following menu of

contracts:
h = 152− 3

10
d.

However, the deductible is restricted to the interval [0,360] (hence the largest deductible
is 360 rather than 576).
Let A =

(
W A

1 ,W A
2
)

be the point in wealth space corresponding to the contract
(h = 44,d = 360).

(a) Translate the insurance budget line h = 152− 3
10 d (d ∈ [0,360]) into a budget

line in wealth space (give the range of values).

(b) Does contract A lie on, below or above the reservation indifference curve?

(c) Calculate the slope, at point A, of the indifference curve that goes through A,
compare it to the slope of the insurance budget line and deduce which contract
from the offered menu will be chosen by Kate.

�
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5.5.4 Exercises for Section 5.4: Mutual insurance

Exercise 5.17 Carla and Don have the same initial wealth, namely $32,400, and face
the same potential loss, namely $18,000, with the same probability, namely 1

5 .
Carla’s vNM utility-of-money function is

UC(m) =
√

m

while Don’s is
UD(m) = 1− 1

m
10,000 +1

.

They are unable to obtain insurance on the market, so they have decided to write a
mutual insurance contract, according to which any losses are shared equally between
them.
Assuming that the event that Carla suffers a loss is independent of the event that Don
suffers a loss, show that signing the mutual insurance contract has made each of them
better off relative to no insurance. �

Exercise 5.18 Ann, Carla and Dana have the same initial wealth, namely $40,000,
and face the same potential loss, namely $30,000, with the same probability, namely
1
5 . They have the same vNM preferences, represented by the vNM utility-of-money
function U(m) =

√
m. They are unable to obtain insurance on the market and have

decided to sign a mutual insurance contract, according to which any losses suffered by
any of them will be shared equally by all three of them. Assume that the event that any
of them suffers a loss is independent of the event(s) that the other(s) also suffer a loss.

(a) Calculate the probabilities of the following events:
1. All three of them suffer a loss.
2. Exactly two of them suffer a loss.
3. Exactly one of them suffers a loss.
4. None of them suffers a loss.

(b) Show that each of them is better off with the mutual insurance contract relative to
no insurance.

�
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Exercise 5.19 In this exercise we consider the benefit of mutual insurance when there
is no independence, that is, when one person suffering a loss makes it more likely that
the other person would also suffer a loss.

We consider two individuals, Albert an Ben, who have the same initial wealth,
namely $40,000, and face the same potential loss of $30,000 due to wildfire, with the
same probability, namely 1

5 . They have the same vNM preferences, represented by the
vNM utility-of-money function U(m) =

√
m.

Since they live not far apart from each other if a fire occurs at one of the two
properties then the probability that there will be a fire at the other property is greater
than 1

5 . If the events were independent then the probabilities would be as follows:

fire at both fire at one only no fires
1

25
8
25

16
25

However, due to correlation, the probabilities are as follows:

fire at both fire at one only no fires
3

30
7
30

20
30

Suppose that Albert and Ben are unable to obtain insurance on the market. Are they
better off with no insurance or with a mutual insurance agreement (according to which
any losses suffered by either of them will be shared equally by both)? �

5.6 Solutions to Exercises

Solution to Exercise 5.1

The slope of every indifference curve is−
1
3
2
3

=−1
2 . Thus the equation of any indifference

curve is of the form y = a− 1
2x.

(a) To find the value of a for the indifference curve that goes through point (6,10) solve
the equation 10 = a− 1

26 to get a = 13. Thus the equation of the indifference curve
that goes through point (6,10) is y = 13− 1

2x.
(b) To find the value of a for the indifference curve that goes through point (10,8) solve

the equation 8 = a− 1
210 to get a = 13. Thus the equation of the indifference curve

that goes through point (10,8) is y = 13− 1
2x. Hence the two lotteries (6,10) and

(10,8) lie on the same indifference curve; indeed, they have the same expected value,
namely 26

3 .
(c) To find the value of a for the indifference curve that goes through point (4,9) solve

the equation 9 = a− 1
24 to get a = 11. Thus the equation of the indifference curve

that goes through point (4,9) is y = 11− 1
2x. �
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Solution to Exercise 5.2
(a) The expected utility of lottery A =

(
$10 $40

1
3

2
3

)
is 1

3 ln(10)+ 2
3 ln(40) = 3.227.

(b) The expected utility of lottery B =

(
$10 $10

1
3

2
3

)
is 1

3 ln(10)+ 2
3 ln(10) = 3.303.

(c) The indifference curve that goes through A = (10,40) is the set of lotteries that
yield an expected utility of 3.227. It is a convex curve since the utility function U
incorporates risk aversion. The slope of the indifference curve at point A is equal to

− p
1− p

(
U ′(10)
U ′(40)

)
=−

1
3
2
3

(
1
10
1
40

)
=−2.

(d) Similarly, the indifference curve that goes through B = (10,10) is the set of lotteries
that yield an expected utility of 2.303. It is a convex curve. The slope of the
indifference curve at point B is equal to

− p
1− p

U ′(10)
U ′(10)

=−
1
3
2
3

1
10
1
10

=−1
2
.

(e) The two indifference curves are shown in Figure 5.18. �

0

y
(probability 2

3 )

x
(probability 1

3 )

40

10

10

A

B

slope: −1
2

slope: −2

Figure 5.18: The graph for Part (e) of Exercise 5.2.
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Solution to Exercise 5.3
Since the individual is risk neutral, we can take his/her utility-of-money function to be
the identity function U(m) = m. Thus the expected utility of a lottery coincides with the
expected value.

(a) The expected utility (= value) of lottery A =

(
$10 $40

1
3

2
3

)
is 1

310+ 2
340 = 30.

(b) The expected utility of lottery B =

(
$10 $10

1
3

2
3

)
is 1

310+ 2
310 = 10.

(c) The indifference curve that goes through A = (10,40) is the set of lotteries that yield
an expected utility (= value) of 30. It is a straight line because of risk neutrality. The
slope of the indifference curve at point A is equal to

− p
1− p

(
U ′(10)
U ′(40)

)
=−

1
3
2
3

(
1
1

)
=−1

2
.

(d) Similarly, the indifference curve that goes through B = (10,10) is the set of lotteries
that yield an expected utility (= value) of 10. It is a straight line because of risk
neutrality. The slope of the indifference curve at point B is equal to

− p
1− p

(
U ′(10)
U ′(10)

)
=−

1
3
2
3

1 =−1
2
.

(e) The two indifference curves are shown in Figure 5.19. �

0

y
(probability 2

3 )

x
(probability 1

3 )

40

10

10

A

B

slope: −1
2

slope: −1
2

Figure 5.19: The graph for Part (e) of Exercise 5.3.
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Solution to Exercise 5.4

(a) 2
3 ln(x)+ 1

3 ln(y) = ln(4).

(b) First of all, rewrite the above equation as 2 ln(x)+ ln(y) = 3ln(4), from which we get

that e(2ln(x)+ln(y)) = e3ln(4). Now, e(2ln(x)+ln(y)) = e2ln(x) eln(y) =
(

eln(x)
)2

y = x2y.

Similarly, e3ln(4) = 43 = 64. Thus the equation becomes x2y = 64 from which we

get y =
64
x2 .

(c) 2
3 ln(x)+ 1

3 ln(y) = 2
3 ln(9)+ 1

3 ln(4).

(d) Repeating the steps of Part (b): from 2ln(x) + ln(y) = 2ln(9) + ln(4) we get

e(2ln(x)+ln(y)) = e(2ln(9)+ln(4)), which becomes x2y = 924 which yields y =
324
x2 .

(e) The slope of the indifference curve at point A = (4,4) is equal to11

− p
1− p

(
U ′(4)
U ′(4)

)
=−

2
3
1
3

1 =−2.

(f) The slope of the indifference curve at point B = (9,4) is equal to12

− p
1− p

(
U ′(9)
U ′(4)

)
=−

2
3
1
3

( 1
9
1
4

)
=−8

9
.

�

11Alternatively, using the function f (x) = 64
x2 of Part (b), f ′(x) =− 128

x3 so that f ′(4) =− 128
43 =−2.

12Alternatively, using the function g(x) = 324
x2 of Part (d), g′(x) =− 648

x3 so that g′(9) =− 648
93 =− 8

9 .
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Solution to Exercise 5.5

(a) E[U(A)] = 1
5

√
100+ 4

5

√
25 = 2+4 = 6 and E[U(B)] = 1

5

√
4+ 4

5

√
49 = 6. Thus A

and B lie on the same indifference curve. On the other hand, E[U(C)] =
√

40 =
6.3246. Thus C lies on a higher indifference curve. See Figure 5.20.13

(b) The expected value of A, B and C is the same, namely 40. Thus the three points lie
on the same indifference curve, which is a straight line with slope −1

4 . �

0

y
(probability 4

5 )

x
(probability 1

5 )

EU = 6

B
49

4

A
25

100

C

EU = 6.3246

35

60

Figure 5.20: The graph for Exercise 5.5.

13Note that the scale of the axes has been distorted to make the qualitative properties of the graph easier to
see.
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Solution to Exercise 5.6

(a) NI = (50000, 80000) and d
dm ln(m) = 1

m . Thus the slope of the reservation indiffer-
ence curve at NI is

−
1

20
19
20

( 1
50,000

1
80,000

)
=− 8

95
=−0.0842.

(b) The slope of every isoprofit line is −
1

20
19
20

=− 1
19 = 0.0526.

(c) The maximum premium that Adam is willing to pay for full insurance is given by
the solution to the equation

ln(80,000−h) =
1

20
ln(50,000)+

19
20

ln(80,000)

which is hmax = $1,858.10

(d) The fair premium is equal to 1
20(30,000) = 1,500. If Adam does not insure, his

expected utility is 1
20 ln(50,000)+ 19

20 ln(80,000) = 11.2663. If Adam obtains full
insurance at premium $1,500, his utility is ln(80,000−1,500) = 11.2709. Thus the
increase in utility is 11.2709−11.2663 = 0.0046.

(e) The slope of any indifference curve at any point on the 45o line is equal to the slope

of any isoprofit line, namely −
1
20
19
20

=− 1
19 = 0.0526. �

Solution to Exercise 5.7

(a) If Frank does not buy insurance he faces the lottery
(

W0 W0− `
9

10
1
10

)
whose expected

value is W0− 1
10`. If hmax is the maximum premium that he is willing to pay for

full insurance [that is, hmax is the solution to the equation U(W0−h) = 9
10U(W0)+

1
10U(W0− `)] and RNI is the risk premium associated with the no-insurance lottery
[that is, RNI is the solution to the equation U(W0− 1

10`−R) = 9
10U(W0)+

1
10U(W0−

`)], then hmax =
1

10`+RNI . Thus we have the following equation

800 =
1
10

`+500,

whose solution is `= 3,000.

(b) The monopolist would sell Frank the full-insurance contract with premium $800 and
thus make an expected profit equal to 800− 1

103,000 = $500. �
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Solution to Exercise 5.8

(a) Bob’s expected loss is 5
100110,000 = $5,500.

(b) Bob’s expected wealth if he does not insure is 195,000−5,500 = $189,500.

(c) Bob’s expected utility if he does not insure is

5
100

[
800− (20−8.5)2]+ 95

100
[
800− (20−19.5)2]= 793.15.

(d) The insurance contract with premium $1,200 and deductible $20,000 corresponds to
the following point in the wealth diagram: (173,800, 193,800). The corresponding
expected utility is

5
100

[
800− (20−17.38)2]+ 95

100
[
800− (20−19.38)2]= 799.29.

(e) U ′(m) = 40− 2m. Thus the slope of Bob’s reservation indifference curve at the
no-insurance point is

−
5

100
95

100

(
40−2(8.5)

40−2(19.5)

)
=−1.2105.

(f) From Part (d) we have that A = (173,800, 193,800). The slope, at point A, of Bob’s
indifference curve that goes through point A is

− 5
95

(
40−2(17.38)
40−2(19.38)

)
=−0.2224.

(g) Since E[U(A)] = 799.29 > 793.15 = E[U(NI)], the indifference curve that goes
through point A lies above reservation indifference curve.

(h) The maximum premium that Bob would be willing to pay for full insurance is given
by the solution to the equation U(W0−h) = E[U(NI)], that is,
800− [20− (19.5−h)]2 = 793.15, which is 2.1173, that is, $21,173 (slightly less
than four times the expected loss). �
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Solution to Exercise 5.9

(a) U ′(m) = βe−m > 0 and U ′′(m) =−βe−m < 0, thus Beth is risk averse.

(b) A(m) =−U ′′(m)
U ′(m) = 1, a constant.

(c) The maximum premium hmax is determined by the solution to

U(W0−h) = pU(W0− `)+(1− p)U(W0), that is,

α−βe(−W0+h) = p
(

α−βe(−W0+`)
)
+(1− p)

(
α−βe−W0

)
= pα +(1− p)α−β

[
pe(−W0+`)+(1− p)e−W0

]
= α−β

[
pe−W0e`+(1− p)e−W0

]
= α−βe−W0

[
pe`+1− p

]
.

Subtracting α from both sides and multiplying by − 1
β

we get

e−W0eh = e−W0
[

pe`+1− p
]
,

and multiplying both sides by eW0 , we are left with

eh = pe`+1− p.

Thus hmax = ln(pe`+1− p), independent of W0. �

Solution to Exercise 5.10

(a) Barbara’s expected utility if she does not insure is: 0.9
√

80,000+0.1
√

60,000 =
279.053.

(b) Barbara’s expected utility from a contract with premium h and deductible d is
0.1
√

80,000−h−d +0.9
√

80,000−h. Thus,

premium deductible expected utility

Contract 1: 2,340 500 0.1
√

77,160+0.9
√

77,660 = 278.5856

Contract 2: 2,280 1,000 0.1
√

76,720+0.9
√

77,720 = 278.6031

Contract 3: 2,220 1,500 0.1
√

76,280+0.9
√

77,780 = 278.6204

Contract 4: 2,160 2,000 0.1
√

75,840+0.9
√

77,840 = 278.6375.

None of the contracts gives her higher expected utility than no insurance. Hence she
will not buy insurance. �
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Solution to Exercise 5.11
(a) Letting h = 10,000−W2 and d =W2−W1 we get 10,000−W2 = 800−0.2(W2−

W1), that is

W2 = 11,500− 1
4

W1.

(b) From Part (a) we have that the slope of the insurance budget line is −1
4 . The slope

of the reservation indifference curve at NI = (6000,10000) is

−
1
6
5
6

( 1
6,000

1
10,000

)
=−1

3
.

Thus the reservation indifference curve is steeper, at NI, than the insurance budget
line and, therefore, there are contracts that are better than no insurance.

(c) Since the slope of any indifference curve at any point on the 45o line is equal to

−
1
6
5
6

=−1
5 , the indifference curve that goes through the point at the intersection of

the insurance budget line and the 45o line is less steep than the insurance budget line
and thus we are in Case 3 of Section 5.3.2 and the optimal contract is given by the
solution to the following two equations:

W2 = 11,500− 1
4

W1 and −
1
6
5
6

( 1
W1
1

W2

)
=−1

4

which is W1 = 7,666.67 and W2 = 9,583.33. Thus the chosen deductible is

d = 9,583.33−7,666.67 = $1,916.66

and the corresponding premium is

h = 10,000−9,583.33 = $416.67.

(d) Expected utility from no insurance is 1
6 ln(6,000)+ 5

6 ln(10,000) = 9.1252, while
expected utility from the contract of Part (c) is 1

6 ln(7,666.67)+ 5
6 ln(9,583.33) =

9.1306.
(e) Expected profits from the contract of Part (c) is 416.67− 1

6(4,000− 1,916.66) =
$69.45.

(f) Expected utility from contract (h,d) is: 1
6 ln(10,000− h− d)+ 5

6 ln(10,000− h).
Replacing h with 800−0.2d we get the following function:

f (d) = 1
6 ln(10,000−800+0.2d−d)+ 5

6 ln(10,000−800+0.2d)

= 1
6 ln(9,200−0.8d)+ 5

6 ln(9,200+0.2d).

To maximize this function we must solve the equation f ′(d) = 0, that is

1
6

(
1

9,200−0.8d

)
(−0.8)+

5
6

(
1

9,200+0.2d

)
0.2 = 0

The solution is d = 5,750
3 = 1,916.66 with corresponding premium

h = 800−0.2(1,916.67) = 416.67, confirming the conclusion of Part (c). �
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Solution to Exercise 5.12

(a) Letting h = 576−W2 and d =W2−W1 we get 576−W2 =
1
9(176−W2 +W1), that

is

W2 = 626− 1
8

W1.

(b) From Part (a) we have that the slope of the insurance budget line is −1
8 . The slope

of the reservation indifference curve at NI = (400,576) is

−
1
16
15
16

( 1
2
√

400
1

2
√

576

)
=− 2

25
.

Thus the reservation indifference curve is less steep, at NI, than the insurance budget
line and, therefore, the insurance budget line lies below the reservation indifference
curve, that is, there are no contracts that are better than no insurance. Thus we are in
Case 1 of Section 5.3.2 and your best decision is not to insure. �

Solution to Exercise 5.13

(a) The answer is, of course, the same as in Exercise 5.12: W2 = 626− 1
8W1.

(b) The slope of the insurance budget line is −1
8 . The slope of the reservation indiffer-

ence curve at NI = (400,576) is

−
1
7
6
7

( 1
2
√

400
1

2
√

576

)
=−1

5
.

Thus the reservation indifference curve is steeper, at NI, than the insurance budget
line and, therefore, there are contracts that are better than no insurance.

(c) Since the slope of any indifference curve at any point on the 45o line is equal to

−
1
7
6
7
=−1

6 , the indifference curve that goes through the point at the intersection of

the insurance budget line and the 45o line is steeper than the insurance budget line
and thus we are in Case 2 of Section 5.3.2 and the optimal contract is given by the
full-insurance contract (the point of intersection between the insurance budget line
and the 45o line), that is, by the solution to the following two equations:

W2 = 626− 1
8

W1 and W2 =W1

which is W1 = W2 = 5,008
9 = 556.44. Thus the chosen deductible is zero and the

premium is h = 576−556.44 = $19.56.
(d) Expected utility from no insurance is 1

7

√
400+ 6

7

√
576 = 23.4286, while expected

utility from the contract of Part (c) is
√

556.44 = 23.589.

(e) Expected profits from the contract of Part (c) is 19.56− 1
7400 = −$37.58, thus a

loss.
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(f) Expected utility from contract (h,d) is: 1
7

√
576−h−d + 6

7

√
576−h. Replacing h

with 1
9(176−d) we get the following function:

f (d) = 1
7

√
576− 176

9 + 1
9d−d + 6

7

√
576− 176

9 + 1
9d

= 1
7

√
556.44− 8

9d + 6
7

√
556.44+ 1

9d.

We know from Part (c) that the maximum of the function f (d) is achieved at a corner
(that is, not in the interior of the interval [0,400]) and thus it cannot be found by
solving the equation f ′(d) = 0 (indeed, the solution to this equation is −398.36
which is outside the interval [0,400]). Another way to see that the solution is at a
corner, is to calculate the value f ′(d) at d = 0: f ′(0) =−0.0007 < 0, indicating that
increasing the deductible from 0 reduces expected utility. �

Solution to Exercise 5.14
(a) The utility function is U(m)= 1− 1

m+1 . Thus U ′(m)= 1
(m+1)2 and U ′′(m)=− 2

(m+1)3 .
Since U ′′(m)< 0 (given that m≥ 0), David is risk averse.

(b) The Arrow-Pratt measure of risk aversion is AU(m) =−U ′′(m)
U ′(m) =

2
m+1 .

(c) Since coverage = loss − deductible, the equation is h = γ(`−d) = γ(3000−d).

(d) Replacing h with W0−W2 = 8,000−W2 and d = (W2−W1) in the equation of Part
(c) we get

W2 =
8,000−3,000γ

1− γ
− γ

1− γ
W1.

(e) Yes: replacing W1 with 5,000 (=W0− `= 8,000−3,000, the horizontal coordinate
of NI) in the above equation we get W2 = 8,000 (the vertical coordinate of NI).

(f) David will choose not to insure when the insurance budget line is steeper than the
reservation indifference curve at the NI point, that is, when (recall that money is
measure in thousands of dollars)

γ

1− γ
>

p
1− p

(
U ′(5)
U ′(8)

)
=

1
9

(
(8+1)2

(5+1)2

)
=

9
25

.

Solving γ

1−γ
> 9

25 we get γ > 9
34 .

(g) David will choose full insurance when the slope of the indifference curve at the
offered full-insurance contract (which is − p

1−p =−1
9) is, in absolute value, greater

than or equal to the slope of the budget line (which is − γ

1−γ
). Solving 1

9 ≥
γ

1−γ
we

get γ ≤ 1
10 .

(h) David will choose partial insurance when
1. he prefers insurance to no insurance (that is, as seen in Part (f), when γ < 9

34)
and

2. the slope of the indifference curve at the offered full-insurance contract is, in
absolute value, less than the slope of the budget line (that is, as seen in Part (g),
when γ > 1

10 ).
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Thus David will choose partial insurance when

1
10

< γ <
9

34
.

Assume that 1
10 < γ < 9

34 . Then David will choose that contract
C =

(
WC

1 ,WC
2
)

at which there is a tangency between the budget line and the in-
difference curve through C, that is, C must satisfy the following equations (recall
that wealth levels are expressed in dollars while the argument of the utility function
is expressed in thousands of dollars):

W2 =
8,000−3,000γ

1− γ
− γ

1− γ
W1 and

1
9


(

WC
2

1,000 +1
)2

(
WC

1
1,000 +1

)2

=
γ

1− γ
.

�

Solution to Exercise 5.15

(a) Replacing h with W0−W2 = 3,600−W2 and d with (W2−W1) in the equation
h = 810− 3

10d we get

W2 =
27,900

7
− 3

7
W1.

(b) No, because the slope of an isoprofit line is − p
1−p =−

1
4
3
4

=−1
3 6=−

3
7 .

(c) Yes: replacing W1 in the equation of Part (a) with 900 (=W0− `= 3,600−2,700,
the horizontal coordinate of NI) we get W2 = 3,600 (=W0, the vertical coordinate
of NI).

(d) Yes, because the absolute value of the slope of the reservation indifference curve at
NI, namely 1

3
3,600
900 = 4

3 (recall that U(m) = ln(m) and U ′(m) = 1
m) is greater than

the absolute value of the slope of the insurance budget line, namely 3
7 .

(e) Since the slope of the indifference curve at the full-insurance contract is −1
3 , which

is less – in absolute value – than the slope of the budget line (in absolute value),
the best contract is a partial-insurance contract. It is found by solving the following
equations:

W2 =
27,900

7
− 3

7
W1 and

1
3

(
W2

W1

)
=

3
7
.

The solution is: W1 = 2,325 and W2 =
20,925

7 = 2,989.29. Thus the premium is h =

3,600−2,989.29 = 610.71 and the deductible is d = 2,989.29−2,325 = 664.29.
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(f) Let F be the full-insurance contract (obtained by solving the equation
W1 =

27,900
7 − 3

7W1) and B the contract of Part (e). Then

NI = (900,3600), F = (2790,2790) and B = (2325,2989.29)

Thus

• E[U(NI)] = 1
4 ln(900)+ 3

4 ln(3,600) = 7.8421.

• E[U(F)] = ln(2,790) = 7.9338.

• E[U(B)] = 1
4 ln(2,325)+ 3

4 ln(2989.29) = 7.94.

(g) Expected utility from contract (h,d) is: 1
4 ln(3,600− h− d) + 3

4 ln(3,600− h).
Replacing h with 810− 3

10d we get the following function:

f (d) = 1
4 ln(3,600−810+0.3d−d)+ 3

4 ln(3,600−810+0.3d)

= 1
4 ln(2,790−0.7d)+ 3

4 ln(2,790+0.3d).

To maximize this function we must solve the equation f ′(d) = 0, that is

0.225
2,790+0.3d

− 0.175
2,790−0.7d

= 0

The solution is d = 664.29 with corresponding premium h = 610.71, confirming the
conclusion of Part (e). �

Solution to Exercise 5.16
Contract A is the following point in the (W1,W2) space: W A

2 = 1,600− 44 = 1,556,
W A

1 = 1,556−360 = 1,196, that is, A = (1196,1556).

(a) Replacing h with (1,600−W2) and d with (W2−W1) in the equation h = 152− 3
10d

we get

W2 =
14,480

7
− 3

7
W1.

(b) E[U(NI)] = 1
5
√

1,024+ 4
5

√
1600 = 38.4 and E[U(A)] = 1

5
√

1,196+ 4
5
√

1,556 =
38.4736. Thus point A lies above the reservation indifference curve.

(c) The slope of the indifference curve that goes through point A is, at point A, equal to

− p
1− p

(
U ′(1,196)
U ′(1,556)

)
=

1
4

(√
1,556√
1,196

)
=−0.2852.

Since 0.2852 < 3
7 = 0.4286, the indifference curve is less steep, at point A, than the

insurance budget line; thus the insurance budget line lies below the indifference
curve that goes through point A and, therefore, the best contract on the budget line is
contract A. �
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Solution to Exercise 5.17

For both Carla and Don, no insurance corresponds to the lottery

NI =
(

$14,400 $32,400
1
5

4
5

)
whose expected utility is:

for Carla: 1
5
√

14,400+ 4
5
√

32,400 = 168

for Don: 1
5

(
1− 1

1.44+1

)
+ 4

5

(
1− 1

3.24+1

)
= 0.7294.

Mutual insurance corresponds to the lottery

MI =
(

$14,400 $23,400 $32,400
1
25

8
25

16
25

)
whose expected utility is:

for Carla: 1
25
√

14,400+ 8
25
√

23,400+ 16
25
√

32,400 = 168.9506

for Don: 1
25

(
1− 1

1.44+1

)
+ 8

25

(
1− 1

2.34+1

)
+ 16

25

(
1− 1

3.24+1

)
= 0.7369.

Thus they are both better off with mutual insurance than with no insurance. �

Solution to Exercise 5.18

(a) The probabilities are as follows:

3 losses 2 losses 1 loss no losses(1
5

)3
= 1

125 3
(1

5

)2 4
5 = 12

125 3 1
25

(4
5

)2
= 48

125

(4
5

)3
= 64

125

(b) Expected utility from no insurance is

E[U(NI)] =
1
5

√
10,000+

4
5

√
40,000 = 180

while expected utility from mutual insurance is

E[U(MI)] =
1

125

√
10,000+

12
125

√
40,000− 1

360,000

+
48

125

√
40,000− 1

330,000+
64

125

√
40,000

= 183.29.

Thus mutual insurance is better than no insurance for each of them.
�
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Solution to Exercise 5.19

Expected utility from no insurance is

E[U(NI)] =
1
5

√
10,000+

4
5

√
40,000 = 180.

Expected utility form a mutual insurance (MI) agreement is

E[U(MI)] =
3

30

√
10,000+

7
30

√
40,000− 1

230,000+
20
30

√
40,000 = 180.23.

Thus mutual insurance would still be preferred by both to no insurance. �





6. Insurance and moral hazard

6.1 Moral hazard or hidden action
So far we have assumed that the probability of loss p is constant and the individual’s
decision is merely whether or not to insure and which contract to choose from a given
menu. When we say that “the probability of loss is constant” we mean that it cannot be
affected by the individual’s behavior.
In some cases this is a reasonable assumption: for example, there is nothing that a
shopkeeper can do to make it less likely that there will be a riot, or an earthquake, or a
meteorite strike.
In other cases, however, there is a causal link between the behavior of the insured person
and the probability that she will suffer a loss: for example, the probability that her bicycle
will be stolen is higher if she leaves it unattended and unlocked, and lower if she locks it to
a permanent fixture with a sturdy cable and padlock.

In cases where the probability of loss can be affected by the individual’s actions we
say that the insurance company faces a situation of moral hazard or hidden action. Below
are a few more examples of possible actions that the individual can take to reduce the
probability of loss:
◦ Install a home security alarm, to make a robbery less likely.

◦ Always lock the door(s) to one’s house, to make a robbery less likely.

◦ Clear the brush around the house, to make it less likely that a brush fire will reach
the building.

◦ Drive carefully and below the speed limit, to make it less likely that one will be
involved in a car accident.

◦ Exercise regularly and eat healthy food to reduce the probability of vascular or
cardiac disease.
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As the above examples illustrate, what an individual can do to reduce the probability
of loss can be either
• taking an action involving extra effort, or
• incurring an extra expense.

We shall refer to both of the above as making extra effort. The crucial element of both is
that they involve “disutility”, that is, they make the individual worse off, ceteris paribus.
Because of this, the insurance company realizes that the individual will prefer to avoid the
extra effort if she is protected from the consequences of not exerting it. For example, if
the individual has full insurance, then she has no incentive to incur extra expenses or exert
extra effort in order to reduce the probability of suffering a loss: if the loss occurs, she will
be fully reimbursed by the insurance company. On the other hand, the insurance company
cares very much about the behavior of its customers, because the more careless they are,
the more likely it is that the insurance company will have to cover their losses. In order to
incentivize the customer to exert extra effort, the insurance company might want to make
it more costly for the insured to suffer a loss, by requiring a substantial deductible.

If the customer’s behavior can be observed by the insurance company and verified by
a court of law, then the insurance company can specify it in the contract and make any
payments conditional on the customer’s actions. For example, the insurance company could
require the customer to install a security system in her house and make any reimbursements
due to theft conditional on proof that the security system was in fact installed. However,
in most cases it is impossible, or prohibitively expensive, for the insurer to monitor the
behavior of its customers. For example, no insurance company will find it worthwhile to
have an insurance agent follow the customer around to make sure that she always locks her
bicycle, when left unattended!

We will assume that the customer’s behavior cannot be observed by the insurance
company; however, the insurance company can try to figure out what the potential customer
would do under different insurance contract.

6.2 Two levels of unobserved effort
We will limit ourselves to the binary case, where the individual has only two choices in
terms of effort: either exert effort, denoted by E, or exert no effort, denoted by N. The
individual’s choice affects the probability of loss: it will be lower in she exerts effort, that
is, letting pE be the probability of loss in the case of effort and pN the probability of loss
in the case of no effort,

0 < pE < pN < 1. (6.1)

As in previous chapters, we denote the individual’s initial wealth by W0 and the potential
loss by ` (with 0 < `≤W0). We continue to assume that the individual has vNM prefer-
ences; however, the outcomes of the lotteries now include not only wealth levels but also
the “inconvenience” or “cost” of exerting effort. Thus we can think of the individual as
having two utility-of-money functions: one if she exerts effort, denoted by UE(m) and the
other if she exerts no effort, denoted by UN(m).1

1Equivalently, the vNM utility function has two arguments: money and level of effort.
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The fact that effort is costly (either in a psychological or in a monetary sense) is
captured by the following assumption:

UN(m)>UE(m), for every m≥ 0.

To simplify the analysis we will consider the following special case: let U(m) be a strictly
increasing and concave function then

UN(m) =U(m) (6.2)

UE(m) =U(m)− c, with c > 0. (6.3)

Note that, since pE < pN ,2

pE

1− pE
<

pN

1− pN
. (6.4)

It follows from (6.2) and (6.3) that, for any point (W1,W2) in the wealth space,

- with No-effort, the slope of the indifference curve at point (W1,W2) is

− pN

1− pN

(
U ′(W1)

U ′(W2)

)
(6.5)

- with Effort, the slope of the indifference curve at point (W1,W2) is

− pE

1− pE

(
U ′(W1)

U ′(W2)

)
. (6.6)

Thus, for any point A = (W A
1 ,W A

2 ) in the wealth space, we deduce from (6.4), (6.5) and
(6.6) that

the indifference curve (through point A) corresponding to Effort

is, at point A, less steep than,

the indifference curve (through point A) corresponding to No-effort.

2This can be seen as follows:
(1) pE

1−pE
< pN

1−pE
because the denominator is the same and pE < pN , and

(2) pN
1−pE

< pN
1−pN

because the numerator is the same and (1− pE)> (1− pN) (since pE < pN).
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Figure 6.1 shows two sets of indifference curves: one corresponding to Effort (the less
steep ones) and one corresponding to No-effort (the steeper ones).

0

Wealth in
good state

W2

W1
Wealth in
bad state

45o line

indifference curves
with Effort

indifference curves
with No-effort

NI
W0

W0− `

Figure 6.1: Indifference curves corresponding to Effort are less steep than those corre-
sponding to No-effort.

When offered an insurance contract, the individual will have four possible choices:

1. remain uninsured and choose Effort,

2. remain uninsured and choose No-effort,

3. purchase the insurance contract and choose Effort,

4. purchase the insurance contract and choose No-effort,

and she will choose the option that yields the highest expected utility.

In general, the individual’s decision problem can be framed as follows:

◦ first determine the best effort level if uninsured,

◦ then, for each offered insurance contract, determine the best effort level if that
contract is purchased,

◦ compare the expected utility from the best choice of effort under each option and
choose that option that yields the largest expected utility.
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For example, consider an individual who has an initial wealth of $50,000 and faces a
potential loss of $30,000 with the following probability:

probability of loss =

{
pE = 1

10 if she chooses Effort

pN = 1
5 if she chooses No-effort

Her vNM preferences are represented the following vNM utility-of-money function
(for m > 0):3

U(m) =


10−

(
m

10,000

)−1
if she chooses Effort

10.01−
(

m
10,000

)−1
if she chooses No-effort

Suppose that she is offered the following menu of insurance contracts:

premium deductible

Contract 1: $1,000 $5,000

Contract 2: $500 $8,000

Contract 3: $100 $12,000

Will she insure and, if so, which contract will she choose?

Step 1. Determine the best effort level in case of no insurance NI = (20000,50000):

Effort: E[UE(NI)] = 1
10

(
10−2−1)+ 9

10

(
10−5−1)= 9.77 .

No-effort: E[UN(NI)] = 1
5

(
10.01−2−1)+ 4

5

(
10.01−5−1)= 9.75.

Thus, if uninsured, the individual will choose Effort.

Step 2. Determine the best effort level for Contract 1, namely C1 = (44000,49000):

Effort: E[UE(C1)] =
1

10

[
10− (4.4)−1]+ 9

10

[
10− (4.9)−1]= 9.7936.

No-effort: E[UN(C1)] =
1
5

[
10.01− (4.4)−1]+ 4

5

[
10.01− (4.9)−1]= 9.8013 .

Thus, under Contract 1, the individual will choose No-effort.

Step 3. Determine the best effort level for Contract 2, namely C2 = (41500,49500):

Effort: E[UE(C2)] =
1

10

[
10− (4.15)−1]+ 9

10

[
10− (4.95)−1]= 9.7941.

No-effort: E[UN(C2)] =
1
5

[
10.01− (4.15)−1]+ 4

5

[
10.01− (4.95)−1]= 9.8002 .

Thus, under Contract 2, the individual will choose No-effort.

Step 4. Determine the best effort level for Contract 3, namely C3 = (37900,49900):

Effort: E[UE(C3)] =
1

10

[
10− (3.79)−1]+ 9

10

[
10− (4.99)−1]= 9.7933.

No-effort: E[UN(C3)] =
1
5

[
10.01− (3.79)−1]+ 4

5

[
10.01− (4.99)−1]= 9.7969 .

Thus, under Contract 3, the individual will choose No-effort.

3This is an instance of (6.2) and (6.3) with c = 0.01.
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Of all these options, the one that gives the highest expected utility is Contract 2 with No-
effort. Thus the individual would purchase Contract 2 and choose No-effort. The insurer’s
expected profit from Contract 2 is thus h− pN(`− d) = 500− 1

5(30,000− 8,000) =
$−3,900: a loss! Hence the insurance company would not want to offer Contract 2 (or
any of the other two contracts, since they all involve a loss). Before we address the issue
of what contract(s) would be offered by an insurer, we need to re-examine the notion of
“reservation indifference curve” in the context of moral hazard.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 6.5.1 at the end of this chapter.

6.3 The reservation utility locus

In previous chapters we defined the reservation indifference curve as the indifference curve
that goes through the no-insurance point NI. We can no longer do so in the present context,
because, for every point in the wealth space, there are now two indifference curves, one
corresponding to Effort and the other to No-effort. Since a reservation indifference curve
is supposed to contain all the contracts that yield the same expected utility as no insurance,
we first need to determine the “reservation utility” of the individual, that is, the maximum
utility that she can obtain if she does not insure. Letting E[UE(NI)] be the expected utility
under no insurance if the individual chooses Effort and E[UN(NI)] be the expected utility
under no insurance if the individual chooses No-effort, the reservation utility is:

EUNI = max{E[UE(NI)],E[UN(NI)]} . (6.7)

The interesting case is where under no insurance the individual will choose Effort; it is
interesting because insurance might provide an incentive for the individual no switch to
No-effort. Thus in this section and the next we will assume that E[UE(NI)]> E[UN(NI)]
so that, by (6.7),

EUNI = E[UE(NI)]. (6.8)

The individual will reject any contract which, with the best choice of effort, will yield a
utility which is less than E[UE(NI)], that is, E[UE(NI)] provides the reservation level of
utility. Does this mean that the indifference curve corresponding to Effort that goes through
NI can be taken to be the reservation indifference curve, that is, the set of contracts that
give an expected utility equal to E[UE(NI)]? The answer is negative, because the fact that
the individual prefers to choose Effort if uninsured does not imply that she will continue
to choose Effort when insured. For example, if fully insured then she will be better off by
choosing No-effort.
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Figure 6.2 shows the two indifference curves that go through the NI point: the less
steep one corresponds to Effort and a utility level of ū = E[UE(NI)] and the steeper one
to No-effort and a utility level of û = E[UN(NI)]. In accordance with (6.8) we assume
that ū > û, that is, that when uninsured the individual chooses Effort. Let F =

(
W F

1 ,W F
1
)

be the point at the intersection of the 45o line and the indifference curve corresponding
to Effort that goes through NI; then E[UE(F)] =UE(W F

1 ). By definition of indifference
curve, UE(W F

1 ) = E[UE(NI)] = ū; however, if offered the full-insurance contract F the
individual can achieve a higher level of utility by purchasing the contract and switching to
No-effort. In fact, by (6.2) and (6.3),

UN(W F
1 ) =UE(W F

1 )+ c = ū+ c > ū.

Let us use the expression reservation utility locus4 to denote the set of points (contracts)
in the wealth plane that give an expected utility equal to ū, when the individual makes the
best choice of effort; then, while NI belongs to it, point F does not. Thus the reservation
utility locus does not coincide with the indifference curve corresponding to Effort that goes
through NI.
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Wealth in
good state

W2

W1
Wealth in
bad state

45o line

indifference curve
with Effort; utility: ū

utility
ū

indifference curve
with No-effort; utility: û

utility
û

NI
W0

W0− `

F
W F

2 =W F
1

W F
1

assume: ū > û

Figure 6.2: The two indifference curves through NI.

4Instead of ‘reservation indifference curve’, since it does not coincide with an indifference curve.
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How do we determine the reservation utility locus?

Continue to denote by ū the individual’s expected utility when uninsured and choosing
Effort. We need to consider the expected utility from choosing No-effort. By hypothesis,

E[UN(NI)]< ū

and, as shown above,

UN(F)> ū.

Thus, by continuity, there must be a point, call it A =
(
W A

1 ,W A
2
)
, on the indifference curve

corresponding to Effort that goes through NI, such that

E[UN(A)] = ū

as shown in Figure 6.3.
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û

utility: ū

A

NI
W0

W0− `

F assume: ū > û

Figure 6.3: Point A is such that E[UN(A)] = E[UE(A)] = ū.
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Thus, since the reservation utility level (that is, the maximum utility that the individual
can achieve if not insured) is ū (= E[UE(NI)]), the reservation utility locus is a kinked
curve consisting of the initial segment from NI to point A of the indifference curve
through NI corresponding to Effort and the segment from point A to the 45o line of
the indifference curve through A corresponding to No-effort, where point A is such that
E[UN(A)] = E[UE(A)] = E[UE(NI)].

The reservation utility locus is shown as a thick continuous line in Figure 6.4.
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Figure 6.4: The reservation utility locus is the union of the thick continuous lines.

Let us illustrate all of the above in an example.

Consider an individual whose vNM utility-of-money function is{
UN(m) =

√
m if she chooses No-effort

UE(m) =
√

m− c if she chooses Effort
with c > 0.

The individual’s initial wealth is W0 and she faces a potential loss of `. The probability
of her incurring a loss is pE if she chooses Effort and pN if she chooses No-effort, with
0 < pE < pN < 1.
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� Let us first determine for what values of c she will choose Effort when not insured.

Her expected utility if she has no insurance and chooses No-effort is

E[UN(NI)] = pN
√

W0− `+(1− pN)
√

W0

and her expected utility if she has no insurance and chooses Effort is

E[UE(NI)] = pE

(√
W0− `− c

)
+(1− pE)

(√
W0− c

)
= pE

√
W0− `+(1− pE)

√
W0− c.

Then it must be that

c <
(

pE
√

W0− `+(1− pE)
√

W0

)
−
(

pN
√

W0− `+(1− pN)
√

W0

)
,

that is,

c < (pN− pE)
(√

W0−
√

W0− `
)

(6.9)

For the rest of this section let us fix the following values of the parameters, which
satisfy (6.9):5

W0 = 2,500 `= 1,600 pE =
1

20
pN =

1
10

c =
15
16

� What is the individual’s reservation utility level?

Since (6.9) is satisfied, the individual – if uninsured – will choose Effort and thus her
reservation utility is:

E[UE(NI)] =
1

20

√
900+

19
20

√
2,500− 15

16
=

769
16

= 48.0625.

� Let us find the contract, call it A, that would make the individual indifferent between

1. not insuring and choosing Effort,
2. purchasing contract A and choosing Effort,
3. purchasing contract A and choosing No-effort.

5In fact, with these values, the right-hand side of (6.9) is equal to 1.
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Let A=
(
W A

1 ,W A
2
)
. Then it must be that E[UE(NI)]=E[UE(A)] and E[UE(A)]=E[UN(A)],

that is,

48.0625 =
1
20

√
W A

1 +
19
20

√
W A

2 −
15
16

and (6.10)

1
20

√
W A

1 +
19
20

√
W A

2 −
15
16

=
1

10

√
W A

1 +
9

10

√
W A

2 . (6.11)

The solution is W A
1 = 972.66 and W A

2 = 2,493.75; thus A is the contract with premium
2,500−2,493.75 = $6.25 and deductible 2,493.75−972.66 = $1,521.09.

� Suppose that the individual is offered contract A and she breaks her indifference by
purchasing the contract. What is the insurer’s expected profit from this contract?

With contract A the individual is indifferent between Effort and No-effort. Thus expected
profit will be
◦ h− pE(`− d) = 6.25− 1

20(1,600− 1,521.09) = $2.31 if the individual chooses
Effort.
◦ h− pN(`−d) = 6.25− 1

10(1,600−1,521.09) = $−1.641 if the individual chooses
No-effort.

� Let us find the full-insurance contract, call it F , that makes the individual indifferent
between purchasing the contract and not insuring.

We saw above that, without insurance, the individual can achieve a level of utility of
48.0625 (by opting for Effort). On the other hand, with any full-insurance contract, the
individual will maximize her utility by choosing No-effort. Thus we are looking for a level
of wealth W such that

√
W = 48.0625. The solution is W = 2,310. Thus F = (2310,2310),

that is, a contract with premium 2,500−2,310 = $190 and zero deductible.

� Suppose that the individual is offered contract F and she breaks her indifference by
purchasing the contract. What is the insurer’s expected profit from this contract?

Expected profit will be h− pN`= 190− 1
101600 = $30.

� What is the reservation utility locus for this individual?

It is the union of the following two curves: (1) the portion of the indifference curve
through NI corresponding to Effort, from NI to point A , followed by (2) the portion of the
indifference curve through A corresponding to No-effort from point A to point F .

In the above example, an insurer would be better off offering contract F than contract
A. We now turn to the issue of what contract(s) would be offered by a monopolist.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 6.5.2 at the end of this chapter.
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6.4 The profit-maximizing contract for a monopolist
In Chapter 5 (Section 5.2.1) we showed that – in the case where the probability of loss p
is fixed and thus there is no issue of moral hazard – a monopolist would offer only one
contract, namely the full-insurance contract with the maximum premium that the individual
is willing to pay for full insurance, namely hmax = p`+RNI , where p` is expected loss
and RNI is the risk premium associated with the no-insurance lottery. Such contract is
determine by the intersection of the reservation indifference curve and the 45o line.

In the case of moral hazard, the situation is somewhat more complicated. First of
all, there are now two sets of isoprofit lines: one set corresponds to the case where the
individual chooses Effort (so that the probability of loss is pE and the slope of each isoprofit
line is − pE

1−pE
) and the other set corresponds to the case where the individual chooses

No-effort (so that the probability of loss is pN and the slope of each isoprofit line is− pN
1−pN

).
Since pE < pN , pE

1−pE
< pN

1−pN
and thus the isoprofit lines in the former set are less steep

than the ones in the latter set. In order to use the correct isoprofit lines, the monopolist
must first figure out what choice of effort the individual will make.

As in the case considered in Chapter 5, the monopolist will want to offer a contract
that extracts the maximum surplus from the individual, that is, the contract that leaves the
individual just indifferent between insuring and not insuring.

As in the previous section, we will continue to assume that, if uninsured, the individual
will choose Effort, that is,

E[UE(NI)]> E[UN(NI)].

Then the monopolist’s problem is to find that contract on the reservation utility locus that
maximizes its profits. Figure 6.5 (which reproduces Figure 6.4) shows the reservation
utility locus (it is the union of the two thick, continuous curves).
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Figure 6.5: The reservation utility locus is the union of the two thick, continuous curves.
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Let us begin by considering the first segment of the reservation utility locus, namely
the portion of the indifference curve through NI corresponding to Effort, from point NI
to point A (where, as before, A is the contract that yields the reservation utility no matter
whether the individual chooses Effort or No-effort). It is shown in Figure 6.6.
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Figure 6.6: Point A is such that E[UN(A)] = E[UE(A)].

If the insurance company wants to offer a contract that
1. leaves the customer with no surplus (that is, her expected utility with the offered

contract is her reservation utility, call it ū) and
2. induces the customer to choose Effort,

then the insurance company has to offer a contract on this portion of the reservation
utility locus. Note that if the individual purchases a contract that lies on this portion of
the reservation utility locus then she will indeed choose Effort. In fact, since contract
A is such that the individual is indifferent between choosing Effort and No-effort, that
is, E[UE(A)] = E[UN(A)] = ū, any point B to the left of point A on this portion of the
reservation utility locus is such that E[UN(B)]< ū (since it lies on a lower N-indifference
curve than the N-indifference curve that goes through A). On the other hand, if offered
contract A the individual is indifferent between choosing Effort and No-effort; we will
assume that in this case she will choose Effort.6

Since, for any of the contracts being considered, the individual will choose Effort,
the relevant probability of loss is pE and thus the relevant isoprofit lines are those with
slope − pE

1−pE
. Figure 6.6 shows one such isoprofit line, namely the one that goes through

point B. Recall from Chapter 5 (Section 5.1.4) that at any point above the 450 line the
Effort-indifference curve through that point is steeper than the pE-isoprofit-line. Thus

6 Without this assumption, instead of contract A the insurance company would offer a contract slightly to
the left of point A (on the portion of the curve under consideration) in order to provide the customer with an
incentive to choose Effort (and thus reduce the probability of loss). To simplify the exposition we assume
that, with contract A, the individual would choose Effort.



170 Chapter 6. Insurance and moral hazard

contract B cannot be profit-maximizing for the insurer, since there are points on this portion
of the reservation utility locus that lie below the isoprofit line through B and thus yield
higher profits than B.
Thus we conclude that of all the points on the portion of the reservation utility locus
considered so far, point A represents the profit-maximizing contract.

Let us now turn to the other portion of the reservation utility locus, namely the segment
from point A to the 45o line of the indifference curve through A corresponding to No-effort,
shown in Figure 6.7, where the point of intersection between the indifference curve and
the 45o line is denoted by F .
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Figure 6.7: Point A is such that E[UN(A)] = E[UE(A)].

Note that if the individual purchases a contract that lies on this portion of the reservation
utility locus then she will choose No-effort. In fact, since contract A lies on the indifference
curve corresponding to Effort and utility level ū = E[UE(NI)], any point to the right of A
on this portion of the reservation utility locus will be lie on an Effort-indifference curve
corresponding to a utility level less than ū (while it lies on the No-effort-indifference curve
corresponding to ū).7

Since, for any of the contracts being considered, the individual will choose No-effort,
the relevant probability of loss is pN and thus the relevant isoprofit lines are those with
slope − pN

1−pN
. Figure 6.7 shows one such isoprofit line, namely the one that goes through

point C. Recall from Chapter 5 (Section 5.1.4) that at any point above the 45o line the
No-effort-indifference curve through that point is steeper than the pN-isoprofit-line. Thus
contract C cannot be profit-maximizing for the insurer, since there are points on this portion
of the reservation utility locus that lie below the isoprofit line through C and thus yield

7As for point A we continue to assume that the individual would choose Effort.
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higher profits than C.
Thus we conclude that of all the points on the portion of the reservation utility locus under
consideration, point F represents the profit-maximizing contract.

Let A =
(
W A

1 ,W A
2
)

and F =
(
W F ,W F) so that the corresponding premia and de-

ductibles are

premium deductible
Contract A : hA =W0−W A

2 dA =W A
2 −W A

1

Contract F : hF =W0−W F dA = 0

Furthermore, let πA be the expected profit from contract A and πF be the expected profit
from contract F , that is,

πA = hA− pE(`−dA)

πF = hF − pN`.

Then we can conclude from the above analysis that the monopolist will offer

• contract A if πA > πF ,

• contract F if πF > πA

and be indifferent between the two contracts if πA = πF .

In the numerical example considered at the end of the previous section, the monopolist
would opt for the full-insurance contract F , since πF = 30 and πA = 2.31 (as shown on
page 167).

Now we give an example where the monopolist prefers to offer the partial-insurance
contract A. Let us keep the same data as in the example considered at the end of the
previous section, but change the value of pE from 1

20 to 1
40 . Thus we have that the vNM

utility-of-money function is{
UN(m) =

√
m if she chooses No-effort

UE(m) =
√

m− 15
16 if she chooses Effort

W0 = 2,500 `= 1,600 pE =
1

40
pN =

1
10

Note that, if uninsured, the individual would choose Effort, since

E[UE(NI)] =
1

40

√
900+

39
40

√
2,500− 15

16
= 48.5625

and
E[UN(NI)] =

1
10

√
900+

9
10

√
2,500 = 48.
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Contract A is given by the solution to


48.5625 = 1

40

√
W A

1 + 39
40

√
W A

2 −
15
16

48.5625 = 1
10

√
W A

1 + 9
10

√
W A

2

The solution is W A
1 = 1,392.22 and W A

2 = 2,481.29, that is, A= (1392.22, 2481.29). Thus
hA = 2,500−2,481.29 = 18.71 and dA = 2,481.29−1,392.22 = 1,089.07.

Contract F is given by the solution to
√

W F = 48.5625, which is W F = 2,358.32 so that
F = (2358.32, 2358.32) and hF = 2,500−2,358.32 = 141.68. Hence8

πA = 18.71− 1
40

(1,600−1,089.07) = $5.94

πF = 141.68− 1
10

(1,600) = $−18.32

so that the monopolist would offer contract A, thereby inducing the individual to reduce
the probability of loss by choosing Effort.

What would the monopolist’s profit be if it offered the full-insurance contract G which
is given by the intersection of the 45o line and the indifference curve corresponding to
Effort that goes through the NI point? In this example contract G is obtained by solv-

ing
√

W F − 15
16 = 48.5625, that is, G = (2450.25,2450.25) with corresponding premium

hG = 2,500−2450.25 = 49.75. Thus one might be tempted to answer that the monopo-
list’s profit would be 49.75− 1

40(1,600) = $9.75, but this answer is wrong! The individual
would be very happy to purchase contract G because her best choice would then be

No-effort, with an expected utility of
√

2,450.25 = 49.5 (instead of 48.5625) and thus, as

a matter of fact, the monopolist’s profits would turn out to be πG = 49.75− 1
10(1,600) =

$−110.25!

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 6.5.3 at the end of this chapter.

8Recall the assumption that, with contract A, the individual would choose Effort: see Footnote 6 on page
169.
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6.5 Exercises

The solutions to the following exercises are given in Section 6.6 at the end of this chapter.

6.5.1 Exercises for Section 6.2: Two levels of unobserved effort

Exercise 6.1 Emily has an initial wealth of $80,000 and faces a potential loss of
$36,000. The probability of loss depends on the amount of effort she puts into trying to
avoid the loss. If she puts a high level of effort, then the probability is 5%, while if she
exerts low effort the probability is 15%. Her vNM utility-of-money function is

U(m) =


√

m if low effort
√

m− 1 if high effort

(a) If Emily remains uninsured, what level of effort will she choose?

(b) If Emily is offered a full insurance contract with premium $2,250 and she accepts
it, what level of effort will she choose?

(c) If Emily is offered a full insurance contract with premium $2,250 will she accept
it?

(d) What is the insurance company’s expected profit from a full insurance contract
with premium $2,250?

�

Exercise 6.2 Susan has an initial wealth of $10,000 and faces a potential loss of $1,900.
The probability of loss depends on the amount of effort she puts into trying to avoid the
loss. If she puts a high level of effort, then the probability is 1

10 , while if she exerts low
effort the probability is 4

10 . Her vNM utility-of-money function is

U(m) =


√

m if low effort
√

m− 2 if high effort

(a) If Susan remains uninsured, what level of effort will she choose?

(b) If Susan is offered a partial insurance contract with premium $800 and deductible
$200 and she accepts it, what level of effort will she choose?

(c) If Susan is offered the contract of Part (b) will she accept it?
�
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Exercise 6.3 Bob owns a house near Lake Tahoe. The house is worth $949,000. He also
has $1,000 in his bank account, so that his entire wealth is $950,000. The probability
that there will be a forest fire next year is 1

10 . If a forest fire occurs then the house will
incur damages equal to $400,000. However, by spending $x on protective measures
Bob can reduce the probability that the fire will reach the house from 1

10 to 1
10 −

x
15,000 .

Thus the more he spends, the lower the probability. The most he can spend is $1,000.
Bob’s vNM utility of money function is U(m) = 10 ln(m).

(a) If Bob is not insured, which of the following four options will he choose (assuming
that these are the only options)?
(1) x = 0,
(2) x = $400,
(3) x = $750,
(4) x = $1,000.

(b) If Bob is offered a full-insurance contract with premium h, what value of x will
he choose?

(c) Suppose that Bob is offered a full insurance contract at premium h = $40,000.
Will he purchase it?

�

Exercise 6.4 In this exercise we consider the case where the individual’s effort has an
effect not on the probability of loss but on the size of the loss.

Mike’s initial wealth is $6,400 and he faces a potential loss with probability 1
4 . The

size of the loss depends on his choice of effort: it he chooses Effort then the loss is
`E = $471, while if he chooses No-effort then the loss is `N = $1,216. Mike’s vNM
utility-of-money function isUN(m) =

√
m if he chooses No-effort

UE(m) =
√

m−1 if he chooses Effort

(a) If Mike is uninsured, will he choose Effort or No-effort?

(b) If Mike purchases a full-insurance contract with premium h, will he choose Effort
or No-effort?

(c) Suppose that Mike is offered an insurance contract with premium h = $80 and
deductible d = $471. Will he purchase it?

�
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6.5.2 Exercises for Section 6.3: The reservation utility locus

Exercise 6.5 Consider again the information given in Exercise 6.2: Susan has an initial
wealth of $10,000 and faces a potential loss of $1,900; the probability of loss depends
on the amount of effort she puts into trying to avoid the loss; if she puts a high level of
effort, then the probability is 1

10 , while if she exerts low effort the probability is 4
10 ; her

vNM utility-of-money function is

U(m) =

{√
m if low effort
√

m− 2 if high effort

(a) What is Susan’s reservation level of utility?
(b) Write two equations whose solution gives that point, call it A, on the indifference

curve through NI that corresponds to high effort such that Susan’s expected utility
at A if she chooses low effort is equal to her reservation level of utility.

(c) Find a full-insurance contract, call it F , that yields Susan the same expected utility,
when she chooses low effort, as contract A of Part (b). Calculate the premium of
contract F

(d) Describe in words how you would draw the reservation utility locus for Susan.
�

Exercise 6.6 In this exercise we consider a slightly different type of vNM utility-of-
money function, where instead of UE(m) =UN(m)− c we have that UE(m) = αUN(m)
with 0 < α < 1.
Tom has an initial wealth of $4,900 and faces a potential loss of $1,300; the probability
of loss depends on the amount of effort he puts into trying to avoid the loss; if he puts a
high level of effort, then the probability is 1

8 , while if he exerts low effort the probability
is 3

8 ; his vNM utility-of-money function is

U(m) =

{√
m if low effort

α
√

m if high effort
with 0 < α < 1.

(a) For what values of α would Tom choose high effort if uninsured?
(b) Let α = 0.9. What is Tom’s reservation level of utility?
(c) Let α = 0.98. What is Tom’s reservation level of utility?
(d) Assume that α = 0.98. Write two equations whose solution gives that insurance

contract, call it A, such that if Tom purchases this contract he gets his reservation
level of utility, no matter whether he chooses low effort or high effort.

(e) Continue to assume that α = 0.98. Find a full-insurance contract, call if F , such
that Tom is indifferent between not insuring and purchasing contract F .

(f) Continue to assume that α = 0.98. Describe in words how you would draw the
reservation utility locus for Tom.

�
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6.5.3 Exercises for Section 6.4: The profit-maximizing contract for a monopolist

Exercise 6.7 Carol has an initial wealth of $10,000 and faces a potential loss of $4,000;
the probability of loss depends on the amount of effort she puts into trying to avoid the
loss; if she puts a high level of effort, then the probability is 1

10 , while if she exerts low
effort the probability is 1

2 ; her vNM utility-of-money function is

U(m) =

{
10ln( m

1,000) if low effort
10 ln( m

1,000)− c if high effort
with c > 0.

(a) For what values of c would Carol choose high effort if uninsured?

(b) Assume that c = 1.8. What insurance contract would a monopolist offer to Carol?

(c) Assume that c = 1.5. What insurance contract would a monopolist offer to Carol?
�

6.6 Solutions to Exercises

Solution to Exercise 6.1

(a) If Emily chooses low effort, her expected utility is

0.15
√

80,000−36,000+0.85
√

80,000 = 271.881

and if she chooses high effort, her expected utility is

0.05
(√

80,000−36,000−1
)
+0.95

(√
80,000−1

)
= 278.189.

Thus she will choose high effort.

(b) Emily will choose low effort, because her utility will be
√

80,000−2,250 while
with high effort it would be less, namely

√
80,000−2,250 −1.

(c) She will accept the contract, because her utility if she accepts it is
√

80,000−2,250=
278.837, while her best alternative would be to remain uninsured and choose high
effort with an expected utility of 278.189.

(d) Since Emily will indeed buy insurance (and exert low effort), expected profits will
be 2,250−0.15(36,000) = $−3,150, that is, a loss. Thus it would not be a good
idea for the insurance company to offer this contract. �
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Solution to Exercise 6.2

(a) If Susan is uninsured and chooses high effort, her expected utility is

0.1
(√

10,000−1,900−2
)
+0.9

(√
10,000−2

)
= 97

while if she chooses low effort, her expected utility is

0.4
√

10,000−1,900+0.6
√

10,000 = 96.

Thus she will choose high effort.

(b) The contract under consideration (premium of $800, deductible of $200) corresponds
to the following point in the wealth space: C = (9000,9200). If Susan purchases
this contract and chooses high effort, then her expected utility is

0.1
(√

9,000−2
)
+0.9

(√
9,200−2

)
= 93.81

while if she chooses low effort, her expected utility is

0.4
√

9,000+0.6
√

9,200 = 95.5.

Thus, under this contract, she would choose low effort.

(c) She will not accept the contract, because her highest utility if she accepts it is 95.5,
while her best alternative would be to remain uninsured and choose high effort with
an expected utility of 97. �

Solution to Exercise 6.3

(a) If Bob chooses to spend $x on preventive measures his expected utility – when not
insured – is

NI(x) =
(

1
10
− x

15,000

)
10 ln(950,000−400,000− x)

+

[
1−
(

1
10
− x

15,000

)]
10 ln(950,000− x).

Since NI(0) = 137.096, NI(400) = 137.237, NI(750) = 137.361 and NI(1,000) =
137.449, of the four options he will choose x = $1,000.

(b) If he is fully insured at premium h then his utility, if he does not spend any money
on preventive measures, is 10ln(950,000−h), while if he spends $x (with x > 0)
then his utility is less, namely 10ln(950,000−h− x). Thus he will choose x = 0.

(c) As determined in Part (b), if he buys the full insurance contract with premium
$40,000 then he will choose x = 0, so that his utility will be 10ln(950,000−
40,000) = 10ln(910,000) = 137.21. This is less than his expected utility if he
remains uninsured and spends $1,000 on preventive measures, which is 137.449 as
calculated in Part (a). Thus he will not accept the contract. �
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Solution to Exercise 6.4

(a) If Mike is uninsured and chooses No-effort then his expected utility is

E[UN(NI)] =
1
4

√
6,400−1,216+

3
4

√
6,400 = 78

while if he chooses Effort his expected utility is

E[UE(NI)] =
1
4

√
6,400−471+

3
4

√
6,400−1 = 78.25.

Thus he will choose Effort, if not insured.

(b) With a full-insurance contract with premium h his utility if he chooses Effort is√
6,400−h−1 while his utility if he chooses No-effort is higher, namely

√
6,400−h.

Thus he would choose No-effort (he does not care about the size of the loss, since he
gets fully reimbursed from the insurance company if the loss occurs).

(c) When the deductible is $471 (= `E , loss with Effort) it would not make sense for
Mike to purchase the contract and choose Effort, because he would be better off by
not insuring and choosing Effort (his wealth would be larger by an amount equal
to the premium). Thus he would compare expected utility from no insurance with
Effort (which was calculated to be 78.25 in Part (a)) with expected utility with the
contract and No-effort which is (recall that the premium is $80)

1
4

√
6,400−80−471+

3
4

√
6,400−80 = 78.74.

Thus Mike would purchase the contract and choose No-effort. �

Solution to Exercise 6.5

(a) We saw in Part (a) of Exercise 6.2 that if Susan is uninsured and chooses low effort,
her expected utility is 96 and if she chooses high effort her expected utility is 97.
Thus her reservation level of utility is 97: she would not accept a contract that did
not give her an expected utility of at least 97.

(b) Let A =
(
W A

1 ,W A
2
)
. The first equation says that A should lie on the indifference

curve through NI corresponding to high effort. Since, as computed in Part (a) of
Exercise 6.2, E[UE(NI)] = 97, the first equation is

0.1
(√

W A
1 −2

)
+0.9

(√
W A

2 −2
)
= 97.

The second equation says that contract A gives the same expected utility whether
Susan chooses high effort or low effort:

0.4
√

W A
1 +0.6

√
W A

2 = 0.1
(√

W A
1 −2

)
+0.9

(√
W A

2 −2
)
.

The solution of these two equations is: W A
1 = 8,649 and W A

2 = 9,933.44. Thus A is
the contract with premium 10,000 − 9,933.44 = $66.56 and deductible
9,933.44−8,649 = $1,284.44.
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(c) We are looking for a level of wealth W such that

√
W = 0.4

√
W A

1 +0.9
√

W A
2 (= 97).

The solution is W = 9,409. Thus F = (9409,9409), that is, a contract with premium
10,000−9,409 = $591 and zero deductible.

(d) The reservation utility locus for Susan is the union of the following two curves:
(1) the portion of the indifference curve through NI corresponding to high effort
from NI to point A, followed by (2) the portion of the indifference curve through A
corresponding to low effort from point A to point F . �

Solution to Exercise 6.6

(a) When uninsured, Tom’s expected utility is:

if low effort:
3
8

√
3,600+

5
8

√
4900 =

265
4

= 66.25

if high effort:
1
8

α
√

3,600+
7
8

α
√

4900 =
275

4
α = 68.75α.

Thus, when uninsured, Tom will choose high effort if 68.75α > 66.25, that is, if
α > 53

55 = 0.9636.

(b) The assumption is that α = 0.9. Since in this case α < 0.9636, Tom – when
uninsured – will choose low effort. Thus his reservation level of utility is 66.25, as
computed in Part (a).

(c) The assumption is that α = 0.98. Since in this case α > 0.9636, Tom – when
uninsured – will choose high effort. Thus his reservation level of utility is 68.75(0.98)
= 67.375, as computed in Part (a).

(d) Let the contract be A =
(
W A

1 ,W A
2
)
. The equations are:

1
8
(0.98)

√
W A

1 +
7
8
(0.98)

√
W A

2 =
3
8

√
W A

1 +
5
8

√
W A

2

1
8
(0.98)

√
W A

1 +
7
8
(0.98)

√
W A

2 = 67.375.

The solution is W A
1 = 4,088 and W A

2 = 4,821.57.

(e) The assumption is that α = 0.98. Contract F is given by the solution to:√
W = 67.375 which is W = 4,539.39. Thus F = (4539.39,4539.39).

(f) The reservation utility locus for Tom is the union of the following two curves: (1) the
portion, from point NI to point A, of the indifference curve through NI corresponding
to high effort followed by (2) the portion, from point A to point F , of the indifference
curve through A corresponding to low effort. �
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Solution to Exercise 6.7

(a) If Carol is uninsured and exerts low effort, her expected utility is:

1
2

10ln(6)+
1
2

10ln(10) = 20.4717

while with high effort her expected utility is

1
10

(10ln(6)− c)+
9

10
(10ln(10)− c) = 22.515− c.

Thus she will choose high effort if 20.4717 < 22.515− c, that is, if c < 2.0433.

(b) The assumption is that c = 1.8, so that – if uninsured – Carol would choose high
effort and her expected utility would be 22.515− 1.8 = 20.715. The monopolist
would only consider two options:
• the partial-insurance contract A given by the intersection of the low-effort

indifference curve corresponding to a utility of 20.715 and the high-effort
indifference curve corresponding to a utility of 20.715, and

• the full-insurance contract F that makes Carol indifferent between (1) purchas-
ing F and exerting low effort and (2) not insuring and exerting high effort.

Contract A is given by the solution to the following two equations:

1
2

10ln
(

W1

1,000

)
+

1
2

10ln
(

W2

1,000

)
=

1
10

ln
(

W1

1,000

)
+

9
10

ln
(

W2

1,000

)
−1.8

1
2

10ln
(

W1

1,000

)
+

1
2

10ln
(

W2

1,000

)
= 20.715

which is W1 = 6,337.6 and W2 = 9,939.33, so that A= (6337.6,9939.33) with corre-
sponding premium hA = 10,000 − 9,939.33 = $60.67 and deductible
dA = 9.939.33−6,337.6 = 3,601.73.

Contract F is given by the solution to 10ln
(

W
1,000

)
= 20.715, which is

W = 7,936.72; thus F = (7936.72,7936.72) with corresponding premium
hF = 10,000−7,936.72 = $2,063.28

Assuming that with contract A Carol would choose high effort, the expected profit
with contract A is hA− 1

10(`−dA) = 60.66− 1
10(4,000−3,601.73) = $20.84. On

the other hand, expected profit from Contract F is hF− 1
2`= 2,063.26− 1

2(4,000) =
63.28. Thus the monopolist would offer the full-insurance contract F .

(c) The assumption is that c = 1.5, so that – if uninsured – Carol would choose high
effort and her expected utility would be 22.515− 1.5 = 21.015. The monopolist
would only consider two options:
• the partial-insurance contract A given by the intersection of the low-effort

indifference curve corresponding to a utility of 21.015 and the high-effort
indifference curve corresponding to a utility of 21.015, and
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• the full-insurance contract F that makes Carol indifferent between (1) purchas-
ing F and exerting low effort and (2) not insuring and exerting high effort.

Contract A is given by the solution to the following two equations:

1
2

10ln
(

W1

1,000

)
+

1
2

10ln
(

W2

1,000

)
=

1
10

ln
(

W1

1,000

)
+

9
10

ln
(

W2

1,000

)
−1.5

1
2

10ln
(

W1

1,000

)
+

1
2

10ln
(

W2

1,000

)
= 21.015

which is W1 = 6,780.16 and W2 = 9,865.07, so that A = (6780.16,9,865.07) with
corresponding premium hA = 10,000 − 9,865.07 = $134.93 and deductible
dA = 9,865.07−6,780.16 = 3,084.91.

Contract F is given by the solution to 10ln
(

W
1,000

)
= 21.015, which is

W = 8,178.43; thus F = (8178.43,8178.43) with corresponding premium
hF = 10,000−8,178.43 = $1,821.57

Assuming that with contract A Carol would choose high effort, the expected profit
with contract A is hA− 1

10(`−dA) = 134.93− 1
10(4,000−3,084.91) = $43.42. On

the other hand, expected profit from Contract F is hF− 1
2`= 1,821.57− 1

2(4,000) =
$−178.43, a loss. Thus the monopolist would offer the partial-insurance contract A.

�





7. Insurance and adverse selection

7.1 Adverse selection or hidden type

The expression ‘adverse selection’, or ‘hidden type’, refers to any situation in which one
party to a contract (e.g. a buyer) possesses information relevant to the contract that is
not available to the opposing party (e.g. a seller). Thus it is a situation of asymmetric
information.

For example, in the context of health insurance, the insurance company (the seller
of insurance) is typically aware of the fact that there are individuals who – because of
their family history – are at a higher risk of developing a condition that requires extensive
medical services, while other individuals represent a lower risk. If the insurance company
offers a contract that would, on average, cover its expected costs if everybody (high-risk
and low-risk individuals) were to purchase that contract, it might discover that its costs are
much higher than expected, because only the high-risk individuals ended up purchasing
the contract.1

As in Chapter 6, we will consider two different probabilities of loss: one higher than
the other. In the context studied in Chapter 6, we had only one (type of) individual and the
probability of loss was determined by the individual’s behavior. On the other hand, in this
chapter we will assume that, for each individual, the probability of loss is constant (thus
not affected by the individual’s behavior) and the different probabilities are associated with
different types of individuals: the high-risk individuals have a higher probability of loss
than the low-risk individuals. Thus there is no moral hazard issue here: the uncertainty on
the part of the insurance company has to do with its inability to tell high-risk from low-risk
individuals apart (while being fully aware that it faces two different types of potential
customers).

1This was the rationale behind the original provision of the Affordable Care Act that established a
mandate for individuals to purchase health insurance.
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7.2 Two types of customers
Suppose that there are two types of individuals. They are all identical in terms of initial
wealth, denoted by W0, and in terms of the potential loss that they face, denoted by ` (with
0 < `≤W0). They also have the same vNM utility-of-money function U(m). What they
differ in is the probability of loss: it is pH for type-H (= high-risk) individuals and pL for
type-L (= low-risk) individuals, with

0 < pL < pH < 1.

It follows that type-H individuals have steeper indifference curves than type-L individuals,
as shown in Figure 7.1. In fact, fix an arbitrary point C = (WC

1 ,WC
2 ) in the wealth plane.

The slope of the indifference curve going through this point is

− pH

1− pH

U ′(WC
1 )

U ′(WC
2 )

for type-H individuals

and

− pL

1− pL

U ′(WC
1 )

U ′(WC
2 )

for type-L individuals.

Since pL < pH ,
pL

1− pL
<

pH

1− pH
.

0

Wealth in
good state

W2

W1
Wealth in
bad state

indifference curve
for L-type

indifference curve
for H-type

WC
2

WC
1

C

Figure 7.1: The indifference curve through point C for type-H is steeper than the indiffer-
ence curve through point C for type-L.
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Since the H-type indifference curve is steeper than the L-type indifference curve at any
point, this must be true also at the no-insurance point, that is, the reservation indifference
curve for the H-type is steeper than the reservation indifference curve for the L-type, as
shown in Figure 7.2.2

0

Wealth in
good state

W2

W1
Wealth in
bad state

45o line

reservation indifference
curve for L-type

reservation indifference
curve for H-type

NI
W0

W0− `

FLW0−hL
max

FHW0−hH
max

Figure 7.2: The reservation indifference curve of an H-type is steeper than the reservation
indifference curve of an L-type.

It follows that the maximum premium that the L-type individuals are willing to pay for
full insurance, denoted by hL

max, is smaller than the maximum premium that the H-type
individuals are willing to pay for full insurance, denoted by hH

max: hL
max < hH

max, as shown
in Figure 7.2. Letting FL be the full-insurance contract that the L-type individuals consider
to be just as good as no insurance and FH the full-insurance contract that the H-type individ-
uals consider to be just as good as no insurance, we have that FL =

(
W0−hL

max,W0−hL
max
)

and FH =
(
W0−hH

max,W0−hH
max
)
, with W0−hL

max >W0−hH
max.

2Recall that the reservation indifference curve is the indifference curve that goes through the no-insurance
point NI.
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Let NH > 0 be the number of H-type individuals in the population and NL > 0 be the
number of L-type individuals and define

qH =
NH

NH +NL
so that 1−qH =

NL

NH +NL
. (7.1)

Then 0 < qH < 1 and 0 < 1−qH < 1.

7.2.1 The contracts offered by a monopolist who can tell individuals apart
As a benchmark, we shall first consider the case of a monopolist who is able to tell whether
an individual who applies for insurance is an H-type or and L-type. For example, a health
insurance company might be legally allowed to require applicants to submit to a DNA test
that reveals whether a defective gene is present, in which case the individual is more likely
to develop a particular disease requiring extensive medical care.

In the perfect-information case, from the point of view of the monopolist there are
effectively two separate insurance markets: one for the H-types and one for the L-types.
Then we can apply the analysis of Chapter 5 (Section 5.2.1) and conclude that the monop-
olist would offer the full-insurance contract FL to type-L individuals and the full-insurance
contract FH to type-H individuals so that its expected profits would be3

total profits:
(
hH

max− pH`
)

NH +
(
hL

max− pL`
)

NL (7.2)

profit per customer:
(
hH

max− pH`
)

qH +
(
hL

max− pL`
)
(1−qH) . (7.3)

Which type of individual is “better” for the insurance company, that is, which type
yields higher profits? The H-type is better in that she is willing to pay a higher premium
for full insurance, but on the other hand she will submit a claim with higher probability,
that is, the H-type yields higher revenue but also higher cost. Thus, in principle, either type
could be more profitable. The answer depends on the specific values of the parameters.

For example, suppose that initial wealth is W0 = 3,600, potential loss is `= 2,000 and
the utility-of-money function is U(m) =

√
m.

• Let pL = 1
10 and pH = 4

10 . To find hL
max solve the equation

1
10

√
1,600+

9
10

√
3,600 =

√
W .

The solution is W = 3,364 so that hL
max = 3,600− 3,364 = $236 and thus the

expected profit from an L-type is

236− 1
10

(2,000) = $36.

To find hH
max solve the equation

4
10

√
1,600+

6
10

√
3,600 =

√
W .

3To obtain profit per customer from total profits, divide by (NH +NL) and use (7.1).
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The solution is W = 2,704 so that hH
max = 3,600− 2,704 = $896 and thus the

expected profit from an H-type is

896− 4
10

(2,000) = $96.

Thus in this case insuring an H-type is more profitable than insuring an L-type.

• Let pL = 3
10 and pH = 8

10 . To find hL
max solve the equation

3
10

√
1,600+

7
10

√
3,600 =

√
W .

The solution is W = 2,916 so that hL
max = 3,600− 2,916 = $684 and thus the

expected profit from an L-type is

684− 3
10

(2,000) = $84.

To find hH
max solve the equation

8
10

√
1,600+

2
10

√
3,600 =

√
W .

The solution is W = 1,936 so that hH
max = 3,600− 1,936 = $1,664 and thus the

expected profit from an H-type is

1,664− 8
10

(2,000) = $64.

Thus in this case insuring an L-type is more profitable than insuring an H-type.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 7.5.1 at the end of this chapter.

7.3 The monopolist under asymmetric information
We now turn to the case of asymmetric information, where each individual knows her own
probability of loss, but the monopolist only knows that there are NH high-risk individuals
with probability of loss pH and NL low-risk individuals with probability of loss pL.

We will consider three options for the monopolist:
Option 1. Cater only for the high-risk individuals by offering one insurance contract,

designed in such a way that only the H-type will purchase it.

Option 2. Cater for both types of individuals, by offering one insurance contract that is
attractive to both the L-type and the H-type.

Option 3. Offer a menu of two contracts: one – call it CH – targeted to the H-type and
the other – call it CL – targeted to the L-type.
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The shaded area in left pane of Figure 7.3 shows the set of insurance contracts that
are attractive to the H-type, in that they yield at least the reservation utility to this type
of individuals, while the shaded area in right pane shows the set of insurance contracts
that are attractive to the L-type, in that they yield at least the reservation utility to this type
of individuals. It is clear from Figure 7.3 that if an insurance contract is attractive to an
L-type then it is also attractive to an H-type.

0

W2

W1

45o line

H-type

L-type

NI

0

W2

W1

45o line

H-type

L-type

NI

Figure 7.3: The shaded area in the left pane shows the set of insurance contracts that are
acceptable to the H-type; the shaded area in the right pane shows the set of insurance
contracts that are acceptable to the L-type.

7.3.1 The monopolist’s profit under Option 1
If the monopolist chooses Option 1 then it will offer a contract that lies in the shaded area
shown in Figure 7.4: the area between the two reservation indifference curves.

0

W2

W1

45o line

H-type FH

L-type

NI

Figure 7.4: Contracts in the shaded area are acceptable to the H-type but not to the L-type.



7.3 The monopolist under asymmetric information 189

Under Option 1, the monopolist caters only for one type of individuals, namely the
H-type, and thus we can use the analysis of Chapter 5 (Section 5.2.1) and conclude that,
in order to maximize its profits, it will offer the full-insurance contract that leaves the
H-type indifferent between insuring and not insuring (shown as point FH in Figure 7.4).
Let hH

max be the premium of this contract. Then the monopolist’s total profits under Option
1, denoted by π1, will be

π1 = NH
(
hH

max− pH `
)
. (7.4)

For example, if the individuals’ initial wealth is W0 = 3,600, the potential loss is
`= 2,000, the utility-of-money function is U(m) =

√
m and pH = 8

10 , then, as calculated
at the end of the previous section, hH

max = $1,664 and the expected profit from a single
contract would be 1,664− 8

10(2,000) = $64, so that total profits would be $64NH .

7.3.2 The monopolist’s profit under Option 2
If the monopolist chooses Option 2 then it will offer a contract that lies in the shaded area
shown in the right pane of Figure 7.3: the area on and above the reservation indifference
curve of the L-type. Which of these contracts maximizes the monopolist’s profits?

One might be tempted to infer from the analysis of Chapter 5 that the monopolist would
offer the full-insurance contract at the intersection of the reservation indifference curve
of the L-type and the 45o line. However this conclusion is not correct: the monopolist –
under Option 2 – would prefer to offer (to everybody) a partial-insurance contract.
To see this, recall the reasoning developed in Chapter 5: the crucial step in that reasoning
was to note that, at any point not on the 45o line, the reservation indifference curve of the
L-type is steeper than the isoprofit line with slope − pL

1−pL
, so that there are points to the

right of the point under consideration which represent contracts that are acceptable to the
L-type and yield higher profit to the insurer if sold only to the L-types. In other words,
the line with slope − pL

1−pL
is a relevant isoprofit line only under the assumption that the

insurer is dealing only with L-type individuals. However, as remarked above, any contract
that is acceptable to an L-type is also acceptable to an H-type and thus offering such a
contract implies that the expected profit from this contract is not [h− pL(`−d)] (where h
is the premium and d the deductible), because the probability of receiving a claim from a
customer should reflect the fact that some customers are L-types and others are H-types.

This is the essence of the notion of adverse selection: the contract that is offered
determines the composition of the pool of applicants: if the insurer offers the full insurance
contract with premium hH

max determined in Section 7.3.1, the pool of applicants will consist
entirely of H-types, while if the insurer offers a contract that is acceptable to the L-types
then the pool of applicants will consist of all the individuals, L-types and H-types.

What is the probability of receiving a claim from a customer if an insurance contract is
purchased by both types? Recall that qH is the fraction of individuals in the population who
are H-types (and (1−qH) is the fraction of L-types; see (7.1) on page 186). Thus we can
take qH as the probability that any particular customer taken from the set of customers who
submit a claim is an H-type (and (1−qH) as the probability that she is an L-type). Thus
the expected profit from a contract with premium h and deductible d which is purchased
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by both types is:

h− [qH pH (`−d)+(1−qH) pL (`−d)] = h− [qH pH +(1−qH) pL] (`−d) . (7.5)

We call the number [qH pH +(1−qH) pL] the average probability of loss and denote it
by p̄:

average probability of loss: p̄ = qH pH +(1−qH) pL. (7.6)

Note that, since pL < pH and 0 < qH < 1,

pL < p̄ < pH . (7.7)

Thus when both types are insured with the same contract, the relevant isoprofit line is a
straight line with slope − p̄

1−p̄ ; we call isoprofit lines with this slope average isoprofit lines.
It follows from (7.7) that

pL

1− pL
<

p̄
1− p̄

<
pH

1− pH
. (7.8)

Of course, it is still true that at a point on the 45o line the slope of the L-type indifference
curve is − pL

1−pL
; however the straight line with this slope is no longer a relevant isoprofit

line: the relevant isoprofit line has a slope of − p̄
1−p̄ and is thus steeper than the L-type

indifference curve at that point. Figure 7.5 shows this for the reservation indifference curve
of the L-type.

0

Wealth in
good state

W2

W1
Wealth in
bad state

45o line

L-type

line with
slope − pL

1−pL

line with slope

− p̄
1−p̄

H-type

NI

Figure 7.5: The reservation indifference curve of the L-type is less steep, at a point on the
45o line, than the average isoprofit line, whose slope is − p̄

1−p̄ .
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Given the relative slope of the L-type reservation indifference curve and the average
isoprofit line at a full-insurance contract, such a contract cannot be profit-maximizing
under Option 2: there will be contracts to the left of it (thus partial-insurance contracts) that
are acceptable to the L-type (and thus to both types) and are below that average isoprofit
line (and thus yield higher expected profits). Of course, this argument applies to any
contract where the average isoprofit line is steeper than the L-type reservation indifference
curve. Hence, the profit-maximizing choice for the monopolist under Option 2 is that
contract on the L-type reservation indifference curve where there is a tangency between
the indifference curve and the average isoprofit line, as shown in Figure 7.6.

0

Wealth in
good state

W2

W1
Wealth in
bad state

45o line

L-type

C

line with slope− p̄
1−p̄

H-type

NI

Figure 7.6: C is the profit-maximizing contract for the monopolist under Option 2.

The existence of such a contract is guaranteed if and only if the slope of the L-type
reservation indifference curve at the no-insurance point is, in absolute value, greater than

p̄
1−p̄ .4 On the other hand, if the slope of the L-type reservation indifference curve at the
no-insurance point is, in absolute value, less than p̄

1−p̄ , then Option 2 cannot yield positive
profits. The reason for this is that the average isoprofit line that goes through the no-
insurance point is the zero-profit line and thus every contract that is acceptable to the
L-types will be above the zero profit line, which means that it would yield negative profits.

4If this condition is satisfied, then at NI the slope of the indifference curve is larger than p̄
1−p̄ and at a

point on the 45o line it is smaller than p̄
1−p̄ ; thus, by the Intermediate Value Theorem, there must be a point

along the curve where it is equal.
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If Option 2 is profitable, the profit-maximizing contract under this option, let us denote
it by C = (WC

1 ,WC
2 ), is given by the solution to the following equations:

pLU(WC
1 )+(1− pL)U(WC

2 ) = pLU(W0− `)+(1− pL)U(W0) (7.9)

pL

1− pL

(
U ′(WC

1 )

U ′(WC
2 )

)
=

p̄
1− p̄

. (7.10)

Equation (7.9) states that an L-type individual is indifferent between contract C and no
insurance, that is, contract C lies on the reservation indifference curve for the L-type;
equation (7.10) states that, at point C, the reservation indifference curve of the L-type is
tangent to (has the same slope as) the average isoprofit line.

As an example, let us revisit the case considered at the end of Section 7.2.1 where
the individuals’ initial wealth is W0 = 3,600, potential loss is ` = 2,000, the utility-of-
money function is U(m) =

√
m, pL = 3

10 and pH = 8
10 ; furthermore, let NH = 2,400 and

NL = 3,900, so that qH = 8
21 . Thus the average probability of loss is

p̄ =
8

21

(
8
10

)
+

13
21

(
3

10

)
=

103
210

.

To see if Option 2 is profitable, we check if the L-type reservation indifference curve is
steeper, at the no-insurance point NI = (1600,3600), than the average isoprofit line; that
is, we check if

pL

1− pL

(
U ′(1,600)
U ′(3,600)

)
>

p̄
1− p̄

. (7.11)

Since
pL

1− pL

(
U ′(1,600)
U ′(3,600)

)
=

3
10
7
10

(
1

80
1

120

)
=

9
14

= 0.6429

and
p̄

1− p̄
=

103
210
107
210

= 0.9626,

inequality (7.11) is not satisfied and thus Option 2 is not profitable.

Let us now change the value of NL from 3,900 to 44,000: NL = 44,000 (while everything
else remains as above). Then qH = 2,400

2,400+44,000 = 3
58 so that

p̄ =
3

58

(
8
10

)
+

55
58

(
3

10

)
=

189
580

= 0.3259

and thus inequality (7.11) is satisfied and Option 2 is profitable. The profit-maximizing
contract under Option 2, denoted by C =(WC

1 ,WC
2 ), is given by the solution to the following

equations (which correspond to equations (7.9) and (7.10)):
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3
10

√
WC

1 +
7
10

√
WC

2 =
3

10

√
1,600+

7
10

√
3,600

3
10
7

10

 1
2
√

WC
1

1
2
√

WC
2

=
189
580
391
580

.

The solution is WC
1 = 2,456.53 and WC

2 = 3,124.97, that is, C = (2456.53,3124.97); the
corresponding premium is 3,600−3,124.97 = $475.03 and the deductible is 3,124.97−
2,456.53 = $668.44 so that the expected profit from a single contract is

475.03− p̄(2,000−668.44) = 475.03− 189
580

(1,331.56) = $41.13

and total expected profits are

41.13(NL +NH) = 41.13(2,400+44,000) = $1,908,432.

7.3.3 The monopolist’s profit under Option 3
If the monopolist chooses Option 3 then it will offer two contracts: one contract– call it
CH – targeted to the H-type and the other contract – call it CL – targeted to the L-type. Let
us express these contracts in terms of premium and deductible and denote them by

CH = (hH ,dH) and CL = (hL,dL) .

We shall use the following abbreviations:

EH [U(NI)] H-type’s expected utility from no insurance
EL[U(NI)] L-type’s expected utility from no insurance
EH [U(CH)] H-type’s expected utility from contract CH

EL[U(CH)] L-type’s expected utility from contract CH

EH [U(CL)] H-type’s expected utility from contract CL

EL[U(CL)] L-type’s expected utility from contract CL.

Thus

EH [U(NI)] = pHU (W0− `)+(1− pH)U (W0)

EL[U(NI)] = pLU (W0− `)+(1− pL)U (W0)

EH [U(CH)] = pHU (W0−hH−dH)+(1− pH)U (W0−hH)

EL[U(CH)] = pLU (W0−hH−dH)+(1− pL)U (W0−hH)

EH [U(CL)] = pHU (W0−hL−dL)+(1− pH)U (W0−hL)

EL[U(CL)] = pLU (W0−hL−dL)+(1− pL)U (W0−hL) .

In order for contract CH to be chosen by H-type individuals two conditions must be
satisfied:

EH [U(CH)]≥ EH [U(NI)] (IRH)

EH [U(CH)]≥ EH [U(CL)] (ICH)
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The first condition, (IRH), is called the Individual Rationality constraint for type H and
says that the H-types must consider the contract targeted to them to be at least as good as
no insurance. The second condition, (ICH), is called the Incentive Compatibility constraint
for type H and says that the H-types must consider the contract targeted to them to be at
least as good as the other contract that is offered (namely CL).

Similarly, in order for contract CL to be chosen by L-type individuals two conditions must
be satisfied:

EL[U(CL)]≥ EL[U(NI)] (IRL)

EL[U(CL)]≥ EL[U(CH)] (ICL)

The first condition, (IRL), is the Individual Rationality constraint for type L: it says that the
L-types must consider the contract targeted to them to be at least as good as no insurance.
The second condition, (ICL), is he Incentive Compatibility constraint for type L: it says
that the L-types must consider the contract targeted to them to be at least as good as the
other contract that is offered (namely CH).

0

Wealth in
good state

W2

W1
Wealth in
bad state

45o line

L-type

H-type H-type

contract CL

contract CH

NI

Figure 7.7: Two contracts that satisfy the four constraints.

Figure 7.7 shows a pair of contracts that satisfy all four constraints as strict inequalities:
(1) contract CH is strictly above the H-type reservation indifference curve and thus (IRH)
is satisfied as a strict inequality, (2) contract CL is to the left of the H-type indifference
curve that goes through contract CH and thus (ICH) is satisfied as a strict inequality,
(3) contract CL is strictly above the L-type reservation indifference curve and thus (IRL) is
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satisfied as a strict inequality and (4) contract CH is worse than contract CL for the L-type
(indeed, it is even worse than no insurance).

On the other hand, Figure 7.8 shows a pair of contracts where the (ICH) and (IRL)
constraints are satisfied as equalities while the other two constraints are satisfied as strict
inequalities.
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Figure 7.8: Another pair of contracts that satisfy the four constraints.

From now on, we will assume that, if indifferent between contract CH and contract
CL the H-types will choose contract CH . Furthermore, we will continue to assume that, if
indifferent between insuring and not insuring, each individual will choose to insure.

If the monopolist offers a menu of two contracts, CH and CL, that satisfy the four
constraints, then the H-types will purchase contract CH = (hH ,dH) and the L-types will
purchase contract CL = (hL,dL) and thus the monopolist’s expected total profits will be

π3 = NH [hH− pH (`−dH)]+NL [hL− pL (`−dL)] .

Thus the monopolist, under Option 3, faces the following maximization problem:

Max
hH ,dH ,hL,dL

π3 = NH [hH− pH (`−dH)]+NL [hL− pL (`−dL)]

subject to

(IRH) EH [U(CH)]≥ EH [U(NI)]
(ICH) EH [U(CH)]≥ EH [U(CL)]

(IRL) EL[U(CL)]≥ EL[U(NI)]
(ICL) EL[U(CL)]≥ EL[U(CH)]
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Let us study this maximization problem.
We showed at the beginning of this section (see Figure 7.3) that, if an insurance contract

is acceptable to the L-type (in that it lies on or above the L-type’s reservation indifference
curve), then it is acceptable to the H-type too (that is, it lies on or above the H-type’s
reservation indifference curve); thus

EL[U(CL)]≥ EL[U(NI)] implies that EH [U(CL)]≥ EH [U(NI)]. (7.12)

It follows that the (IRH) constraint can be derived from the (IRL) and (ICH) constraints:

- by (IRL), EL[U(CL)]≥ EL[U(NI)], which, by (7.12) implies

EH [U(CL)]≥ EH [U(NI)]; (7.13)

- by (ICH), EH [U(CH)]≥ EH [U(CL)] and this, together with (7.13) yields the (IRH)
constraint: EH [U(CH)]≥ EH [U(NI)].

Thus:

� First observation: the (IRH) constraint is redundant.

Hence the monopolist’s maximization problem can be simplified to:

Max
hH ,dH ,hL,dL

π3 = NH [hH− pH (`−dH)]+NL [hL− pL (`−dL)]

subject to:

(ICH)

EH [U(CH)]︷ ︸︸ ︷
pHU (W0−hH−dH)+(1− pH)U (W0−hH)

≥ pHU (W0−hL−dL)+(1− pH)U (W0−hL)︸ ︷︷ ︸
EH [U(CL)]

(IRL)

EL[U(CL)]︷ ︸︸ ︷
pLU (W0−hL−dL)+(1− pL)U (W0−hL)

≥ pLU (W0− `)+(1− pL)U (W0)︸ ︷︷ ︸
EL[U(NI)]

(ICL)

EL[U(CL)]︷ ︸︸ ︷
pLU (W0−hL−dL)+(1− pL)U (W0−hL)

≥ pLU (W0−hH−dH)+(1− pL)U (W0−hH)︸ ︷︷ ︸
EL[U(CH)]

(7.14)

� Second observation: at a solution of the above maximization problem, the (ICH)
constraint must be satisfied as an equality, that is, contracts CH and CL must be on
the same indifference curve for the H-type (as illustrated in Figure 7.8 on page 195).
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To see this, start with two contracts (CH) and (CL) that satisfy the above three constraints
and suppose that EH [U(CH)]>EH [U(CL)]. Modify contract CH by increasing the premium
hH up to the point where (ICH) is satisfied as an equality, that is, up to the point where
EH [U(CH)] = EH [U(CL)].5 Then profits will increase, since π3 is increasing in hH , and
thus the initial pair {CH ,CL} could not have been a solution to the maximization problem.6

So far we have concluded that the solution to the initial constrained optimization
problem requires that the two contracts CH and CL must be on the same indifference curve
for the H-type.

� Third observation: at a solution of the maximization problem (7.14), contract
CL – which, by the second observation, must be on the same H-type indifference
curve as contract CH – must be above contract CH .

To see this, suppose that contract CH were above contract CL, as shown in Figure 7.9.
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Figure 7.9: Contract CH – which, by the second observation, must be on the same H-type
indifference curve as contract CL – cannot be above contract CL.

Then we can draw the indifference curve of the L-type that goes through contract CH : it
will be less steep than the indifference curve of the H-type and thus contract CL will be
below this L-type indifference curve, implying the the L-type would strictly prefer contract
CH to contact CL, contradicting the incentive compatibility constraint for the L-type, (ICL).

5The right-hand side of (ICH ) is independent of hH while the left-hand side is decreasing in hH .
6Note that an increase in hH does not affect the (IRL) constraint (both sides of it are independent of

hH), while it reinforces the (ICL) constraint, since the left-hand side of (ICL) is independent of hH , while
the right-hand side is decreasing in hH ; thus if the (ICL) constraint was satisfied to start with, then it will
continue to be satisfied after the increase in hH .
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Thus, by the second and third observation, the two contracts CH and CL must be on the
same H-type indifference curve, with CL above CH , as shown in Figure 7.10.7
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Figure 7.10: Contract CH cannot be above the 45o line.

� Fourth observation: at a solution of the maximization problem (7.14), contract CH
must be a full-insurance contract.

To see this, suppose that CH is not a full-insurance contract, that is, suppose that it lies
above the 45o line. Then, as we know from Chapter 5, the H-type indifference curve is
steeper at point CH than the isoprofit line with slope − pH

1−pH
, as shown in Figure 7.10. This

is indeed a relevant isoprofit line, because – by the (ICL) constraint – contract CH will be
purchased only by the H-types. Hence there are points below contract CH , on the H-type
indifference curve, that will yield higher profits to the monopolist, since any such contract
would still be bought only by the H-types.8

7To reach this conclusion one also needs to rule out the possibility that CH =CL. This is a consequence
of the fourth observation below: starting from CH =CL above the 45o line, the monopolist could increase its
profits by separating CH from CL and moving it, along the H-type indifference curve, towards the 45o line;
on the other hand, if – to start with – CH =CL is already on the 45o line, then, by the (ICL) constraint it must
be on or above the reservation indifference curve for the L-type and we know from the analysis of Option 2
that this is not a profit-maximizing configuration.

8Moving contract CH towards the 45o line, along the H-type indifference curve, will not alter the (IRL)
constraint (which is independent of hH and dH ) and will make contract CH even less attractive than contract
CL for the L-type, that is, the (ICL) constraint will still hold.
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� Fifth observation: at a solution of the maximization problem (7.14), the (IRL)
constraint must be satisfied as an equality, that is, contract CL must be on the
reservation indifference curve of the L-type.

To see this, consider the situation depicted in Figure 7.11 where contract CL is above
the reservation indifference curve of the L-type (and – in accordance with the previous
observations – CL and CH lie on the same indifference curve of the H-type; furthermore,
CH is a full-insurance contract, that is, it lies on the 45o line). Draw the isoprofit line with
slope − pL

1−pL
that goes through contract CL. We know from Chapter 5 that the H-type

indifference curve at point CL is steeper than the line with slope − pH
1−pH

which, in turn, is
steeper than the line with slope − pL

1−pL
. Thus there are points on the H-type indifference

curve (to which both CL and CH belong) that are below this isoprofit line. Modify CL
contract by moving it along the H-type indifference curve up to the point where it intersects
the reservation indifference curve of the L-type, that is, until the (IRL) constraint is satisfied
as an equality. Then the (ICH) constraint is not affected (it is still satisfied as an equality)
and the (ICL) constraint is also not affected, since contract CH is still worse, for the L-type,
than the modified contract CL. Thus the new CL contract is still purchased only by the
L-types and hence yields higher profits to the monopolist than the original CL contract
(since the new contract is below the isoprofit line with slope − pL

1−pL
that goes through the

original contract).
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Figure 7.11: Contract CL cannot be above the L-type reservation indifference curve.
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We conclude from the above five observations that

The pair of contracts (CH ,CL)
is a solution of the maximization problem (7.14) only if

• CH is on the 45o line and
• CL lies at the intersection of

(1) the indifference curve of the H-type that goes through CH and
(2) the indifference curve of the L-type that goes through NI.

Fix an arbitrary premium hH for the full-insurance contract CH (thus dH = 0), such
that CH lies on the segment of the 45o line between FH and FL, where FH is the point of
intersection of the reservation indifference curve of the H-type and the 45o line and FL is
the point of intersection of the reservation indifference curve of the L-type and the 45o line:
see Figure 7.12. Then the contract CL at the intersection of the reservation indifference
curve of the L-type and the indifference curve of the H-type that goes through contract CH
is uniquely determined; hence we can think of this contract CL as a function of hH :

CL(hH) = (hL(hH), dL(hH)) . (7.15)
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Figure 7.12: Contract CL is uniquely determined by the choice of contract CH on the
segment of the 45o line between points FH and FL.
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Then the constrained maximization problem (7.14) can be reduced to the following
unconstrained maximization problem:

Max
hH∈[hL

max,hH
max]

π3(hH) = NH (hH− pH`)+NL [hL(hH)− pL (`−dL(hH))] (7.16)

where hL
max is the maximum premium that the L-type is willing to pay for full insurance

(the premium of contract FL in Figure 7.12) and hH
max is the maximum premium that the

H-type is willing to pay for full insurance (the premium of contract FH in Figure 7.12).

R Note that one possible choice under Option 3 is to set hH = hH
max, that is, to choose

CH = FH (see Figure 7.12), in which case the corresponding contract for the L-type
is the trivial contract with hL = 0 and dL = `, that is, CL = NI. This amounts to
insuring only the H-types, with the full-insurance contract that was obtained as
the profit-maximizing contract under Option 1. Thus Option 1 is a special case of
Option 3.

Before we discuss the solution to (7.16) in general, let us consider a numerical example.

Let the following be common to all individuals: initial wealth W0 = 1,600, poten-
tial loss ` = 700 and vNM utility-of-money function U(m) =

√
m. The H-types face a

probability of loss pH = 1
5 while the L-types face a probability of loss pL = 1

10 .

• To find hL
max solve the equation

1
10

√
900+

9
10

√
1,600 =

√
1,600−h.

The solution is hL
max = 79.

• To find hH
max solve the equation

1
5

√
900+

4
5

√
1,600 =

√
1,600−h.

The solution is hH
max = 156.

Given hH ∈ [79,156], contract CL is given by the solution to the following pair of equations:

1
10

√
900+ 9

10
√

1,600 = 1
10
√

1,600−hL−dL +
9
10
√

1,600−hL

1
5
√

1,600−hL−dL +
4
5
√

1,600−hL =
√

1,600−hH .

(7.17)

The first equation states that CL lies on the reservation indifference curve of the L-type and
the second equation states that CL lies on the indifference curve of the H-type that goes
through the full-insurance contract CH with premium hH . The solution to (7.17) is

hL(hH) = hH +156
√

1,600−hH−6,084 (7.18)

dL(hH) = 80hH +5,460
√

1,600−hH−219,260. (7.19)
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Let there be a total of N individuals and let qH be the fraction of type-H individuals (thus
NH = qHN), so that (1−qH) is the fraction of type-L individuals (thus NL = (1−qH)N).
Then the monopolist’s objective is to choose that value of hH ∈ [79,156] that maximizes
the function

π3(hH) = N [qH (hH− pH 700)+(1−qH) [hL(hH)− pL(700−dL(hH))] (7.20)

where hL(hH) and dL(hH) are given by (7.18) and (7.19), respectively. The solution of this
maximization problem depends on the value of qH , that is, on how many H-types there are
relative to the L-types.

For example, if qH = 1
20 then the graph of the profit function (7.20) is shown in Figure

7.13. The profit-maximizing value of hH is an interior point of the interval [79,156], namely

96.64. Replacing this value in (7.18) and (7.19) we obtain hL = 61.26 and dL = 172.80.

Thus the monopolist offers a full-insurance contract CH = (hH = 96.64, dH = 0) and

a partial-insurance contract CL = (hL = 61.26, dL = 172.80) and the H-types purchase

contract CH while the L-types purchase contract CL. We call such a situation a separating

equilibrium, since the monopolist – through the menu of contracts it offers – is able to

induce a separation of the types: all the individuals of one type purchase one contract and

all the individuals of the other type purchase the other contract.

π3(hH)

hH
79 156

5.5N

0.8N

5.94N

96.64

Figure 7.13: The graph of the profit function (7.20) when qH = 1
20 .
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Now consider the case where qH = 1
5 . For this case the graph of the profit function

(7.20) is shown in Figure 7.14. It is clear from the graph that in this case the solution of the

profit-maximizing problem is a corner solution at hH = hH
max = 156 and only the H-types

insure (the contract targeted to the L-types is the trivial contract with hL = 0 and dL = 700:

see the remark on page 201).

π3(hH)

hH
79 156

3.2N

−5N

Figure 7.14: The graph of the profit function (7.20) when qH = 1
5 .
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The above example illustrates a general feature of the profit-maximization under
Option 3:

~ When qH is “sufficiently close to 1” (that is, when the number of H-types is large
relative to the entire population of potential customers), the monopolist will choose
to insure only the H-types by offering the full-insurance contract with premium hH

max
(that is, the solution to the profit maximization problem (7.16) given on page 201
is the corner solution, as illustrated in Figure 7.14). As a consequence, the (IRH)
constraint is satisfied as an equality.

~ Otherwise the monopolist will offer two contracts:

(1) a full-insurance contract CH with premium hH < hH
max, which will be purchased

by the H-types, who therefore enjoy a surplus (that is, they are strictly better
off than with no insurance or, in other words, the (IRH) constraint is satisfied
as a strict inequality), and

(2) a partial-insurance contract which will be purchased by the L-types, located
at the intersection of the reservation indifference curve of the L-types and the
indifference curve of the H-types that goes through contract CH (thus the (IRL)
and (ICH) constraints are satisfied as equalities while the (IRH) and (ICL)
constraints are satisfied as strict inequalities).

The expression “qH sufficiently close to 1” is rather vague: its exact meaning depends
on the specific values of the parameters. For instance, it can be shown that, in the example
considered above, “qH sufficiently close to 1” means qH ≥ 9

47 = 0.1915. 9

7.3.4 Option 2 revisited
We saw above that Option 1 can be viewed as a subcase of Option 3. Now we compare
Option 2 and Option 3.

Recall that the profit-maximizing contract under Option 2 (if it exists) is that contract
on the reservation indifference curve of the L-type where the slope of the indifference
curve is equal to the slope of the average profit line, which is − p̄

1−p̄ , where p̄ is the average
probability of loss, that is,

p̄ = qH pH +(1− pH) pL.

Denote the maximum profits that the monopolist can make under Option 2 by π∗2 . If
B = (hB,dB) is the profit-maximizing contract under Option 2 then

π
∗
2 = (NH +NL) [hB− p̄(`−dB)] ,

where NH is the number of individuals of type H and NL is the number of individuals of
type L.

9Thus, in that example, if qH ≥ 9
47 then the monopolist will choose to insure only the H-types, while if

qH < 9
47 then the monopolist will implement a separating two-contract solution. To find this critical value of

qH , first calculate the derivative of the function π3(hH) given in (7.20) and evaluate it at the corner point
hH = 156; this will give an expression in terms of qH and then set this expression equal to zero and solve for
qH . In this case the solution is qH = 9

47 ; hence if qH ≥ 9
47 then the function π3(hH) is increasing or constant

at hH = 156 and thus the function is maximized at hH = 156, while if qH < 9
47 then the function π3(hH) is

decreasing at hH = 156 and thus the function is maximized at a point to the left of hH = 156.
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We want to show that π∗2 < π∗3 , where π∗3 is the maximum profit that the monopolist
can make under Option 3.

Figure 7.15 shows the contract, denoted by B, that maximizes profits under Option 2.
If the monopolist offers only this contract, then both types of individuals will purchase it.
Suppose that the monopolist switches from a one-contract menu containing only contract
B to a two-contract menu {B,F} obtained by adding to contract B also the full-insurance
contract F given by the intersection of the H-type indifference curve that goes through B
and the 45o line, as shown in Figure 7.15. Then the L-types will continue to buy contract B
(since it is strictly better for them that the newly added contract F), while the H-types will
switch to contract F .10 Thus profits from the L-types will not change, but profits from the
H-types will increase.11 The pair of contracts {B,F} satisfies all the constraints considered
under Option 3 (namely, IRH , ICH , IRL, ICL) and yields profits that are larger than π∗2 ;
thus π∗3 (which may be even larger) is greater than π∗2 .
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1−p̄

B

NI

Figure 7.15: Option 2 is inferior to Option 3.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 7.5.2 at the end of this chapter.

10As usual, we assume that, if indifferent, the H-types will choose the contract targeted to them. Otherwise
the newly offered contract would have to be slightly above contract F on the 45o line.

11Because of the usual argument that at a point above the 45o line, such as point B in Figure 7.15, the
H-type indifference curve is steeper than the isoprofit line with slope − pH

1−pH
, which is the relevant isoprofit

line if we consider contracts on the portion of the H-type indifference curve between point B and point F ,
since those contracts would be purchased only by the H-types.
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7.4 A perfectly competitive insurance industry
In Chapters 2 and 5 (Sections 2.6.4 and 5.2.2) we studied the equilibrium in a perfectly
competitive insurance industry with free entry when there is only one type of potential
customer. Now we extend the analysis to the case of asymmetric information with two
types of individuals. We continue to assume that all the individuals are identical in terms
of initial wealth W0 and potential loss ` (with 0 < `≤W0); furthermore, hey also have the
same vNM utility-of-money function U(m). What they differ in is the probability of loss:
it is pH for type-H (= high-risk) individuals and pL for type-L (= low-risk) individuals,
with 0 < pL < pH < 1.

Recall that a free-entry competitive equilibrium is defined as a situation where

1. each firm in the industry makes zero profits, and

2. there is no unexploited profit opportunity in the industry, that is, there is no currently
not offered contract that would yield positive profits to a (existing or new) firm that
offered that contract.

In the one-type case we saw that at the free-entry competitive equilibrium every firm
offers the full-insurance contract that lies at the intersection of the zero-profit line and the
45o line. Recall that the no-insurance point NI can be thought of as a trivial contract with
zero premium and deductible equal to the full loss `: such a “contract” obviously yields
zero profits; thus the zero-profit line goes through point NI. In the two-type context the
situation is complicated by the fact that there are three zero-profit lines:

• a “low-risk” line (through NI) with slope − pL
1−pL

, which is a relevant isoprofit line

if and only if the contracts on this line are sold only to the low-risk individuals,

• an “average-risk” line (through NI) with slope − p̄
1−p̄ , where

p̄ = qH pH +(1−qH)pL,

which is a relevant isoprofit line if and only if the contracts on this line are sold to
both types of individuals,

• a “high- risk” line (through NI) with slope − pH
1−pH

, which is a relevant isoprofit line

if and only if the contracts on this line are sold only to the hight-risk individuals.

Since 0 < pL < pH < 1 and 0 < qH < 1, pL < p̄ < pH and thus

pL

1− pL
<

p̄
1− p̄

<
pH

1− pH
. (7.21)

Hence the low-risk zero-profit line is less steep that the average risk zero-profit line, which,
in turn, is less steep than the high-risk zero-profit line.
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Figure 7.16 shows the three zero-profit lines.
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W1
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line with slope − pL
1−pL

line with slope − p̄
1−p̄

line with slope − pH
1−pH

NI

Figure 7.16: Three zero-profit lines in the two-type case.

We also note that, at any insurance contract, the slope of the H-type indifference curve
is – in absolute value – greater than or equal to pH

1−pH
and thus, by (7.21), it is greater than

the absolute value of the slope of the average isoprofit line through that point, as shown in
Figure 7.17.
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Figure 7.17: At any (full- or partial-) insurance contract the H-type indifference curve is
steeper than the average isoprofit line.
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In what follows we shall assume that the reservation indifference curve of the L-type is
steeper, at the no-insurance point, than the average zero-profit line, that is,

pL

1− pL

(
U ′(W0− `)

U ′(W0)

)
>

p̄
1− p̄

. (7.22)

Inequality (7.22) ensures that it is possible to insure both types of individuals with the
same contract, without making a loss.12

In principle, a free-entry competitive equilibrium could be one of two types:

• a pooling equilibrium where all the firms in the industry offer the same contract,
which is bought by both types of individuals, or

• a separating equilibrium where two contracts are offered in the industry: one
contract, denoted by CH , which is purchased only by the H-types and the other
contract, denoted by CL, which is purchased only by the L-types.

Let us begin by considering the possibility of a pooling equilibrium. We want to show
that such an equilibrium is not possible. By Condition 1 of the definition of free-entry
competitive equilibrium, the contract in question, call it B = (hB,dB) (with 0≤ dB < `),
must be on the average zero profit line, that is,

hB− p̄(`−dB) = 0. (7.23)

Consider the function πL(h,d) = h− pL (`−d) that gives, for every insurance contract
(h,d) the expected profit from that contract if it is bought only by the low-risk individuals,
that is, only by the L-types. Since pL < p̄, it follows from (7.23) that pL(`−dB)< p̄(`−dB)
and thus

πL(hB,dB) = hB− pL (`−dB)> 0. (7.24)

Since the function πL(h,d) is a continuous function, it follows from (7.24) that, for every
insurance contract A = (hA,dA),

if A is sufficiently close to B then πL(hA,dA) = hA− pL (`−dA)> 0. (7.25)

Thus, if we can find a contract, close to B, that would be considered better than B by the
L-types, but worse than B by the H-types, then any firm that introduced contract A would
attract only the L-types and thus, by (7.25), it would make positive profits, contradicting
the second requirement of the definition of a free-entry competitive equilibrium. Does
such a contract exist?

12By (7.22) there are contracts that are above the reservation indifference curve of the L-type (and thus
attractive to both types) and below the average zero-profit line (and thus yielding positive profits if purchased
by both types).
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The answer is affirmative, as shown in Figure 7.18: draw the indifference curves of the
two types that go through contract B. The L-type indifference curve is less steep than the
H-type indifference curve and thus there are contracts, such as contract A in Figure 7.18,
which are below the H-type indifference curve through B and above the L-type indifference
curve through B. Thus if such a contract A were to be introduced, the L-types would
switch from the original contract B to the new contract A while the H-types would stay
with contract B. Hence, by (7.25), the firm that introduced contract A would make positive
profits, contradicting the second requirement of the definition of free-entry competitive
equilibrium.
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Figure 7.18: If, initially, both types purchase contract B and then contract A is added as an
option, then the H-types will not switch to A while the L-types will.

Thus we conclude that, if there is a free-entry competitive equilibrium, then it must
be a two-contract separating equilibrium. We now turn to the question of whether a
two-contract {CH ,CL} equilibrium exists with all H-types purchasing contract CH and all
L-type purchasing contract CL.

• By the zero-profit condition (the first requirement of a free-entry competitive equi-
librium), contract CH must be on the high-risk zero-profit line (the line through NI
with slope − pH

1−pH
) and contract CL must be on the low-risk zero-profit line (the line

through NI with slope − pL
1−pL

).
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• Furthermore, contract CH must be the full-insurance contract on the high-risk zero-
profit line because, if it were above the 45o line, then – by the usual argument
based on the observation that at such a point the H-type indifference curve is steeper
than the high-risk zero-profit line – there would be contracts below that zero profit
line and above that indifference curve that would yield positive profits to a firm
that introduced such a contract (which would induce the H-types to switch to it),
contradicting the second requirement of a free-entry competitive equilibrium.

It remains to determine where on the low-risk zero-profit line contract CL should be. Draw
the indifference curve of the H-type that goes through contract CH and call the point at
the intersection of this indifference curve and the low-risk zero-profit line contract C, as
shown in Figure 7.19.
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Figure 7.19: Where on the low-risk zero-profit line could contract CL be?

• Suppose that contract CL is on the low-risk zero-profit line to the right of point C,
such as point B in Figure 7.19. Then such a contract B would be preferred to CH by
both types,13 giving rise to a situation where all types purchase the same contract,
which – as we saw above – cannot be a free-entry competitive equilibrium.

13B is preferred to CH by type H because B is to the right of the H-type indifference curve through CH and
B is preferred to CH by type L because CH is below the L-type indifference curve through B: this indifference
curve is not shown in Figure 7.19, but it is less steep than the indifference curve of the H-type through B
(also not shown); hence, since CH is below the latter, it is also below the former.



7.4 A perfectly competitive insurance industry 211

• Suppose that contract CL is on the low-risk zero-profit line to the left of point C, such
as point A in Figure 7.19. Then – by the usual argument based on the observation that
at such a point the L-type indifference curve is steeper than the low-risk zero-profit
line – there would be contracts below that zero profit line and above the indifference
curve of the L-type that goes through A that would attract the L-types, and only the
L-types, and yield positive profits, contradicting the first requirement of a free-entry
competitive equilibrium.

Thus we conclude that contract CL must be at the intersection of the low-risk zero-profit
line and the indifference curve of the H-type that goes through contract CH , that is, it must
coincide with point C in Figure 7.19.

We have determined that necessary conditions for a pair of contracts {CH ,CL} to be a
free-entry competitive equilibrium are:

(1) CH is at the intersection of the high-risk zero-profit line and the 45o line, and

(2) CL is at the intersection of the low-risk zero-profit line and the H-type indifference
curve through CH .

While necessary, the above two conditions are not sufficient for a free-entry competitive
equilibrium. To see this, consider the situation depicted in Figure 7.20.
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Figure 7.20: A case where the pair of contracts {CH ,CL} is not a free-entry competitive
equilibrium because of the existence of contracts like D.
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Suppose that the contracts currently offered in the industry are CH and CL and one of the
existing firms, or a new firm, introduces contract D. The H-types will switch to contract D,
since it is better than the contract that they are currently purchasing, namely CH (D is to
the right of the H-type indifference curve through CH) and the L-types will also switch to
D, since it is better than the contract that they are currently purchasing, namely CL (D is to
the right of the L-type indifference curve through CL). Then, for the firm that introduced
contract D, the relevant isoprofit lines are the average isoprofit lines; since contract D is
below the average zero-profit line, it yields positive profits to the firm, contradicting the
second requirement of a free-entry competitive equilibrium.

Thus, in order for the two-contract configuration {CH ,CL} described above to be a
free-entry competitive equilibrium, it is also necessary that there be no contracts such as
contract D described above, that is, it must not be the case that the average zero-profit line
crosses the L-type indifference curve that goes through contract CL. In other words, the
average zero-profit line must be entirely below the L-type indifference curve through CL,
as shown in Figure 7.21.

Since the higher the value of qH (that is, the larger the number of H-types in the
population relative to the number of L-types), the closer the average zero-profit line will be
to the high-risk zero-profit line, this additional requirement for the existence of a free-entry
competitive equilibrium can be understood in terms of qH being “sufficiently large”.
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Figure 7.21: The pair of contracts {CH ,CL} is a free-entry competitive equilibrium.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 7.5.3 at the end of this chapter.
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7.5 Exercises
The solutions to the following exercises are given in Section 7.6 at the end of this chapter.

7.5.1 Exercises for Section 7.2: Two types of customers

Exercise 7.1 Sara and Mary have the same initial wealth of $400 and face the same
potential loss of $280. They also have the same vNM utility-of-money function
U(m) = ln(m). They differ, however, in the probability of loss, which is pS = 1

2
for Sara and pM = 1

5 for Mary.

(a) Calculate the slope of Sara’s reservation indifference curve at the no-insurance
point.

(b) Calculate the slope of Mary’s reservation indifference curve at the no-insurance
point.

(c) Find the maximum premium that Sara would be willing to pay for full insurance
and calculate the insurance company’s expected profit from selling that full-
insurance contract to Sara.

(d) Find the maximum premium that Mary would be willing to pay for full insurance
and calculate the insurance company’s expected profit from selling that full-
insurance contract to Mary.

�

Exercise 7.2 Diana and Fran have the same initial wealth of $4,096 and face the same
potential loss of $2,800. They also have the same vNM utility-of-money function
U(m) =

√
m. They differ, however, in the probability of loss, which is pD = 1

4 for Diana
and pF = 1

16 for Fran.

Consider a monopolist seller of insurance who knows all of the above information about
Diana and Fran.

(a) What insurance contract would the monopolist offer to Diana?

(b) What insurance contract would the monopolist offer to Fran?

(c) Assume that, when indifferent between not insuring and insuring, both Diana
and Fran will choose to insure. Calculate the monopolist’s expected profit from
selling insurance to Diana and Fran.

�
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7.5.2 Exercises for Section 7.3: The monopolist under asymmetric information

Exercise 7.3 There are 16,000 individuals, all identical in terms of initial wealth
W0 = $4,000, potential loss ` = $2,500 and vNM utility-of-money function
U(m) = 10ln

(
m

1,000

)
. Of these individuals, 12,000 have a high probability of loss

pH = 1
5 and 4,000 have a low probability of loss pL = 1

15 . A monopolist seller of in-
surance is considering using Option 1 (Section 7.3.1). What will its expected total
profits be? [As usual, assume that – if indifferent between insuring and not insuring –
individuals will choose to insure.] �

Exercise 7.4 Consider again the case described in Exercise 7.3: there are 16,000 indi-
viduals, all identical in terms of initial wealth W0 = $4,000, potential loss
`= $2,500 and vNM utility-of-money function U(m) = 10ln

(
m

1,000

)
; of these individ-

uals, 12,000 have a high probability of loss pH = 1
5 and 4,000 have a low probability of

loss pL = 1
15 .

(a) Show that, for a monopolist seller of insurance, Option 2 (Section 7.3.2) is not
profitable.

(b) Calculate what the monopolist’s total expected profits would be if it offered a
full-insurance contract that makes the L-type indifference between insuring and
not insuring. [As usual, assume that – if indifferent between insuring and not
insuring – individuals will choose to insure.]

�

Exercise 7.5 Consider again the case described in Exercise 7.3, but reduce the number
of high-risk individuals from 12,000 to 6,000; thus there are 10,000 individuals, all
identical in terms of initial wealth W0 = $4,000, potential loss ` = $2,500 and vNM
utility-of-money function U(m) = 10ln

(
m

1,000

)
; of these individuals, 6,000 have a high

probability of loss pH = 1
5 and 4,000 have a low probability of loss pL = 1

15 .

(a) Show that, for a monopolist seller of insurance, Option 2 (Section 7.3.2) is
profitable, by calculating the slopes of the relevant curves at the no-insurance
point.

(b) Write two equations, whose solution gives the contract that maximizes the mo-
nopolist’s profits under Option 2. If you are able to, compute the solution and
determine the monopolist’s expected total profits if it offers that contract. [As
usual, assume that – if indifferent between insuring and not insuring – individuals
will choose to insure.]

�
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Exercise 7.6 There are 6,000 individuals, all with the same initial wealth W0 = 16,000,
facing the same potential loss ` = 7,000 and with the same vNM utility-of-money
function U(m) =

√
m. Of these 6,000 individuals, 1,000 are high-risk with a probability

of loss pH = 2
10 while the remaining 5,000 are low-risk with a probability of loss

pL = 1
10 .

(a) Calculate the monopolist’s total expected profits if it decides to pursue Option 1.

(b) Calculate the average probability of loss p̄.

(c) Write two equations whose solution gives the profit-maximizing contract under
Option 2.

(d) Suppose that, under Option 3, the monopolist decides to offer a full-insurance
contract with premium $1,400. Write a pair of equations whose solution gives
the other contract that the monopolist will offer.

(e) The solution of the pair of equations in Part (d) is the following contract, expressed
in term of wealth levels: C = (10169.41,15832.48). Calculate the monopolist’s
profits if it offers the two contracts of Part (d).

�

Exercise 7.7 There are 8,000 individuals, all with the same initial wealth W0 = 10,000,
facing the same potential loss ` = 6,000 and with the same vNM utility-of-money
function U(m) = ln(m). Of these 8,000 individuals, 1,500 are high-risk with a proba-
bility of loss pH = 1

4 while the remaining 6,500 are low-risk with a probability of loss
pL = 1

16 .

(a) Calculate the monopolist’s total expected profits if it decides to pursue Option 1.

(b) Calculate the average probability of loss p̄.

(c) Write two equations whose solution gives the profit-maximizing contract under
Option 2.

(d) Suppose that, under Option 3, the monopolist decides to offer a full-insurance
contract with premium $2,000. Write a pair of equations whose solution gives
the other contract that the monopolist will offer.

(e) The solution of the pair of equations in Part (d) is the following contract, expressed
in term of wealth levels: C = (4120.36,9980.26). Calculate the monopolist’s
profits if it offers the two contracts of Part (d).

�
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7.5.3 Exercises for Section 7.4: A perfectly competitive insurance industry

Exercise 7.8 Consider again the information given in Exercise 7.6: there are 6,000
individuals, all with the same initial wealth W0 = 16,000, facing the same potential
loss ` = 7,000 and with the same vNM utility-of-money function U(m) =

√
m; of

these 6,000 individuals, 1,000 are high-risk with probability of loss pH = 2
10 while the

remaining 5,000 are low-risk with probability of loss pL = 1
10 .

(a) Find the pair of contracts that is the only candidate for a free-entry perfectly
competitive equilibrium.

(b) Calculate the average probability of loss p̄.

(c) Write a pair of equations such that: (1) if it has a solution then the pair of contracts
of Part (a) is not a free-entry perfectly competitive equilibrium and (2) if it does
not have a solution then the pair of contracts of Part (a) is a free-entry perfectly
competitive equilibrium.

�

Exercise 7.9 Consider again the information given in Exercise 7.7: there are 8,000
individuals, all with the same initial wealth W0 = 10,000, facing the same potential
loss ` = 6,000 and with the same vNM utility-of-money function U(m) = ln(m); of
these 8,000 individuals, 1,500 are high-risk with probability of loss pH = 1

4 while the
remaining 6,500 are low-risk with probability of loss pL = 1

16 .

(a) Find the pair of contracts that is the only candidate for a free-entry perfectly
competitive equilibrium.

(b) Calculate the average probability of loss p̄.

(c) Write a pair of equations such that: (1) if it has a solution then the pair of contracts
of Part (a) is not a free-entry perfectly competitive equilibrium and (2) if it does
not have a solution then the pair of contracts of Part (a) is a free-entry perfectly
competitive equilibrium.

�
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7.6 Solutions to Exercises

Solution to Exercise 7.1

(a) The slope of Sara’s reservation indifference curve at NI = (120,400) is

− pS

1− pS

(
U ′(120)
U ′(400)

)
=−

1
2

1− 1
2

(
1

120
1

400

)
=−10

3
=−3.33.

(b) The slope of Mary’s reservation indifference curve at NI = (120,400) is

− pM

1− pM

(
U ′(120)
U ′(400)

)
=−

1
5

1− 1
5

(
1

120
1

400

)
=−5

6
=−0.83.

(c) To find the full-insurance contract that makes Sara indifferent between insuring and
not insuring we need to solve the equation ln(W ) = 1

2 ln(120)+ 1
2 ln(400). The

solution is W = 219.09, so that the maximum premium that Sara is willing to pay
for full insurance is 400−219.09 = $180.91. If Sara purchases this full-insurance
contract then the insurance company’s expected profit is 180.91− 1

2(280) = $40.91.
(d) To find the full-insurance contract that makes Mary indifferent between insuring

and not insuring we need to solve the equation ln(W ) = 1
5 ln(120)+ 4

5 ln(400). The
solution is W = 314.40, so that the maximum premium that Mary is willing to pay
for full insurance is 400−314.40 = $85.60. If Mary purchases this full-insurance
contract then the insurance company’s expected profit is 85.60− 1

5(280) = $29.60.
�

Solution to Exercise 7.2

(a) The monopolist will offer Diana the full-insurance contract that makes her indif-
ferent between insuring and not insuring, which is determined by the solution to√

W = 1
4
√

1,296+ 3
4
√

4,096. The solution is W = 3,249, so that the premium of
the full-insurance contract is 4,096− 3,249 = $847. If Diana purchases this full-
insurance contract then the insurance company’s expected profit from this contract
is 847− 1

4(2,800) = $147.

(b) The monopolist will offer Fran the full-insurance contract that makes her indif-
ferent between insuring and not insuring, which is determined by the solution to√

W = 1
16
√

1,296+ 15
16
√

4,096. The solution is W = 3,875.06, so that the pre-
mium of the full-insurance contract is 4,096− 3,875.06 = $220.94. If Fran pur-
chases this full-insurance contract then the insurance company’s expected profit is
220.94− 1

16(2,800) = $45.94.

(c) The monopolist’s expected profit from insuring Diana and Fran is 147+45.94 =
$192.94. �
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Solution to Exercise 7.3
The monopolist would offer the full-insurance contract that makes the H-types indif-
ferent between insuring and not insuring. To find that contract, solve the equation
U(W ) = pHU(W0− `)+(1− pH)U(W0), that is,

10 ln
(

W
1,000

)
=

1
5

10ln(1.5)+
4
5

10ln(4).

The solution is W = 3,287.50. Thus the offered full-insurance contract has a premium of
4,000− 3,287.50 = $712.50. This contract will be purchased only by the H-types (the
L-types are better off without insurance). Thus the monopolist’s expected total profits are

12,000
[

712.50− 1
5
(2,500)

]
= $2,549,956.09.

�

Solution to Exercise 7.4

(a) We need to show that the L-type reservation indifference curve is less steep at the
no-insurance point, than the average isoprofit line, that is,

pL

1− pL

(
U ′(W0− `)

U ′(W0)

)
≤ p̄

1− p̄
(7.26)

First we compute the average probability of loss p̄. Since qH = 12,000
16,000 = 3

4 ,

p̄ =
3
4

(
1
5

)
+

1
4

(
1

15

)
=

1
6
.

Thus
p̄

1− p̄
=

1
5
= 0.2.

On the other hand,

pL

1− pL

(
U ′(W0− `)

U ′(W0)

)
=

1
14

10
1,500

10
4,000

=
4

21
= 0.1905.

Thus inequality (7.26) is indeed satisfied.

(b) To find that contract, solve the equation U(W ) = pLU(W0− `)+ (1− pL)U(W0),
that is,

10 ln
(

W
1,000

)
=

1
15

10ln(1.5)+
14
15

10ln(4).

The solution is W = 3,746.81. Thus the offered full-insurance contract has a pre-
mium of 4,000−3,746.81 = $253.19. This contract would be purchased by both
types. Thus the monopolist’s expected total profits would be N (253.19− p̄`):

16,000
[

253.19− 1
6
(2,500)

]
= $−2,615,626.67,

that is, a loss. �
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Solution to Exercise 7.5

(a) We need to show that the L-type reservation indifference curve is steeper, at the
no-insurance point, than the average isoprofit line, that is,

pL

1− pL

(
U ′(W0− `)

U ′(W0)

)
>

p̄
1− p̄

(7.27)

First we compute the average probability of loss p̄. Since qH = 6,000
10,000 = 3

5 ,

p̄ =
3
5

(
1
5

)
+

2
5

(
1

15

)
=

11
75

.

Thus
p̄

1− p̄
=

11
64

= 0.1719.

On the other hand,

pL

1− pL

(
U ′(W0− `)

U ′(W0)

)
=

1
14

10
1,500

10
4,000

=
4

21
= 0.1905.

Thus inequality (7.27) is indeed satisfied.

(b) The equations are as follows (see (7.9) and (7.10) on page 192):

pLU(W1)+(1− pL)U(W2) = pLU(W0− `)+(1− pL)U(W0)

pL

1− pL

(
U ′(W1)

U ′(W2)

)
=

p̄
1− p̄

.

that is,

1
15

10ln
(

W1

1,000

)
+

14
15

10ln
(

W1

1,000

)
=

1
15

10ln(1.5)+
14
15

10ln(4)

1
15
14
15

( 10
W1
10
W2

)
=

11
75
64
75

.

The solution is W1 = 1,650.99 and W2 = 3,972.69. Thus the premium of the offered
contract is 4,000−3,972.69 = $27.31 and the deductible is 3,972.69−1,650.99 =
$2,321.70. Both types purchase this contract. Thus the monopolist’s expected total
profits are:

10,000
[

27.31− 11
75

(2,500−2,321.70)
]
= $11,593.33.

�
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Solution to Exercise 7.6

(a) First calculate the maximum premium that the H-types are willing to pay for full
insurance by solving

2
10

√
9,000+

8
10

√
16,000 =

√
16,000−h.

The solution is hH
max = $1,560. Thus under Option 1 the monopolist would only

offer full insurance at a premium of $1,560, attracting only the H-types; its total
expected profits would be

1,000
(

1,560− 2
10

7,000
)
= $160,000.

(b) The average probability of loss is

p̄ = qH pH +(1−qH) pL =
1
6

(
2

10

)
+

5
6

(
1

10

)
=

7
60

.

(c) The equations whose solution gives the profit-maximizing contract under Option 2
are:

pLU(W0− `)+(1− pL)U(W0) = pLU(W0−h−d)+(1− pL)U(W0−h)

pL

1− pL

(
U ′(W0−h−d)

U ′(W0−h)

)
=

p̄
1− p̄

, that is,

1
10

√
9,000+

9
10

√
16,000 =

1
10

√
16,000−h−d +

9
10

√
16,000−h

1
10
9

10

( 1
2
√

16,000−h−d
1

2
√

16,000−h

)
=

7
60
53
60

.

(d) The assumption is that CH = (hH = 1400,dH = 0). To find contract CL = (hL,dL)
solve the following equations:

2
10

√
16,000−h−d +

8
10

√
16,000−h =

√
16,000−1,400

1
10

√
16,000−h−d +

9
10

√
16,000−h =

1
10

√
9,000+

9
10

√
16,000

(e) The two contracts are: CH = (hH = 1400,dH = 0), which will be bought by the
H-types, and CL = (hL = 167.52,dL = 5663.07), which will be bought by the L-
types.14 Thus the monopolist’s expected total profits will be

1,000
(

1,400− 2
10

7,000
)
+5,000

[
167.52− 1

10
(7,000−5,663.07)

]
= $169,135.�

14The contract was given in terms of wealth levels as (10169.41,15832.48), from which we obtain the
premium as 16,000−15,832.48 = 167.52 and the deductible as 15,832.48−10,169.41 = 5,663.07.
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Solution to Exercise 7.7

(a) First calculate the maximum premium that the H-types are willing to pay for full
insurance by solving

1
4

ln(4,000)+
3
4

ln(10,000) = ln(10,000−h).

The solution is hH
max = $2,047.29. Thus under Option 1 the monopolist would only

offer full insurance at a premium of $2,047.29, attracting only the H-types; its total
expected profits would be

1,500
(

2,047.29− 1
4
(6,000)

)
= $820,935.

(b) The average probability of loss is

p̄ = qH pH +(1−qH) pL =
3

16

(
1
4

)
+

13
16

(
1

16

)
=

25
256

.

(c) The equations whose solution gives the profit-maximizing contract under Option 2
are:

pLU(W0− `)+(1− pL)U(W0) = pLU(W0−h−d)+(1− pL)U(W0−h)

pL

1− pL

(
U ′(W0−h−d)

U ′(W0−h)

)
=

p̄
1− p̄

that is,

1
16

ln(4,000)+
15
16

ln(10,000) =
1

16
ln(10,000−h−d)+

15
16

ln(10,000−h)

1
16
15
16

( 1
10,000−h−d

1
10,000−h

)
=

25
256
231
256

.

(d) The assumption is that CH = (hH = 2000,dH = 0). To find contract CL = (hL,dL)
solve the following equations:

1
4

ln(10,000−h−d)+
3
4

ln(10,000−h) = ln(10,000−2,000)

1
16

ln(10,000−h−d)+
15
16

ln(10,000−h) =
1
16

ln(4,000)+
15
16

ln(10,000)

(e) The two contracts are: CH = (hH = 2000,dH = 0), which will be bought by the H-
types, and CL = (hL = 19.74,dL = 5859.9), which will be bought by the L-types.15

Thus the monopolist’s expected total profits will be

1,500
(

2,000− 1
4

6,000
)
+6,500

[
19.74− 1

16
(6,000−5,859.9)

]
= $821,394.38.�

15The contract was given in terms of wealth levels as (4120.36,9980.26), from which we obtain the
premium as 10,000−9,980.26 = 19.74 and the deductible as 9,980.26−4,120.36 = 5,859.9.
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Solution to Exercise 7.8

(a) Contract CH is the full-insurance contract that yields zero profits if bought only by
the H-types. Thus its premium is given by the solution to hH − pH` = 0, that is,
hH = 2

10(7,000) = $1,400. Contract CL is given by the intersection of the H-type
indifference curve through CH and the low-risk zero-profit line; thus it is given by
the solution to√

16,000−1,400 =
2

10

√
16,000−h−d +

8
10

√
16,000−h

h− 1
10

(7,000−d) = 0

which is CL = (hL = 109.32,dL = 5906.81).

(b) The average probability of loss is

p̄ = qH pH +(1−qH) pL =
1
6

(
2

10

)
+

5
6

(
1

10

)
=

7
60

.

(c) We need to express the fact that there is a contract at which the average zero-profit
line intersects the L-type indifference curve through contract
CL = (hL = 109.32,dL = 5906.81):

h− 7
60

(7,000−d) = 0

1
10

√
16,000−109.32−5,906.81+

9
10

√
16,000−109.32

=
1

10

√
16,000−h−d +

9
10

√
16,000−h.

�

Solution to Exercise 7.9

(a) Contract CH is the full-insurance contract that yields zero profits if bought only by
the H-types. Thus its premium is given by the solution to hH − pH` = 0, that is,
hH = 1

4(6,000) = $1,500. Contract CL is given by the intersection of the H-type
indifference curve through CH and the low-risk zero-profit line; thus it is given by
the solution to

ln(10,000−1,500) =
1
4

ln(10,000−h−d)+
3
4

ln(10,000−h)

h− 1
16

(6,000−d) = 0

which is CL = (hL = 90.98,dL = 4544.31).
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(b) The average probability of loss is

p̄ = qH pH +(1−qH) pL =
3

16

(
1
4

)
+

13
16

(
1

16

)
=

25
256

.

(c) We need to express the fact that there is a contract at which the average zero-profit
line intersects the L-type indifference curve through contract
CL = (hL = 90.98,dL = 4544.31):

h− 25
256

(6,000−d) = 0

1
16

ln(10,000−90.98−4,544.31)+
15
16

ln(10,000−90.98)

=
1

16
ln(10,000−h−d)+

15
16

ln(10,000−h).

�
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