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Modeling Production with Petri Nets
GIAcoMo BONANNo "

The purpose of this paper is to bring to the attention of economists a
tool of analysis, known as Peti nets, which was developed in
computer science literattffe. Although, from a purely formal point of
view, Petri nets are not a new tool, they do seem to provide a new
perspective on modeLs of prcduction, First of all, the graphLheoretic
reprcsentation of Pefti nets makes it possible to see things that
would be hard to detect from a purely aLgebraic formulation of the
same problent. Secondly, the formal definition of a Petri net allows
one to introduce q wedge between the notions of input and output (to
a production process) antl the notion oJ commodity, Among the
inputs to (antl ctutputs of) a production process one can include
states of nature, logical contlitions, etc. This enables us to sh.,w thctt
one of the assunTptions which is usually considered to be inherent to
Linear modeLs of production, nameLf the absence of external
econonties and disecononries onong processes, can be dispensed
with. We also show that Petri nets do not rcquire another ossumption
normaLLy associated with ectivit)* analysis, namely that of constant
returns to scale. FinalLy, Petri nets allow a simple anal)-sis of the
problent of what commoditl vectors cen be obtained from a given
vector of initial resources.

Introduction

The purpose of this paper is to bring to the attention of economists a tool
of analysis. known as Petri nets, which was developed in computer science
literaturer. We shall attempt to demonstrate that Petri nets can be a uselul
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tool for modeling production, at any level (a single firm, a group of firms, the
entire economy). Fron a purely fbrmal point of view, Petri nets cannot be
considered a new tool. since - as we shall sce , the notion of petri nets is
equivalent to the notion of an inpufoutput system with integer coefficicnts
(fcrr a definit ion of input-output system see Appendix C). Thus Petrr nets
wnuld fall within the category of l inear production models or activity
analysis. Howevcr, there are scveral points of view from which Petri nets
may be a superior modeling tool to traditional l inear production models.
First of all, thc graph-theoretic representation of Petri nets makes it possible
to see things that would be hard to detect from a purely algebraic
formulation of thc same problcm (the examplc of Figure 5.1 , Scction 5, is an
il lustration of this). Sccondly, the formal definit ion of a Petri net allows onc
to introduca a wedgc between thc notions of input and output (to a
production proccss) and the notion of commodity. Among the inputs to (and
outputs of) a produotion process one can includc states of nature. logical
conditions, ctc. This wil l cnable us ro show (Section 5) rhat one of the
assumptions which is usually considercd to be inherent to l inear models of
production, namely the absence of external economies and diseconomics
among processes, can be dispenscd with: Peti nets c4r incorporate extcrnal
economies and diseconomies. We also show (Section 5) that Petri nets do rot
requirc another assumption normally associated with activity analysis,
namely that of constant returns to scalc. Finally, Petri ncts allow a simple
analysis of a problem, which so far has receivcd little attention in gcneral
input-output analysis. nameiy what commodity vectors can bc obtained fiom
a givcn vector of init ial resources (thc so-oalled reachabil ity and coverabil ity
problems).

The papcr is organized as fbllows. In Sections l-4 Perd nets arc
introduced and both their graph-theoretic and algcbraic representations are
il lustrated. Two important concepts associatcd with Petri nets - exeoution
and rcachabil ity - arc cxplained and given an economic interpretation. In
Scction 5 we elaborate on the economic interpretation of Petri nets and
show that thc assumption of absence of cxternal economies and
diseconomies among processes and the assumption of constant returns to
scala are not inhcrent to Pstri nets. In Section 6 the oroducrion
possibil i t ies associated with a Petri net modcl of production with specifie<l
init ial rcsources are discussed. Finally, in Section 7 the notion of
commodity "augmcntabil ity" or "producibil i ty" is introduced and a simple
test fbr augmentabil ity is proved. Therc are also three appcndices where
somc of the issues arc dealt with in greater detail, such as the definit ion of
rcturns to scalc appropriatc to a model with integer constraints and the
rclationship bctween Pctri nets and activity analysis or input-output
systcms.
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l. Petri Nets: Graph-Theoretic Representation and Economic Interpretation

Dejinition L A Petri net ts a quadruple (q T, A, v), where
(i) P = {pr, ..., p"} is a set ofplaces (thus n is the number of places);
(i i) T= {t,,..., 1.} is a set of trqnsitions (thus m is the numher of

transitions);
( i i i )  P n T = Z ;
( iv )  Ac(PxT)u(TxP)  i s  a  se t  o f  4 rc r ;  i f (p j , t j )  €  A ,  we say  tha t  p lace

pi is an input to transition tj; if (!, pJ e A, we say that place pi is an

ortprt of transition ti;
(v) v:(Px T)u (Tx P) -+ N (where N is the set of non-negative integers)

is such that v(.r) = 0 if and only if a e A: if a e A, we call v(c) the

muLtiplicitl^ of arc a.
Example  L l .  The fb l low ing  is  a  Petd  ne t :  P={p 'p2} ,  T= t t . t r l ,
4 = {(p,, t,), (p| t2), (p2, tr), (t| pr), (t} pr)}, v(p,, tr) = l, v(p| q) = 2,
v (p '  t , )  =  3 ,  v ( r ,  p r )  =  4 ,  v (q ,  p r )  =  3 .

Graphically, cach place pi is represented by a circle and each transition tj

is represented by a rcctangle. We draw an arrow from pi to ti if and only if
(p,, t,) e A and we draw an arrow from tj to p, if and only if (\, p,) e A. Next

to each arrow we write the multiplicity of the oorresponding arc.
For instance, thc Pctri nct of Example l I can be represented as shown ln

Figure L l .

Figure Ll

Economic interpretation, The most obvious economic interpretation of Petri
nets is as follows: each transition represents a production process and each
place represents a commodity. According to this interyretation, transition tr
in Figure l.l represents a production process that requires I unit of
commodity pl and 3 units of commodity p, to produce 4 units of commodity
p| whilc transition t2 represents a production process that uses 2 units of
commodity p, as input and delivers 3 units of commodity p2 as output.
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We shall maintain throughout the original terminology of Petri nets and
indicate separately the suggested interpretation. There are two reasons why
we prefer not to depart from the original terminology: ( l) it will be easier for
the reader to refer to the computer science literature on the subject, and
(2) there may be other useful economic interpretations of Petri nets beyond
the one suggested in this paper.
Definit ion 1.2. A marking for a Petri net is a function p:P-+N (thus a
marking can be thought of as a vector p € N'; recall that n is the cardinality
of the set P of places). A marked Petri net is a Petri net together with an
initial marking p.

Graphically, we can represent a marking in one of two ways: if the
numbers p, = ',r(p) (i = 1, ..., n) are small, we draw, inside each place p,, p,
dots r called tokens: if the numbers are large, we write the number p, inside
each place pj. For example, the marking F(0,) = +, F(p2) = 3 for the Petri net
of Figure l.l can be represented in one of the two ways shown in Figure 1.2.

266

Figure | 2a Figure L2b

Economic interpretation. A marking can be thought of as a vector of
avaiLable resources. Thus Figure 1.2 represents a situation where the
resources that are initially available are 4 units of commodity pr and 3 units
of commodity p2.

2. Execution Rulesfor Peti Nets

Definition 2../. A transition of a marked Petri net is enabled at marking yt, if
each of its input places has at least as many tokens in it as the multiplicity of
the arc from it to the transition. That is, transition ! is enabled at p if

(pi, t j) € A = tr(pi) > v(p,, t;).

For example, in the marked Petri net of Figure 1.2, both transitions
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are enabled (since p(pr) = 4 > v(P,, t,) = t, F(P,) = 4> v(p,, tr) = 2, p(pr) =

v(p ,  t , )  =  3 ) .
In the economic interpretation suggested above, to say that transition tj is

enabled at marking p is to say that the production process represented by tj
can be activated (or operated) given the available resources. Thus in the
example of Figure 1.2 production process t2 can be activated, since it
requires, for its operation, 2 units of commodity pP and (at least) 2 units of
commodity pr are indeed available. Similarly, production process tr can be
activated, given the available resources.
Delinition 2.2. A transition can fire at pt only il it is enabled. When an
enabled transition ti fires, v(pi, ti) tokens are removed from each input place
p, of tr and v(tr. p,) 'tokens are added in each output place pi of t j. Thus the
firing of a transition at marking p leads to a new marking p' defined as
follows frecall rhat if (p,. t i ] e A. then v(pi, t j) = 0 by definit ion; similarly, if
{1 , .  p , )  F  A .  then.  by  de f in i t ion .  v ( t , .  p , )  =  0 l :

| l '(P) = p(p,) - v1p,' t j) + v(tj, p) (i = 1, ... '  n).

Note that, since only enabled transitions may fire, the number oJ tokens
in each place always remains non-negative when a transition is fired.
Transition firings can continue as long as there is at least one enabled
transition. When there are no enabled transitions, the execution halts.
Example 2.1. Consider the marked Petri net of Figure 1.2. Firing transition t2
(operating production process t,) leads to the marked Petd net ofFigure 2.1.

Figure 2. la Figure 2. lb

In the marked Petri net of Figure 2.1, again both transitions are enabled.
Firing transition t2 (operating production process t2 again) leads to the
marked Petri net of Figure 2.2.

In the marked Petri net of Figure 2.2 none of the tmnsitions is enabled:
we have reached a deadLock. Thus if Figure 1.2 represents an economy at a
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Fisure 2.2b

given instant in time, opcrating only production process t2 leads to a
situation where commodity pl is depleted and no more production can take
place (in this cxample a deadlock can be avoided by a suitable activation of
production process t,). In the next section we show how to represent the
production possibilities that are associated with a given marked Petri net.

3. The Reachability Digrqph of a Petri Net

Given a Petri net (P, T, A, v), thc associated reachability tligraph is the
fbllowing arclabeled infinite digraph. The set of vertices is N. (the set of
possible markings lbr the Petri nct). Given two markings p and p' in N",
there is a directed arc from p to p' if and only if there is a set S = {tjr, ..., r j.)
of transitions all of which are enabled at p and whose simultaneous ltring is
possible and leads from p to p'. For every such set S of transitions we draw
an arc fiom u to u'and label it with S.
Example 3.1. Consider the Petri net of Figure 1.1. Figure 3.1 shows part of
its reachabil ity digraph. The path (4,3), t2, (2,6), tr, (0,9)) is the one
il lustrated above in the sequcnce of Figures 1.2,2.1 and 2.2 Note that both
transitions tr and t2 are cnabled at marking (4,3) and also at marking (2,6).
However, the simultaneous firing of the two transitions is only possible at
(4,3) and not at (2,6) (tiring borh tr and t2 at the same time rcquires at least 3
units of thc commodity represcntcd by place p,). Thus therc is no arc labeled
{ t I ,  t2 }  ou t  o fnode (2 ,6 )2 .
Dejinit ion 3.1. A marking p,' is reachable Jrctm pif either p' = p or there is a

I Thus, in general. even if one can go from I to U' in two sleps, by firing rransitions t and tr
(with k +j) in ,rny order, it mry not bo possible ro go direcrly from p to F' by firing rr-rnd tr
sinultul,€ously. The rcason as pointed out abovc is that. although both t, and t, are enabled at
F (so that each cm be fired in isolalion), there may not be enough resouries to irre both ar the

Figure 2.2a
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path from U to p' in the reachability digraph. The reachability set of a
marking p,, denoted by R(p), is the set of markings that are reachable from p.

According to the economic interpretation suggested above, the
reachability set R(p) represcnts lhe production possibiLities associoted with a
gi|en vector yt of tnitial resources (that is, all the commodity vectors into
which the initial rcsources can be transformed). In the example of Figure L2,
where the initial resources are 4 units of commodity p, and 3 units of
commodity p' it is possible, for instance, to double the quantity of

commodity p2 without reducing the quantity of commodity pr; the
commodity vector (4,6) can be obtained from the vector of initial resources
(4,3) [c1. Figure 3. t].

The reachability set of a marking p can be obtained from the reachability
digraph of the Petri net by considering its maximal subgraph with p as
source. R(p) will then coincide with the vertex set of this subgraph.
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Fu hemore, the subgraph would also givc complete information concerning
all the possible sequences ol' transition fir ings that lead from p to any
marking pL'reachable from p. Unfbrtunately, this subgraph may bc very large
and in most cases is infinite. A more practical tool for analyzing questions of
reachabil ity wil l be discussed in Scction 6.

The reachability digraph does not provide any information conceming
time, which may be an important issue in modeling production. Howevet
therc is a straightlbrward way of modifying the reachability digraph so as to
represent the amount of time involved in moving from a vcctor of initial
resources p to a new vector p' € R(p). Let Tj be the number of units of time
required to operate thc production process represented by transition t,. Given
a set S = {tjr, ..., !.} of transitions, let r, bc ths amount of t ime that elapses if
all thc production processes in S are run simultaneously. Clearly
r" = max {1,, .... r;}. Then we can cxtend the label associated with an arc in
the reachability digraph by adding thc corresponding amount of time r.. For
example, consider again the marked Petri net of Figure 1.2 and suppose that it
takes 1 unit of time to operute process tr and 3 units of timc to opcrate proccss
t" (that is, rr = I and ru = 3). Hence it takes 3 units of time to operate the two
processes simultaneously. It is then easy to see from Figure 3.1 that the
minimum amount of time it takes to transform (4,3) into (4,6) is 9 periods
(achievcd by following the path ((4,3), {rl, r?}, (5,3), {t l, rr}, (6,3) tr, (4,6)),
that is, by running the two processcs simultaneously twice and then t, only) 3.

4. The Algebraic Representation oJ Peti Nets

Givcn a Petri net (P, T, A, v) with n places and m transitions, the
associated input matix is the n xrn -u,r1* 4 = (au)",* where rz,r = v(p,, t j);
thc associated output mdtrix is the nxm matrix B=(b,,)",, where
bu=v(tt,Pi) For example, lbr the Petri net shown in Figure 1.1, the
assocrated lnDut matnx ls '^"";;';i

^ = \ :  o /

p
I

3 In general, however, the minimum amount of fime requi.ed ro go from !r ro p' may be less
than the surn of the tirno labels associared with lhe arcs that fornl (he (relevml) path from U ro p'.
This is because when somc processes are run sirnultaneously and one ofthem takes less timc thao
{he others. then it may be possible to res{ar1 this process (if required by the path) while rhe oth€rs
are still running. Thus the sum of the time labels only giv€s an upper bound to thc minimum timc



G. Bonrono: Mocleling Produclion wilh Petri Neis

whi le  rhe  a \ \oc ia lcJ  ou tpu t  mat r i \  i s

t r a n s l l t o n s

3)
Using the input and output matrices A and B we can recast the previous

dcfinit ions in vector and matrix tcms. Let e, e N'bc the unit vector whose
j'h component is I and cvcry other comdonent is zero. Transition t., is
represcntcd by the unit vector ei. Now transition t, is enabled at marking p if
and only if

It> A ej

and the result of firing transition tj at marking !r is the new marking pr' given
by

p ' = F  A  e , * B e  = p + ( B  A )  e j .

On the other hand, starting at marking p and tiring the sequence of
transitions o = tt, ti, ... tiu leads to the new marking p" given by

t 1 " = 1 - r + ( B  A ) e \ + ( B  A ) e , r + . . .  +  ( B  -  A )  e j *  =  p  +  (  B  -  A )  f l o )

where

.f (ct) = eit + ej2+ ... + ejk.

The non-negative integer vector /(o) is called the f.ring vector of the
sequence o = tjr t1. ... t;*. The j 'h component oflo) is the number of t imes
that transition tj f ires in the sequence tjr t i :...t jr.

Now, if marking p' is reachable from marking p, there exists a sequence
o (possibly empty) of transition firings that leads from p to p'. This implies
thatfo) is a solution, in non-negative integers, for x in the fbllowing matrix
equatlon 4:

p ' = p + ( B - A ) x

Thus, if pr' is reachable from p, then Equation (1) has a solution in non-
negative intcgcrs; if Equation (l) has no such solution, then p'is not

{ Equation (l) can also be written as U'- p = (B - A)x,where the leflhand side represents
the addition to the initial resources |l (n€t output). Thus it is a generalization of the well-known
Leonticf equation: y = (l A)x. Notc thal. unlike in the Leontief case. the makices A and B are
nol ncccssarily squarc and each proccss can produce several outputs (that is, joint produetion is
allorved).

2'7 |

p
I  t ,

i  s = { 1

( l )
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reachablc fiom pL. Considcr, for example, the Petri net shown in Figure l. l,
/ r  1 \  / r  ^  / 0 \  / 0 ,

u h c r e A = l  I  
' ) a n a B = { ]  

: I . L c r u = l  l u . l u ' = l " I . T h e n  E q u r t i o n
\  r  0 /  \ 0  3 /  \ q /  \ 8 /

/ )
(l) has a uniquc solution x = { 

' . 
), wnich is not in non-ncgativc inrcgers.

\ -  1 /
o \  . 0 \

Hence l  
'  

l  r :  n , ' t  re rchah le  l ro rn  I  i  )  r in  [ac l .  wc  know f rom F igurc  3 .1  tha t
\ ) J /  i 9 /  

, l t  r l r
the latter is a dcad-cnd). On the other hand, ler p = I l. F'= | .1. Then

/ t \  \ J /  \ O /

Equation (l) has the uniquc solution x=l:J,*tri.t.r corresponds to either

the fir ing sequence tr t2 t2, to t. t l  t, or {t,, tr} t2, but to no othcr scquence
(c f .  F igure  3 . l ) .

Notc that thc existence of a solution in non negative integers of Equa-
tion (1)is a necessary but not sLtfrcient condition for p'to be reachable
lion pL. For examplc. considcr again the Petri net shown in Figurc 1 I, whcrc

l l  2 \  r , 1  0 \  r 0 \  l l ,
a = l  ,  , ,  J r n d B = { ^  ,  J .  L c r  1 - r = i ^ 1 .  [ ' = { , . J .  T h e n  E q u r t i o n  ( l )

\ . 1  r ,  \ u  . 1  /  \ v ,  \ r |
/ r \  / l \  / 0 '

has  thc  .o lu t ion  r  =  { -  I .  Howeuer .  |  , ' .  I  i s  nor  reachab le  t rom l^  l .  " incc  rnc
\ 4 /  \ t t /  \ e /

latter is a dead-end (cf. Figurc 3.l) 5

Wc saw above that with a Petri net one can associate a pair of n x m
(input-output) matrices (A. B) whosc cntrics arc non-negative integers.
Conversely, givcn a pair of n x m matrices (A, B) whosc entrics arc non-
ncgativa integers one can associate with it a Petri net as fbllows. AssoeiaLc
onc place with each row ofA and one transition with each column ofA.
Draw an arc from place p, to transition I if and only if a,r (the entry in the
i'r '  row and j ' l '  colurnn of A) is positive ant assign multiplicity dij to that arc.
Finally. draw an arc from transition ti to place pi if and only if Dii (the entry in
the i 'r '  row and jth column ol B) is pirsit ive and assign multipliCity l: l i i  to that
arc. Thus the otion of Petri nets is equivalent to the notion oI a pdir oJ n x m
matrices (A, B) whose entries are non-negative integers. 

^fhe graph-thcorctic
dcfinition has the obvious advantages that come tiom a visual rcpresentation
of thc undcrlying structurc. For example, considcr thc problcm of deciding

I lt may seem lhat (his problenr can be solvcd as tbllows. First determine ifEquation (l) has
x solution in non-negative integers. lf it does not, then p' is not reachable from p. Othc.wise, let x
be a solution in non negalive integers Llrl k be the surn of the components of x (thal is.
k = xr + x2 + ... + x,,,). Consider lhe, at most ki. possible sequences of transition firings cornpatible
wi th x ( for  cxamplc.  i l  x=(1.2) .  then al l  the possib le f i r ing sequences compat ib lc wi lh x are
t  t . t , ,  t ,  t r  I ,  and t2 l r t1) .  I f (a l  lcasl)  one of lhem is legal ,  p '  is  rexchible f rorn F.  The problem
with this proc€dure is lhat Equation (l) nrielhl hxvc lnore thrn one solurion in non negJlile
integers.  eveD an inf in i te numbcr of  solu l ions ( for  an cxample see Peterson,  l98l ,  p.  l  l l i  in  th
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whether, in the marked Petri net of Figure 4.1 (where the multiplicity of each
arc is I ), it is possible to obtain an arbitrarily large number of tokens in some
or all of the places, and if so, how.

Figurc 4-l

From the matrix representation the answer is not immediately obvious. The
input matrix A and the output matdx B of the Petri net of Figure 4,1 are as
follows:

2'73

B =

From the graph-theoretic rcpresentation, however, it is apparent that the
answer is "Yes" for place p, (all is needed is that the sequence tl t2 be fired a
sufliciently large number of times) and "No" for the other two places.

The "producibility" problem - whether or not it is possible to obtain an
arbitrarily large number of tokens in a given place, or set of places (that is, if
it is possible to increase, through production, the quantity of a qommodity or
set of commodities) - is an important one and will be dealt with in Section 7.

5. Petri Nets, Externalities and Returns to Scale

We suggested an interprctation of Petri nets in terms of the production
possibilities of a firm, or group of firms, or the entire economy: each place
represents a commodity and each transition represents a production process.
With this interpretation in mind, onc might be tempted to conclude that a
Petri net is "nothing more than a von Neumann input-output system with the
added restriction that the entries of the input and output matrices be
integcrs". The relationship between Petri nets and input-output systems is

/ o  o  o  \A = l r  0  I  I
\ 0  I  0 /

I  t 0 \
0 l 0 l
0 0 1 /
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examined more thoroughly in Appendix C. Here we shall highlight the fact
that two assumptions that have been inherently associated with linear
production models - namely the absence of externalities between processes
and the presence of constant returns to scale - arc not implied by the nolion
of Petri nets 6.

We shall first of all show that externalities cca be represented in a Pctri
net. Consider the following simple example. There arc two firms near a lakc.
One firm is an oil refinery that uses one unit of oil to produce one unit of
gasoline. Production of gasoline leaves chemical waste that the llrm
discharges in the lake. This chcmical waste is a pollutant that reduces the
population of fish in the lake. The other fim (a fisherman) uses a boat to
fish. If the lake is not polluted, the fisherman can flsh an average of 100 fish
in one trip. If the lake is polluted, the catch will only be 20 fish per trip. This
is a clear example of external diseconomies betwccn the two production
processes. Suppose that, initially. the lake is not polluted ard oil refning futs
not started yet, For sirnplicity, we shall also suppose that the supply of oil is
unilimited. This situation can be represcnted by the marked Petri net of
Figure 5.1 (where the place corresponding to oil is marked with the symbol
co to denote the unlimited supply of oil; furthermorc, for simplicity, the arc
multiplicity has been omitted whenever it is equal to l). The only restriction
that we necd to impose is that if pn is an arbitrary initial marking, then

polpr] + Fo[p.,] = I

expressing the fact that the conditions "the lake is polluted" and "the lake is
not polluted" are mutually exclusive and each condition can only be cithcr
true (marking of l) or talse (marking of 0)7. A number of things should be
noted about the Petri net of Figure 5.1 :
(i) A pLace does not necessarily represent a commodity (if by commodity

we mcan a physical cntity for which there is a market or price). Thus we
have not only places representing the commodities: boats (pr), fish (pa),
oil (pr) and gasoline (p) but also places reprcsenting the condition, or
state of nature, "the lake is polluted" (p1) and the condition "the lake is
unpolluted" (p,).

(i i) Fishing does not oreate pollution and, therefore, if the lake is unpolluted

6 lt is also wonh noting that. in principle, there is no need to assume that every row ofB has
at least one positive entry {this assumption which is oftcn made in the context of the von
Neumann growth model means that every commodity is produced by at least one process): some
of the places of the Pelri net could rcpresent non-producible commodities (e.g. various kinds ol
labor). Also it is meaningful to have one or more columns of I consisting entirely of zeros: the
concsponding tmnsilions would then represent disposal processes.

7 Note that if the inilial marking !0 satisfies the above condilion, (hen every marking
reachable from u.. also satisfies that conditior,.
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Fisure 5.1

and fishing takes place at the high rate of 100 fish per trip, the lake
remains unpolluted (p, is both an input to and an output of tr).

(iii) The oil-refining process has been represented as two separate processes,

one (transition q) using the unpolluted lake, and the other (transition t4)
using the polluted lake, as input. The former can be activated at most
once (activating q removes the token in p2 for ever). After that, the lake

becomes polluted and fishing ^t the high rate of 100 fish per trip
(transition tr) is no longer possible.

(iv) Fishing at, the lo\r rate of 20 fish per trip (transition t2) and refining can
coexist for ever (reflecting the simplifying assumption that the amount
of pollution is constant, for example because of a constant inflow of
clean water into the lake and a constant outflow of polluted water, e.g.
throush a river).
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(v) The boats havc been modeled as an infinitely l ived capital good (pr is an
input to, as wcll as an output oi both tr and t.,).
This example also shows that the graph-theorctic represenration of pctri

nets can be a very eflcctive modeling tool. Whilc it is very casy to grasp the
situation depictcd in Figure 5. I, i t would bc extremely hard to gain the same
understanding by mcrc inspcction of the corresponding input and ourpur
matrices, which arc as follows (A is the input matrix and B the output
matrix):

l 0
0 l
l 0
0 0
0 l
0 0 i ] a n d

( r  r  o  o )
1 1 0 0  0 l
l 0  r  I  1
1 1 0 0 2 0  0  0 l
1 0 0 0  0 l
\ 0  0  |  1 )

Beforc we address the issue of rcturns to scale. we shall discuss the
question ol whether the main rcstriction cmbedded in the notion of petri nets
- namely that the cntries of the input and output matrices arc (non-negative)
integers is indeed a restriction. We argue that, trom the point of view of
applications. it is not. First of all, many commodities (c.g. pianos, washing
machines, etc.) arc produccd in indivisible units and for them the integer
constraint is actually a requirement rather than a restriction. Other
commodities (e.g. milk, cream cheese, etc.) are produced in divisible units.
However, lor practical reasons, for each such commodity thcrc is a minimum
unit of measurement below which no further division takes place (e.g. for
cream cheese grams or ounces), Taking the smallest possible (from a
practical point of view) units of mcasurement for each such commodity, the
integer constraint wil l obviously be satisfied. If one accepts the above
argument in favor ol ' integer constraints, then one must also accept that eac&
production process must have a minimum scaLe of operetion, bounded below
by the production of thc smallest (practically measurable) unit of each
output.

We now show that Petri ncts can also model situations where there aro
incrcasing returns to scalcs. Of course, this is trivially tri le if one takes the

3 What about detrca.titry rctr:ns to scale? From a togical point of view, ihc notion of
decreasing returns to scale does not nrake sense. The notion of decreasing retums to a r/crrr ls
cetainly mcaringful (il is ilhrsrra(ed in rhe classicat probten of thc continuat addilion of labor (o
r fixed anrount of land, say, one acre) Dccreasing retums to r.dle. on the other hand, lncans that
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point of view that integer constraints (hat is, indivisibilitics) are the essence
of the notion of increasing returns to scale. According to this point of view -

which is not thc one taken here Petri nets can model orl) increasing returns
to scale! We shall adopt a definition of returns to scale which separates the
intcger constraint problem from the issue of whether a production process

can be scaled up or down. For a detailed discussion the reader is referred to
Appendix A. Intuitively, constant returns to scale means that by doubling all

the inputs one obtains exactly double the amount of output, while increasing

retums to scalc means that by doubling all the inputs one can more than

double the output. If a production process is characterized by constant

rsturns to scale, then - for the type of questions examined in this paper
(reachability, coverability, producibility, etc.) - it is sufficient to list the

minimum scale intcnsity of the proccss: scaling the process up by a factor of

n is thc same as firing the corresponding transition n times On the other

hand, if a production process is characterized by increasing returns to scale'

then it can be represented by a numbcr of different transitions, each

rcpresenting a minimum scale of operation. Consider the following simple

example: if a group of fishermen use one boat, they can get, on average, 100

fish per trip, while if thcy use two boats, their catch is, on average, 250 fish.

Figure 5.2

This situation can be represented by the Petri net of Figure 5 2 If the

init ial marking is, for example, PlP,l= 2 and Plnrl = O, then one can either

fire transition tr twice or transition [2 once. In the first case the new marking

doubling.r// the inputs (in the prcvious example, land as well as labor) leads to less than double

the amounl of oufput. However, if all the inputs 1{) a production process arc listetJ' then rcPetition

or dupliutbn ol the pro(6s nusl yield double amount of eoch oulful! lt is genemlly agred thal
''decreasing retums to scale require thc presence of an exlra input, not listcd in the argurnent\ in

the pro{luction function, thxt cannot be duplicated" (Silvestre, 1987, p. 80.}. In a Petri net the

avaitabilily of inputs is represented by the notion of marking, which is independent of the ndrion

f ishine
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will be (2,200), in thc second case it wil l be (2,250) [note that the pcrri ner
of Figure 5.2 reflects thc assumption rhat boats are infinitely lived capital
goodsl.

6. Production PossibiLities arul the Karp-MillerTree

In Scction 3 we dcfined, fbr a given Petri net with initial marking (vcctor
of resources) p, the reachability set R(p) as the set of those markings
(cemmodity vcctors) that can be obtaincd fiom p by some sequence of
transition l ir ings (operations of production processcs). We saw that onc way
of obtaining the set R(F) is by constructing the reachabil ity digraph. There
may be cases, howevcl where onc is interested not in constructing the whole
set R(p), but in establishing whether or not a particular commodity vector p,
belongs to this set, that is. is reachable from the initial vector of resources p.
This is the so-called reachability problem for Petri nets:
Reacfutbility problem: given an initial marking p and a marking pr,, is p,
reachable from g? Mayr (1984) showed that it is decidable whether or not a
marking p'can be reached from p. However, the corresponding algorithm is
of exponential complexity (in storage space and time). On the other hand, the
coverability problem can be decided with a much simpler algorithm
(yielding the so-called Karp-Miller covsrabil ity tree).
Coverability problem. Given an initial rnarking p and a marking p', does
thcre exist a marking tl" such that:

(i) p" is reachable tiom p. and

(ii) p" > rL' ?

Karp and Miller (1969) constructed an algorithm that yields thc so-
callcd, coverttbility tree. The aim is to replace thc (usually infinite)
reachability digraph with aJinite tree. Associatcd with each node of the rrcc
is an extended marking. Recall that a marking is a point in Nn (wherc n is the
numbcr of places). An extended marking is a point in the sct (N v {"o})".
The simbol co stands lbr "infinity" and represents a number of tokens that
can be made arbitrarily large. Forany 

j:T, 

" we define:

k < c o

@  1 @ ,

Given an init ial marking po, we associate !r0 with thc root of the tree. Wc
then proceed as in the reachabil ity digraph, except that: (i) wc crcate a new
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nodc for evcry marking (this is a necessary condition for the result to be a
tree), (i i) we introduce rules aimed at making every path from the root
finitc. Thus starting from the root any path leads to a terminal node.
Obvious terminal nodes are dead ends (that is, markings at which no
transition is enabled), or nodes whose associated markings are duplicates
of markings previously obtaincd. The symbol co is used to obtain the
rcmaining tcrminal nodcs. Consider a sequence of transition fir ings o
which starts at a marking p and ends at a marking p' with p'> p, tr '+ F
(thus, at least one component of p' is greater than the corresponding
component oi p). Clearly, all the transitions that were enabled at p are also
enabled at F'. Thus the sequence o can be fired again starting from p'and
will lead to a new marking p" = g'+ (p'- F) [since the sequence o adds
the vector of tokens (p'-|r)1. If we fire o n times, we add the vcctor of
tokens (p' p) n times. Thus, for those places which gained tokens from
the sequence o, we can create an arbitrarily large number of tokcns simply
by repeating the sequence o as often as desired. For example, it can be
seen from Figure 3.1 that f lr ing the sequence 6 = tr t2 from a marking (x, y)
lcads to marking (x + I, y): f ir ing o from (4,3) leads to (5,3), f ir ing o from
(2,6) leads to (3,6), ctc. When we obtain a marking p'> p, p'* lr, we can
replacc p'with an cxtended marking where there is the symbol co in place
of those components of [ '  that are greater than the corrosponding
componcnts of p.

The Karp-Miller coverability tree is constructed by the following
algorithm (which wil l be i l lustratcd in Figures 6.1-6.5). Every node v of the
tree is assigned two labels: an cxtended marking p[v] and the label
1"[vl e {temporary, interior, dup]icate, dead-end, infinite}. The algorithm
tcrminates when there are no nodes v such that l,lvl = "1smp61nry".

Step l. Let ps be thc initial marking. Label the root v0 as follows:

F[vo] = po, ),[vo] = "temporary".

Srap 2. While nodes v such that ),[v] = "temporary" exist, do the following:
Step 2.-/. Sclcct a node v such that )"[v] = "tcmporary".

Step2.2.If p[v] is idcntical to p[v'] lbr some node v'+v with
l"[v'] + "duplicate", sct tr"[vl= "duplicate".

Slep 2.-i. If no transition is enablcd at plv l, set ),[v] = "dcad-end".

Stet, 2.4.lt c^ch coordinate of p[v] is thc symbol o, set ]"[v] = "infinite".

Step 2.5. whilc there exist enabled transitions at F[v], do the following for
each enabled transition at pIv].

Step 2.5.1. Set ),[v] = "intcrior". Draw a new veftex w and an arc from v to
w. Label the arc with transition t. Obtain the marking p'that

results from firing t at p[v].
Step 2.5,2. If on the path from the root to v therc exists a node z + v such that

p'> p[z] and p'+ p[z], thcn replace each component of pt'which

2'79
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is greater than the coffesponding component of p[z] with the
symbol co.

Step 2.5.3. Set p[w] = p' and ]-[w] = "1empq1ary".

It can be shown that the Karp-Miller algorithm tenninates (all nodes are
labeled as either interior or duplicate or dead-end or infinite) and thereforc
yields a finite tree. Thus thc coverability problem is decidable.
Example 6.1. Consider the marked Petri net of Figure 1.2. With the aid of
Figure 3.1 it is easy to see that the Karp-Miller algorithm yields the
coverability tree of Figure 6.1 . In facr, at (4,3) both tr and t, are enabled. Firing
tr leads to (7,0) while firing t, leads to (2,6). At (7,0) the only transition that is
enabled is tr. Firing t2 at (7,0) yields (5,3) which is greater than (4,3) (the initial
marking); the first component is greater while the second is equal. Thus we
replace 5 with co and attach label (o,3) to node v3. Going now to node v2, at

( ' , .  1)

( s a h e  a \  ! r )

Figure 6.1

(2,6) both transitions are enabled. Firing q leads to (0,9) which is a dead end
(no transition is enabled). Firing tr leads to (5,3) > (4,3), (5,3) + (4,3). Thus we
replace 5 with co and attach (co, 3) to node va. We have obtained a duplicate of
node v,. Now go back to node v.,: both transitions are enabled. Firing t, leads
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to (co + 3 = co,0). Firing t, leads to (co - 3 = o,6) which is greater than ("o, 3),
the second component being greater. Thus we replace 6 with co and obtain the
label (co, co) for node vr. Now we go back to node vu, firing tansition t2leads
to (co 2 = co, 3) which is a duplicate of node v3.
Example 6.2. Consider the marked Petri net of Figure 6.2. Using the Karp-
Miller algorithm we obtain the tree shown in Figure 6.3.

Figure 6.2

l :  r , . 0 . 0 )

(  l ,  0 . 0 .  l )

( 1 , {  I n l

Fi r ins  r r  a r  (1 ,  0 .  1 .0 )  leads  to  (1 ,  0 .0 .  l ) .  Th is
marking did nol appear belbre and is not

Breater than one lhat appcarcd bcfo.e
T h u s  l a b e l  ! ,  s i t h  ( 1 . 0 . 0 .  1 )

F i r jng  i :  ! i  (1 .0 .  0 ,  l )  g ives  (1 .  l ,  1 .0 )  *h ich  s  Srca tc r
than the narking of vo: the second componenr ,s

Breate.. the othcr componcnls lre equal
Replace rhe second componenl ejth jnlinrty lnd
a t tach  ro  \ :  rhe  l .be l  (1 ,  r r .  1 .0 )

(1.  r . .  0.  0)

(no rrans,lron cnabled berc)

( 1 .  r .  1 .  0 )

dup l ica tc  (same Ns lNbc l  o f iode ! r )

Figure 6.1
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Although the Karp-Miller tree answers the coverability question, the use
of the symbol co involves an important loss of information. For example;
(i) two essentially different Petri nets might have the same coverability tree
(lor an cxample sce Peterson, 1981, p. 104);
(ii) even if the coverability trec has no nodes labeled ,.dead-end', (and even
if there is a node labeled "infinite"), the net may deadlock. Consider for
examplc the marked Petri net of Figure 6.4, whose reachability tree is shown
in Fisure 6.5.

Figure 6.4

0 .  0 . 0 )

I ,
I

,/ '\

Figure 6.5

The following firing sequcnce leads to a deadlock:
t ,  t ,  t ,  t .(  1 .0 .0 )  - - r  +  t2 .1 .0 )  -  5  t .1 .2 .0 )  - ,5  14 .3 .01- r - -+  t0 ,0 ,  |  )  deadtock .

1 . AugmentabLe Commodities

Givcn an initial marking (interpreted, economically, as a vector of initial
rcsources), it is easy to cheok if it is possible to produce an arbitrarily large
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numbcr of units of commodity i by simple inspection of thc corresponding
Karp-Millcr coverability tree: if therc is a node in thc tree whose
corresponding extcndcd marking has the symbol or as its i1h component, then

thc answer is aftrmative, othcrwisc it is negative. However, one could ask
the same question withom re.ference to a specilic vector of initiaL resources.
This motivates the tbllowing dcfinit ion.
Delinition. Commodity i (reprcscnted by place p,) is augmentdble if thcre

cxists an initial marking po such that, for every positive integer N, thcre

cxists a marking pr reachable tiom po whose irh componcnt is greater than or

equal to N.
In other words, commodity i is augnentablc if there is at least one init ial

marking po with the property that, in the associated Karp-Miller coverability
trcc, thcrc is a node whose corrcsponding extended rnarking has thc symbol
": as its i'h component. With this interyretation in rnind it is easy to scc that

the following lemma is true.
Lemtna 7.1. Consider a Petri nct with corresponding input matrix A and

output matrix B. Commodity i is augmentable if and only if there exists an

,r € N"' such that

(B  A)x  )  e '

(where e, € Nu is the vector whose i 'h component is I and every othcr

component is 0).
Thc following proposition shows that one can check whethcr or not a

commodity is augmentable by solving a simple l inear program without

having to impose thc constraint that thc solution bc in integers (that is' not an

integer program) e.

Proposition Z./. Considcr a Petri net with corresponding nxnr input

matrix A and output matrix B. Fix an arbitrary j e { l, 2, ..., m} and let

e, e N' he the unit vector whosc j 'r 'coordinate is 1 and every other

coordinatc is 0. Then. lbr e very i = l, ..., n, commodity r is augmentable i l '

and only if thc following l inear program (note: tot integer program) has a

so lu t ion :

minimize r . e,

subject to: -i € R'', (-8 - A) r . e, and x ) 0,

where e, e Nn is the i ' l '  unit vcctor (note that.rr '  e, is the j 'h coordinate of r).

Prool See Appendix B.
Thc following lemma and proposition are the dual of Lemma 7.1 and

Proposition 7.2. A proofcan be found in Appendix B.

' There does not scem to bc a clear economic intcrpret:tion of Propositions 7.1 and 7.2

2U3
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Lemma 7.2. Commodity i is |lot augnentable if and only if there exists a
-v € N'such that

(B A)ty ( 0 and (y), ) I

where 'T'dcnotes transpose and (y), denotcs the ith coordinatc of).
Proposition 7.2. Considcr a Petri net with corresponding n x ra input matrix
A and ou tpu t  mat r ix  B .  F ix  an  arb i t ra ry  k  e  {1 ,2 , . . . ,  n }  and le t  ek  €  N"  be
the  un i t  vcc to r  whose k th  coord ina te  i s  L  Then.  fo r  every  i=1 , . . . ,n ,
commodity i is ,o1 augmentable if and only if the following l inear program
(noto: /1o/ integcr program) has a solution:

mlnlmtzc )  i  k

r r A  R r T \  / 0 \
s u h j c c t  t o :  r ' c  R n .  l " ^ " ' ) V : 1 , )\  c ,  \ l /

where ei € N" is the irh unit vcctor and 0 e N' is thc vector all of whose
coordinates are 0 (note that ) . e* is the k'h coordinatc ofy).

Concludine Remarks

The purpose of this paper was to bring to the attention of cconomists
Petri nets. a tool dcveloped in computer science. Although, from a purely
formal point of view, Petri nets arc not a new tool (sincc a Petri net is
equivalent to a gcneralized inpuGoutput system with intcgcr cocfficients),
they do seem to provide a ncw perspective on models of production, whether
it is at thc level of a firm, of a group of f irms or of the whole economy. First
of all, the graph-thcoretic representation of Petri nets makes it possible to see
things that would be hard to detect fiom a purely algebraic fbrmulation of
the same problem. Secondly, the formal definition of a Petri net allows on(]
to introduce a wedge bctween the notions of input and output (to a
production process) and the notion of commodity. Among the inputs to (and
outputs of) a production process one can include states of nature, logical
conditions, ctc. This enablcd us to show that one of the assumptions which is
usually considered to bc inherent to linear models of production, namely thc
abscnce of external cconomies and diseconomies among processes, is not
required in a Pctri net model of production. We also showcd that Petri nets
do rol requirc another assumption normally associated with activity analysis,
namely that of constant returns to scale. Finally, Petri nets allow a simple
analysis of a problem, which so far has rcccived litt le attention in gcneral
input-output analysis, narnely what commodity vectors can bc obtained from
a given vector ol init ial resourccs.

and -r ) 0,
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APPENDIX A

ln this appendix we discuss the notion of retums to scale_ Let /? be the number of
commodit ies and Yq R', be a production ser. Debreu (1959, pp.40-41) gives rhe
tbl lowing definit ions:
Constant relunts to scttle (each production vector can be scaled up or down):

y e Y, 7. e R* - ).y e Y (where R* is the set of non-negative real numbers).

Non-decreasing returnr /o rcale (each production vector can be scaled up):

y e Y , ) . e R , 7 , > l = ) , y e Y .

Increasing returns to scale. therc are non-decreasing returns to scale and there is a
possible production lbr which the scale of operations cannot be arbitrarily decreased.

Arcording to this dei lnit ion, whenever there are integer constraints, constant
returns to scrle are rulcd out b), deJ'itritiotl. One is thcrclbre forced to say that Petn nets
can only modcl increasing retums to scalc. In what follows we shall put fbrward
allernativc definitions which are tailo{ed to the case where there are integer constraints.
ln order 1() isolate the intcger constraint problem from thc notion of retums to scale we
shall take the commodity space to be nor Rn but N'. A production set is a subset
yE N" x N". I f  (x, y) e Y thcn x represents inputs and y outputs.
Definit ion. Fol lowing Debreu, we say that production set YgNnxNn has no',
decreasing returns to scale if

(1 1) e I. ). < N,l" > l + )" (,r, r, € y.

Dertnilion. P E N" x N" is a lir"dr /),'oductit t pro.ess with minimum scale (x0, y0) + 0
r l :

(i) P - {(.r, _r) : (,r. r) = }"(x,,, y0) fbr some i E N/{0} }

' i i r  t b r  eve ry  ̂ c  N  w i l h  ) .  >  l .  ] -  r r , , .  y , , r  *  P .
) -  " ' '

For example.  Figure A. la shows a l incar product ion process wi th minimum scale
(4.1)  whi le Figure A. l  b shows a l inear product ion proccss wi th minimum scale (6,2)  r0.

Ll) Figure A.la can bc inteqrreted as follows. There tlre two goods. I and 2. Good I is an
input only and good 2 is an output only. The proccss reprcsented by Figure A.la is the set
P  =  1 ( 4 , 0 , 0 .  l ) . ( 8 , 0 . 0 . 2 ) , 1 1 2 , 0 . 0 . 6 ) . . l . T h u s P i s a 4 - d i m e m i o n d s c r a n d F i s u r e A . l a s i v e s
a 2 dimcnsional projec(ion. Sirnilarly for Figure A Ib

C.  Bun.nno M, 'Jehng P 'oducr ron  w h  Pf f i r  \e r "
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In a Petri net each transition represents the minimum scale of operation of a linear
production process.

The production set associated with a Petri net is the set generated by a finite
number of linear production processes with minimum scale ofoperation represcnt€d by
thc corresponding transition. It is clear that the production set of a Peri net has non-
decreasing returns to scale. In order to disentangle indivisibilities from scale economies
wc suggcst thc following definjtion of constant and increasing retums to scale.
DeJinition. Gwen a production set f q Nn x N", the following set i s lhe set of ellicient
ptoalucltuh vectors.

fE = {(x, y) eY :V (x' ,  y ')  € N" x N" with (x' ,  y ')  + (x, y) x'  < x and y'  > y, (x' ,  y ')  E Y}.

Defnition. A, prod]rction set fhas conrtdnt retums to scale if

(x, _y) e fE, )- e N/{0} + }"(.r,,y) e IE.

Definition. A. production sct Y h^s increasinq returns to scale if (i) it has non-
dccrcasing rcturns to scale and (ii) f (.r, y) e YE,l|' e N/{0} such that ),(.r, }) E yt.

Thus, for example, in both Figure A.la and Figure A.lb we have a production set
(consisting of a single process) displaying constant retums to scale. If Y ls the
production set generated by these two processes, then Y has increasing retums to scale.
In fact letting (.r, )) = (4,l) and l" = 3, we have that (r, )) e YE butl).(x, | = (12,3) e YE,
because ( j ' .  ) ' )  = (12,4) e Y 1'.

- 8

2

0

Figure A. la Figure A. lb

Ir To be consistent with our notation we should have written the Droduction vectors a5
(4.  0.0,  l ) .  (  12.  0,0,  3)  and (12,0.0. ,1)r  ct  the previous footnote.
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APPENDIX B

In this appendix we prove Propositions 7 1 and 7 2 and Lemma 7'2 We tlrst prove

some lemmas,
Lemma B.l. Let A and B bc n x m matrices whose entries are integers and let €i € Nn

be the unit vector whose iLh coordinate is I and every other coordinate is 0 Let RT =

{-re R' ,r>0} (where R denotes the set of real numbers) Then the fbl lowing

conditions are equivalent:
( i)  I  x € N' such that (B - A) r > ei '

( i i )  I  x € R': such that (B A)r>€i

Proof. ' fhar ( l)  = (2) is obvious. since N*GRT We now show that (2) = ( l)

Suppose that T = {r € RT I (B A) r ) e'} is non-empty. Since all the entries of A' B

and z arc rntescrs. there must be a poini x,, e T n Ql, where Q denotes the field of

, u rn ru i  n r . t ' " r .  and  @T= t tea ' l r i o )  l see  chva ta l  ( 1983 ) ]  Then  the  j ' h

I ' ,  .  IT
coo ld ina le  o l  r , ,  i s  cqua l  l o  , l -  l o r  some  p ,  q  e  \ '  * i t h  q r  /  0  Le t  c  = l l 9 ,  Then

ry  e  \ . . r  . 0 . c1 r , , .  N "  JnJ  r  B  -  A  '  I  ( L r , , l  =  o  (  B  -  A )  t , ' >  c t c , :P ,

Prt)ui of I ' r . ' to:t l ion 7. /  By Lcmma 7 1. commodrt l  l  s arigmentable i I  cnd only i f  the

5g1 s= 1. l .  e N'- l  (B Arr>e,; is non-cmpty. ByLemmaB l '  s is non-empty i f  and

only l f  i= {t .  m'. I  (g-elt>t ' i }  is non-empty' Thus i tonly remains to show that

T is non-empty i f  and onty i f .  f i rr  an arbitrary j  E { l '  2 '  " '  m}'  thc fol lowing l inear

program has a solulion:

minimize r ?j

sub j cc t  t o :  r e  R " ' .  (B -A ) r= " '  and r>0 '

\rherc e is thc I 'h unit  \  ec[or rn Nn' and e' is the ir l '  unit  vector in Nn l t isclearthati f

the ,hoic progiam ha\ a solut ion, then T is non-cmpty We only need to show the

convcrse. Suppose that T is non-empty. Then [cf Nef (1967)' Theorems 2 and 3'

pp. 144 and i iel  f= x,+ K2, where Kr is A convex polyhedron' whose vett ices can

te taken to be ttre basic solutions of the system of inequalities (B - A) r > ?' and r > 0

and K, is a convex pyramid. Let dl. ..' d, bc the vertex vectors of Kr and let '1' ' '.

be the'gcnerators oi-Kr. TItut i f  r , ,eT then lhere exist non-negative rcal numbers

L

I  .  . .  . 1 .  . ,  u -  \ u c h  l h J l  :  ) ' ,  =  I  J n d

+ ^  i \
r r r = - A t d t * - -
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Thus

f]l::l 
". 

:]::r 
k = l, ..., s, l,r > 0. ir fbttows thar (rk)r > 0 and rherefbrc [see Nef

(1967), p. l50l thc l inear program has at least one solui ion (furthermore, there rs ar
least one solut ion which is a basic solut ion).
Ptuofof l tmma 7.2. By lemmr 7 I.  commodily i  is not augmentable i f  and only i l . rhe
r c t S = { r e N -  t B - A , \ > . , 1  r s e m p t y .  B y L e m m a B . l ,  S  i s e m p t y i f  a n d o n l y i f
1=  { re  R '  (B -A ) r ) r }  i s  cmp ty .  By  rhe  M inkowsk i -Fa rkas  Lemma [ see ,  r o r
cxamplc. Hu (1969). pp. 8-91, T is cmpty i f  and only i f  U = {1 e Rl (B A)r),  <0 and
1 e > 0| is non-empty. By an argltment similar to the one uscd in the proof of Lemma
B.l (that is, by appealing to the lacr rhat the cntr ies ofA. B and c, are non_ncgJrive
in tege rs ) ,  onecan  show tha t  U  i s  non -emp ty  i l anc l  on l y i f  V= {yeN"  (B  A ) r I<0
and  _ r . e ,= (_v )  > l l  i s  non -emp ty  (no te  t ha t  )  €  Nn  and  I . "  >0  imp l i es  - r  e , )  l ) ,
which in turn is equivalent ro non-emptiness of W= {1,e R'] I  tA_e).y<O "nA
)  e , > l l .
Proof of propositiort 7.2. In the prool of Lemma 7.2 it was shown that commodiry i js
no t  augmcn tab le  i f  and  on l y  i f  t hc  se r  W=  { y  eR i  (A -A ) r_ r<0  and  ) . e ,>  l }  i s
non-cmpty. The inequali t ies (B-A)ry<0 and ' . .e > I can also be wri(cn lsince
(B A)rr<0 is equivalent to -(B A)r)>0, *hi.h in tr.n is equivalcnt to
(A - B)r-r > 0l as:

( B  l )

wherc 0 is thc origin in R'.  By an argument similar 1() thc one uscd in the proof of
Proposit ion 7.1, rhe subser of R,l  rhat satjsf les (Bl) is non-empty i fand oniy i t .rhe
lol lowing l inear program has a solut ion:

m i n t m r / c  \ ' . l " r

. u h r c \ ' r  r o :  . ' . * .  ( ' o - u ' ' ) r = l n )  : r n d r - , 0 .
\  " ,  / '  \ l /

i . .  i .  . .
rL r  f ,  =  _   i  td i  ) ,  +  _  Fr  ( / t1 ) ,

t =  |

('^;"") ' = (i)
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APPENDIX C

I nf u! -uul I'u I S\' I tpm I anJ Ac t rv t t t A nu I.v s i s

tn this appendix we discuss the relat ionship between Petr i  ncts and input-output

systems, which were introduced by von Neumann in 1937 ' '?. An inlut 'output

r)r lr  is a pair of rcal.  non-negative, n x m ma{rices (A. B), wherc A is the input

matrix and B is the outpul matr ix. Each row of A (and B) represents a commodity

and each column of A (and B) represents a basic production process The j 'h column

of A, .r i ,  gives. tbr cach commodity, the quanti ty (possibly zero) ulzl  by basic

process j ,  whi le the jrh column of l l ,  bi ,  gives. tbr each commodity, thc quanti ty

(possibly zero),proltrced by basic process j .  In input-output (or act ivi ty) analysis i t

i s  ass l rmed  tha t  f o r  eve ry  j =1 . . . '  m  and  t b r  cve ry  rea l  number  l >0 ,  t he

production process that transforms l"a into 7.rr is technological ly f-easible (constant

returns rc scale) and that i f  j  and k are basic processes, then the process that

transforms .r,  +,/k into 6, +6|. is also technological ly leasible (addit ivi ty) Thus

every vcctor x e R", r)0, cal lcd an tnletr lry teclor '  represents a feasible

production proccss that transfbrms Ar into Br.

Now wc lurn to a discussion of the relationship betwcen the nolron ot

dugmentable commodity introduced in Section 7 and the two notions of von Neumann

growth rate and of productivity of a Leontief matrix

Von Neumann's (19,15) objective was to determine the maxlmum rate ot

lroportiotlal gto\\lh of an arbitrary inpuFoutPut system Iwe shall fbllow the version of

von Ncumann's moclcl given by Gale (1956)1. To this purpose, given an intensity

vector r and a comnrodity i, dcfinc the expansion rate Cr,(-r) of i in * as follows (recall

that if ) is a vector. (l), denotes the i'n component ot -v):

(Bx),
' (Ax)

i f  (Ax ) i>  0

289

c c  i f  ( B x ) i > 0 a n d ( A x ) , = 0

undef lned i f  (Bx) =(Ax) =0

Lr Thc so crlled rclivity analysis" [see, for exerrple, Koopmans (1951)l is covered bv the

notion of (von Ncumann) input'oulput system (if lhe Dumbcr ol processes is inite). In thc special

ca.e wbcre n = "r and B is the identity matrix each production process is rn induslry and each

nrduslry produces a singtc, homogeneous, product - then A is called a Le!)ntief mrtrir (Leonlicl

l9, l  l ) .
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'Ihe 
tcchnological expansjon rale of intensity vector r, c(j), is dcfined by

.r(_r) = min,, d,(r).

Final ly, the technological expansion ratc ol rhe systcm (A, B). (J, is defined by

o = 
"T91' ""t'''

An intensjty vcctor i such thal q(;) = d is called optimal. Gale 0956) showed that o
is well-detined and 0<cr.<co, i f  antl  only f  the tbl lowing condit ion holds: cvery
column ofA has a positive entry (i.e. every basic process requires al lcast one input)
and every row ofB has at least one positivc entry (i.e. every commodity is produccd by
at least onc basic process). lf the technological expansion rate o is greater than I arl
lherc is a corrcsponding optimal intensity vector i such that dll of its components arc
posit ivc, then tho system can grow at the rate ol l0O (a - l \%, per period, in the sense
that cvery commodity will grow ar ledrr at that rate, although somc commodihcs rrray
grow at a faster rate.

What is the relationship betwecn the von Neumann cxpansion ratc (I and the
notion of augmcntable commodity discussed in Section 7? First of al l ,  c{> I ooes

not imply that every commodity is augmcnrable. For cxample, ta e = | / l  ])-O
, l  ) ,  \ u  l /

B = {;  I  I .  Then cr = J and yet only commodiry I  is augmenrable. Secondly, even i f
\ w  ' /

(r= i i t may be possiblc to producc arbitrari ly large quantit ies of some (up to n_ l)
/ 0 0 \  / 1 0 \commodi t ies .  For  examptc ,  le tA  =  l0 l  landB =  {  t  u  |  .  fn "n  a  =  I  and every\ r o /  \ o  r /

optimal intcnsity vector is a scalar mult iplc of 0,1). While commodit ies 2 and 3 are
nol augmentable, commodity I is. An easy way of seeing this is by means of the Karp
mil ler covcrabi l i ly tree shown in Figure C.I,  where i t  is assumed that the init ial  vecto.
of resources (the init ial  marking) is (0,1,0). Thus from the fact that c.> I one cannor
dcduce that every commodity is augmentable and from the fact that cI = I one cannot
deducc that no commodity is augmentable.

The notion ol augmenrable commodity is also related (but nor identjcal) to the
notion of a productivc Leontief matrix. Galc (1960. p. 296) defines a Leonticf marrix to
be productive i f  there exists a non-negatjve vector t€ Rtr such that t>Ax. This
detinit ion can be extended 10 a general input-output systcm (A,B) by cal l ing i t
productive whencver there cxists a non-negalive vector X € R" such that B* >Ax.
Two observations can be madc concerning this detinition. First of all, apart from the
simple case of a Leontief matr ixrr.  there is no simple way of checking whcther or not
an rnpuFoutput system is produclivc. Secondly, it may be possible to hitve an economy
where dll the commodities. except one, arc augmentable (lhat is, their quantily can be
incrcased through production) and yct, according to the above definition, the economy
rs not productive (an examplc of this was given abovc).

L' IrcrnbeshownlseeGale(1960),chapter9l lhar a Leon(icf Darrix / t  is productive i l  and
o0ly i f  the r laxinrun eigcnvalue of,4 is less lnan I
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/ 0 0 \  
/ 1 0 \

Theinput-outputsystemis: A = I 0 I ), B = { t o ) witfr init iat resources 10'1,0)'  \ r o /  \ o t /

The corresponding coverability tree is:

( 0 .  1 . 0 )  ( 0 . 0 ,  l )  ( r .  1 . 0 )  ( a . 0 .  l )  ( - .  1 . 0 )

#auP t l " ' ' "
t :  t :  l :  r r

Figure C.I
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