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Vertical Differentiation with Cournot Competition'r'

L lntroduction

In this paper we reconsider the problem of whether two firms
in the same market would choose to produce a homogeneous product
or differentiated products. This problem was first studied by Hotell ing
(1929) in a model where the type of product differentiation is that which
Lancaster (1979) labelled < horizontal differentiation >. In Hotelling's
model consulners are uniformly distributed on a line segment and there
are two firms which produce a homogeneous product and can locate
at any point on that segment. Consumers face a transportation cost
which is a linear function of the distance travelled and each consurner
buys exactly one unit of the good from that firm which quotes the least
delivered price, namely mill price plus transportation cost. The notion
of equilibrium used by Hotelling is that which today would be called
subgame perfect equilibrium of a two-stage game in which firms first
choose their location and then compete in prices. Hotelling's conclusion
was that both sellers would locate at the centre of the market. D'Aspre-
mont, Gabszewicz and Thisse (1979) recently showed that the above
<r principle of minimum differentiation > could not in fact be proved
in Hotell ing's model, since - due to the l inearity of the transportation
cost - when firms are located sufficiently close to each other the second-
stage game has no Nash equilibria in prices. They also showed that
if one replaces the hypothesis of linear transportation cost with that
of quadratic transportation cost, then the model actually yields a unique
perfect cquilibrium at which the two firms decide to locate as far as
possible from each other, that is, at the two extremes of the market 1.

I  Thispaper isbasedonchapter3ofmy Ph. D.  thesiswhichl  submit tedat  the London
School of Economics in May 1985, I am grateful to Oliver Hart, Avner Shaked, John Sutton
and an anonymous referee for helpful comments and suggestions.

1 In a more recent paper, Gabszewicz and Thisse (1986) showed that the problem of
non-existence of a Nash equilibrium in prices in Hotelling's model (when firms are located
sufficiently close to each other) is a serious one, since it is present even when the transpor-
tation cost function is quadratic with a non-zero linear term. In this case the demand fun-
ctions are continuous and the non-existence of equilibria is due to the fact that the profit
functions are not quasi-concave.
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The problem was recently reconsidered in a number of papers
which concentrated on a different type of product differentiation, namely
that which Lancaster labelled < vertical differentiation u (Gabszewicz

and 
'Ihisse 

(1979, 1980), Shaked and Sutton (1932)). In these models
products differ in quality and if two distinct products are offered at
the samc price, then all consumers wil l agree in choosing the same
(higher quality) alternative. 'Ihc paper which is most relevant in this
context is the one by Shaked and Sutton (1982). In their model firms
play a three-stage game in which they first choose whether or not to
enter the market, then the quality of their products and finally their
prices. Costs of production are assumed to be zero. Shaked and Sutton
show that for some values of the parameters the game has a unique
subgame perfect equilibrium at which only two firms enter the market;
furthermore, the tr,vo firms choose to produce differentiated products
and earn positive profits at equilibrium. The intuition behind this result
is that firms resort to product differentiation in order to relax price
competit ion.

The purpose of this paper is to investigate further the implications
of Shaked and sutton's result and its robustness relative to the solution
concept (or type of competit ion) which is adopted for the post-entry garne.
we shall therefore remain r'vithin the case of vertical differentiation.

We consider the case of two firms which play a two-stage game in
which they first choose the quality of their products and then their
prices or outputs. We study the subgame perfect equil ibria (Selten
(1975)) of this game. The results we obtain are the following:

(i) ' l 'he 
two firms may decide to produce a homogeneous product or

differentiated products, depending on the solution concept adopted for
the marketing stage of the game. If this is Bertrand-Nash then products
will be differcntiated; if Cournot-Nash, then a homogeneous product
r.vil l  result (sections 3 and 4).

(i i) In the Bertrancl-Nash case, uti l i ty functions exist such that
the amount of diffcrentiation compatible with perfect equilibrium is
arbitrari ly srnall (section 5).

(i i i) If costs of production are introduced into the analysis-sothat
higher quality invokes higher cost - then Cournot-Nash may give
rise to a unique perfect equilibrium with maximum product differentiation
(an example is given: section 6).
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Cournot competition in the case of vertical differentiation has

recently been investigated by Gal-Or in a number of papers (Gal-Or

(1983a, 1983b, 1984)). However, the problems studied by the author

differ from the one considered here. An interesting interpretation of

the Cournot-Nash solution concept was recently given by Kreps and

Sheinkman (1983).

2. The Model

The model of consumer behaviour which we use was fi.rst introduced

by Gabszewicz and Thisse (1,979) and subsequently used in a number

of papers (Gabszewicz and Thisse (1980), Shaked and Sutton (1982)).

Let k e lc,d] (with c < d), be a physical characteristic (e.g. location)

of a given product. Higher ft means higher quality and all consumers

agree on this 2. There is a continuum of consurters, represcnted by the

unit interval 10,1]. Consumers have identical preferences but dilTerent

incomes. The income of consumer I e [0,1] is given by

E ( t ) :  E t ,  E > 0 . ( r )

Consumers are assumed to make indivisible and mutually exclusive

purchases and every consumer buys at most one unit of the good. Thus if

consumer / is faced with the alternative of buying a product of quality

ht or a product of quality A2 (or nothing) and decides to buy the first,

then he buys that product only and a single unit of it. All consumers

2 As an exmple, consider the following case, in the same spirit as lJotell ing's model.

A homogeneous product can be sold at any point of a l ine segment, rvhich rve take to be

the unit intefval [0, 1]. There tre many consumers, all located at the l ight extreme of the

line segment. Consumers have different incomes but identical preferences, in particular they

all dislike travell ing. The uti l i ty a consumer derives from not consuming the good and keeping

his/her income e is given by (3). On the other hand, if (s)he consumes one unit of the good

and an income e and has to travel a distance s to obtain the good, his/her uti l i ty is

V (1, e, s) : tJref (s) where -/(s) is disuti l i ty of travell ing and therefore / '(s) < 0. In this

example, s : 1 - A, where A e [0, 1] denotes the location of the shop. We can write

V ( k ,  e ) : U 1 e f  ( 1  - k )  a n d  d e f i n e  U ( k ) : U J 0 - & ) .  C l e a r l v ,  U ' ( k ) >  0 .  T h e  p a r a -

meter ft ( location) can now be interpreted as an index of quality and, provided Urf (1) > Uo,

rve have an cxample of thc general model of section 2. Alternatively (Gabszcrvicz and Thisse

(1986)), one could imagine the consumers being spread out over thc segment (father than

bunched at one extreme) rvhile the firms are established on the same side of the segment'

outside of the market,

Later on in the paper (section 5) we shall considcr alternative utiliry functions U (A).

In the example above this would mean looking at different ' economies ' where consumers,

while they still dislike travelling, differ in their marginal disutility of travelling, These dif-

ferences may result in different location patterns for the two firms.
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have the same utility function V (k, e), which denotes the utility of having
one unit of a product of quality A and income e. We shall assume that

V  ( h , e ) :  u  ( h )  e . (2)

When the consumer.does not purchase the product, his/her util ity is
given by

V  ( 0 , e )  :  U o e ,  w i t h  U o ) 0 . (3)

We shall assume
like the good,

that U (A) is continuously differentiable, that consumers
that is,

U (k) > Uo f.or all k e lc, dl (4)

means higher quality, that is, that U (&) is increasingand that higher A
on lc ,  d l :

U' (k) > 0 for all k e lc, d).

Let there be two f i rms,1 and2, and let  k ie fc,d] be the
of firm r's product (i : 1,2). Without loss of generality we can
that

A z ( A r

(s)

quality
assume

(6)

(otherwise it would be sufficient to renumber the firms).
We now derive the demand functions faced by the firms for any given
choice of qualities hr and hz.

Suppose the two firms choose the same quality ft. Then a consumer
I e [0,1] is indifferent between purchasing the commodity at price p and
not purchasing it i f

v (0,8 (4) :  v (h,  E(t)-p) (7)

and, using (1)-(2) and solving for /, we obtain that the indifferent consu-
mer is given by

u (k)
(u (k) - u")

(8)
It



Consumers richer than t' will prefer to buy the commodity and

consumers poorer than l' will prefer not to buy it. Therefore total demand

is given by L - t' or

u (k)
D ( p ) :  r -

E (u (h) - u")

Econonlic Notes 2-1986

suppose the two firms choose different qualities, kt ) hz.

the price of f irm i (; : 1,2) and let

x :  U  ( f t r )  a n d  y :  U ( k z )  ( 1 0 )

y). Consumer I will be indifferent between quality ftr and

if and only if

(e)p

Now
Let pi be

(thus x
quality kz

V  ( k t ,  E ( t ) - ? r )  :  V  ( k z ,  E ( t ) - p 2 ) ( l  l )

and, using (1)-(3) and solvilg for l, we obtain that the indifferent consu-

mer is given by

x y
f :  -  b t - - f z

E  ( * - y )  
'  

E  ( * - y )  
- (r2)

(notice that f ) 0 requires pz <pr, since x > y). All t < i *'i l l
prefer the low quality Az and all consumers I ) I will prefer the high
quality 41.

Next, define to to be the consumcr who is indifferent between
buying nothing and buying the low-quality good: solving

v  ( h r ,  E ( t ) - p r )  :  v  ( 0 ,  E ( t ) )  ( 1 3 )

for I we obtain

v
t o : - D z

E  ( y - ( t , ) '
(14)
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Then, over the relevant range 3, demand for the high-quality good

and the low-quality good, denoted by Dt (pu Pz) and Dz (pt pz),

respectively, is given by

I J

tc
D r ( p u  p i l : l - i = :  1 - - p 1  f

L \ x - y )

?c
D z ( P u P r ) : i - t o :  =  P r -

E  ( x - v ) '

n,

__ p2
E ( * - v ) '

(1s)
Y ( x - U " )

E  ( r - y ) ( y - U " )
h "

Let

K : {(fu k2) e lc, dlzlk2 { kt} (16)

The two firms play a two-stage game as explained in the intro-

duction. We shall investigate the subgame perfect equilibria of this
game.

Therefore, we have to work backwards from the second-stage game,

the solution of which transforms the first-stage game in a two-person
game with payoff (profit) functions defined on K. These payoff func-

tions will depend on the solution concept rvhich is adopted for the

second-stage game. In the next two sections we consider two alternative

solution concepts.

3. The Post-entry Game as Bertrand-Nash

In this and the following section we shall make the common
assumption of zero production costs 4. We first consider the case in

3 More precisely, the demand functions are given as follows. By (12) D2: O if pr; pt.
Also, D' : 0 if Pz/ 0 - tlq)/y, where the l?IlS is the reservation price of the richest con-
sumer for the low-quality good. Thus (15) requires p2 ( min {pbj-U}ly}.

Similarly, Dr: o if Fr) @- U6)/x, rvhere the J?I1S is the reservation price of the
richest consumer for the high-quality good. Also, Dr : 0 if bz I br but t > 1, where I- is
given by (12);  th is is  equivalent  to pt)  (x-  y) lx  - l -  y  pzlu.  l f  l r r )  pt  and p1 < (r -  Uo)/r ,
then D1 :  l -xpr l@- U6).  T 'hus (15) requires Fz <Fr and pl  < n in{(x-y) lx  - l  yrz lx,
(x-U)lx|, It can be shown that thcre is no loss of generality in restricting oneself to the
price range for which (15) is satisfied.

a The assumption of zero production costs is justified as follows in the literature. If
at equilibrium one firm refrains from increasing the quality of its product, even though the
higher quality could be produced at zero cost, then a Jortiori it will refrain from increasing
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which the second-stage game is Bertrand-Nash, that is, each firm -

having chosen the quality of its own product in the previous stage
and having observed the quality chosen by the other firm selects
its price in order to maximise its own profits, taking as given the price
of the other firm. The following proposition is a simple extension of
Shaked and Sutton's (1982) result to the case where the range of
incomcs extends to zero (or, equivalently, to the case where the unit
cost of production is so high that at least one consumer cannot afforcl
to buy the good at any price exceeding unit variable cost).

Lemma 1. For every choice of quality ft1 and ft2 by firms I and 2
respectively (with A2 ( ftr), there exists a unique Bertrand-Nash equi-
librium of the second-stage game at which the profits (revenues) of
firms 1 and 2 are given by

R 1 * :
t Et_!;'r.2

x ( 4 x - y - 3 U o 1 z
(r7a)

and

Rz* :
E ( y - U " ) ( x - y ) ( x - U , )

y ( 4 x - y - 3 U o 1 z
(17b)

respectively, u'here x: U (Ar) and y : U (kr).

Lemma 2 is easily proved, by considering that the profit (revenue)
func t i on  o f  f i rm  i  ( i : 1 ,  2 )  i s  g i ven  by  R i (p t ,  ? r ) :  p i  D i (p r ,  pz ) ,
where Dt(pu pz) is given by (15). Ri is strictly concave in pr and
taking first-order conditions we obtain (17a) and (17b) (note that when
fr : !, that is, u'hen the products are homogeneous, then both (17a)
and (17b) become zero, in accordance with Bertrand's theorem).

Proposition 1. Assume that the costs of production are zero. Then
if the second-stage garne is Bertrand-Nash, the set of perfect equil ibria
of the two-stage game is non-empty. Each perfect equil ibrium satisfi.es

the quality of its product if the higher quality is more expensive to produce. All the essential
features are present in the zero-cost case and nothing important is lost by not considering
production costs.
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the following properties: (i) the tu'o firms enter the market with

difierentiated products, (ii) one film chooses the highest-quality product,

(iii) both firms make positive profits.

Proposition 1 states the intuitive < anti-Hotelling > result first

proved by Shaked and Sutton (1982): if the firms produce a homo-

geneous product, their profits wil l be zero by Bertrand's theorem;

thus firms will try to relax price competition by introducing some

degree of product differentiation. A proof of proposition 2 can be

found in Bonanno (1935) and is based on the following facts: (a)

both Rr* and Rz* are strictly increasing in ft1, (b) Rr* is strictly greater

than Rz* for all (ky hz) with ftr ) Az, (c) Rz* is positive if and only

i f  kz / -hr

We shall discuss the implications of the result of proposition 1

in section 5.

4. The Post-entry Game as Cournot-Nash

In this section we consider the case in which the post-entry game

is Cournot-Nash, that is, each firm - having chosen the quality of

its own product in the previous stage and having observed the quality

chosen by the other firm - now selects its output in order to maximise

its own profits, taking as given the output of the other firm.

The following lemma and proposition are the parallel of the results

of the previous section.

Lemma 2. For every choice of quality Ar and As by firms I and 2

respectively (with Az ( Ar), there exists a unique Cournot-Nash equi-

l ibrium of the second-stage game at which the profits (revenues) of

firms 1 and 2 are siven bY

R r :
E ( * - L I , ) ( 2 x - j - U , ) z

x ( 4 x - y - 3 U o 1 z

and

R z :
E ( y - U " ) ( x - U o ) '

y ( 4 x - y - t l r o ) '

(  18)

(1e)
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respectively, lvhere x:_U (Ar) and y : U (hz).

Proof. See Appendix.

The proof of lemma 2 is straightforward and along the lines of the
proof of lemma I (we first invert the demand functions (15) and then
solve the first-order conditions involving profit functions in which
norv outputs rather than prices are the decision variables).

The proof of the following proposition - given in the Appendix
- is based on the following properties of ,fr and Fr. For every k2,
.rtr (Ar, A2) is a strictly increasi'g function of A1 and, similarly, for every
ht Rz (ku hr) is a strictly increasing function of kz. That is, it nevcr
pays one firm to choose a quality which is lower than that chosen by
the other firm (since a RzlA Az > 0) and, on the other hand, either
firm can always do better by increasing the quality of its own product
(since a R,,ldAr > 0). Therefore, since .i1 and .fz are always positive,
there can be only one perfect equil ibrium, where both firms choose
the highest quality.

Prol>csition 2. Assume that the costs of production are zero. Then
if the post-entry game is coumot-Nash there is a unique perfect equi-
librium of the two-stage game where both firms enter with the hiqhest-
quality product and make positive profi.ts.

Proof. See Appendix.

wc can summarizc the results of propositions 1 and 2 as follorvs.
In the case of vertical differentiation firms have a tendcncy to increase
the quality of their products, since consumers are wilring to pay higher
prices fbr proclucts of higher quality. However, in the Bertrancl-Nash
case, price competit ion becomes fiercer the more similar the products
of the trvo firms. 'I 'hus 

in thc Bertrand-Nash case there is a counter-
acting tendency ancl the nct result is that f irms choose to rnaintain
some clegice of procluct differcntiation. In the cournot-Nash casc.
on the other hand, ttris counteracting tcndency is absent ancl therefore
thc two firms wil l both choose to locate at thc uppcr extrerne of the
quality sPace. -rhus, 

in thc cournot-Nash case r,vith zero procluction
costs, Hotell ing's principle of minimum differentiation holds.

we shall investigate further the cournot-Nash case in section 6.
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5. Discussion of the Bertrand-I''lash Case

Proposition 1 (section 3) is essentially a corollary to Bertrancl's
theorem, which says that if two firms produce (at zero costs) a homo-
gencous procluct and cornpcte in priccs, then thc only Nash cquil ibrium
is one wherc both firrns chargc zero price ancl thereforc makc zero
profits. If the two firms can make positive profits by proclucing dif-
fercntiated products, it is obvious that they rvould do so.

D'Aspremont, Gabszewrcz and Thisse (1983) have triecl ( to go
a step further > and argue

< that under mild assumptions, the ' Principlc of Minimum Differ-
entiation' neDer holds, so that, given the product specification of one
of the sellers, it can never become advantageous to the other one to
choose his own specification arbitrarily close to it, if prices adapt them-
selves at a non-cooperative equilibrium I (p. 20).

The argument put forward by the authors is very general (it applies
both to vertical and horizontal differentiation) and goes as follows. If
on the diagonal of the quality space (where the two qualit ies coincide)
firms' profits are zero (by Bertrand's theorem), then - by continuity -

they will be almost zero at points close to the diagonal and therefore
the two fims will always want to be sufficiently away from the diagonal.

In this section we show that the above argument - although
correct - does not imply (at least in the case of vertical differentiation)
that there is a lower bound to the degree of product clifferentiation ob-
served in equil ibrium.

Let U be the set of uti l i ty functions defined on the quality space

lc, dl and taking on the same values at c and d. That is, let a ancl
p be any two numbers such that LIo <o <B and let

ry :  {U: lc ,d l *  S. lu isCl , increasing,  U ( r ) :  "and U (d)  -  f r } .  (20)

For the purpose of the proof of the following proposition we re-
quire c to be sufficiently close to IJ o.

Propcsition 3. Assume thai thc second stagc game is Bertrand-Nash
and that the co:ts of proCuction are zero. Then for every real number
e > 0, there exists a uti l i ty function U in U such that the set of perfect
equil ibria oI the corresponding two-stagc galne is non-empty ancl
all pclfect equil ibria are characterizecl by the fact that the trvo firrns
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enter with products whose qualities differ by less than e and make

positive profits (one firm ahvays chooses the highest-quality product).

Proof. See Appendix.

The smaller c, the more convex the uti l i ty function or, in other
words, utility increases very slowly with quality at first and then the
function becomes very steep near d. As a consequence, firms will

tend to cluster at the upper bound of the quality space.

6. Discussion of the Cournot-Nash Case

In this section wc investigate the robustness of the < principle of

minimum differentiation > proved in section 4. In particular, we want
to see if that result holds also when costs of production are introduced.
Clearly, if production costs are independent of quality, then the result
of proposition 2 is not affected. 

'fypically, however, higher quality is

coupled with higher costs. We shall consider the following cost function
(which we assume to be continuously differentiable):

C ( q , h ) : C ( k ) ,  w i t h  C ( c ) 2 0  a n d  C '  ( h ) > 0  ( 2 1 )

where q is output and ft is quality. That is, there is a fixed set-up

cost which increases with quality and zero marginal cost (the assumption

of zero marginal cost is not important and we make it only in order
to simplify the analysis). It is possible to think of situations in which

marginal cost does not vary with quality, while the set-up cost increases

with quality. For example, if consumers are concentrated in one area

(at the encl of a l ine, say: cf. footnote 2), higher quality could mean

a location which is closer to that area, and the set-up cost could be

rent, which is higher the closer the firm locates to the < residential r>

area.
'Ihe profit (payolT) functions of the first-stage game (calculated at

the Cournot-Nash equil ibrium of the second-stage game) are now

given by

i r (kr,  hr)  :  i t t (kt ,  hz)__ C (Ar) (22)
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and

i r (k, ,  ht) :  Rr(f t r ,  f t , . r )  -C (hz) (23)

rvherc Rr and Rs are given by (18) and (19) respectively. Since the
proof of proposition 2 depcndccl on the fact that the payoff function
of each player was strictly increasing in the player's decision variable

(that is, a RtlAAr. ) 0 ancl d ttrlan, ) 0), the result of proposition
2 can still be true when the payoff functions arc given by (22) and
(23). In fact let

I 9

mB: ?nax of c l on

Then a sufficient condition for the
equilibrium of the two-stage game at
the highest-quality product is

mt - min of Q RtlA kL) on ](

, "  Im.z - min of (d R2lA h2) on K

(2+)

(2s)

lr, d) . (26)

existence of a unique perfect
which both firms enter with

partial derivatives

by (16))  a Rr l . .  k t

mt l min {ntu mz} (27)

In other words, if cost does not increase too much with quality,
we would still observe no product differentiation in equilibrium.

We shall now construct an example, however, where the cost
function is a special case of (21) and the two-stage game has a unique
perfect equilibrium at which one firm enters with the lowest-quality
product, the other finn with the highest-quality product and both firms
make positive profits.

We shall f irst establish two properties of the

a htlA Ar ancl A nrla nr.
The first property is that in the set 1{ (defined

has a unique global minimum at (d, c):

Lemma 3. For every (41, kz) e K with (rt1, hz) + (d, c)

A R t  ? R t
: (Ar, Az) - . (d, ,)
A h r  A h t

(28)
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Proof . It is shown in the Appendix that in the set

Q*: {(* ,  i lU" <Y < tr  < U(d)}

a Rrl d ru clecreases along the directions i l lustrated in Figure

v

u ('))

arbitrary
let B be

(2e)

(3 1)

(x, y)u p rvith
the point where

l .

u(d)

(u.,u. ) u(d)

Fig. 1 - The set 9r and the directions along which the function 0 firl7 x decreases'

Established this, the proof of lemma 3 is immediate. In fact, since

@ RrlA kt): (A idA 4 U'(ht) and (J'is positive, it is enough to show

that for each (x, y) " Q, where Q is defined by

9 - { @ ,  y ) l u ( r )  ( y  ( r  (  u ( d ) }  ,

with (r, y) + (U (d), U (c)) we have

(30)

a h., a R,.
^  - ( * ,  Y ) >
d x  d t c

This is easily proved as follows. Fix an

(x, y) * (u (d), u(r)). r 'et A - (r,  y) and



G. Bonanno:  Ver t i ca l  D i f fc rc t l t ia t io l l  w i lh  Cot l rno t  Compet i t ion

the ray through (Uo, Uo) and A meets the line r : U (d)

2). Then, by the property i l lustrated in Figure 1,

8 1

(see Figure

u(c)

(  u.,u. )  u(c) u(d l

Fig. 2 - The arrows denote directions along which 0.ftr/d r decreases in the set Q c Qt.

The second property we want to establish is that a RzlAfrz has a

unique global maximum at (c, c):

Lemma 4. For every (&1, kz) e K with (41, kz) * (c, c)

o r t r  d R r  a R t
- , - ( A ) >  - - - ( B )

0 x  0 t :  0 x

'a r t ,  o i tz
(kt, hz) < - (c, c)

d R z  , O R z

(32)

( J J J

Proof. See Appendix.

We are now ready to construct our example. Let the utility function

be given by

U ( h ) : a P ,  w i t h  a > 0  a n d ac > Uo (34)
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and let the cost function be given by the following special case of
(2r):

C ( q , k ) : b ( h - c ) ,  b > 0  ( 3 5 )

The profit functions of firms I and 2 are therefore given by

iL (hr, hr) : Itt (kt, h) - b (fu - c) (36)

and

fu,  (k ' .  h, \  -  Rt (h.  h"\  -  b (h, -  c\ (37)

Now, using (18) and (34) we obtain (cf. (xiii) in the Appendix)

a irt E LIo(z ad- ac - flo)z
- 1.1 ^\

0 h adz (4 ad 3 Uo)z

4 E (ad - U") (ac - uo) (2 ad - ac - Uo)
-I :  M (38)

d (4 ad 3 Uo)"

and using (19) and (34) we obtain (cf. (xvi) in the Appendix)

o i t z  E f I o  z E
'  ' ( . , c ) :  -  + - : L  ( 3 9 )
) h z  9 a c z  2 7 c

Then by (28) and (33) if b satisfies the following inequality (recall
that h is the marginal cost of quality: cf. (35))

L  < b  < M (40)

(where Z is the RI1S of (39) and ilI the RI1S of (38)) rve have that
for all (kt kr) e 1( rvith (hr kz) + (d, c)

T i t  A R '
-  ( k ' , h r ) :  -  ( h r k z ) - - b > M - b > 0  ( 4 1 )
A k r  A h ,
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and for all (41, k2) e K with (ft1, h2) t' (c, c)

aiz a h,
=  ( h t ,  h z ) :  _  ( k y  h z )  - b  <  L  - b  < o
A k z  } h z

83

(+2)

Thus since i1 is'strictly increasing in ft1 and iz2 is strictly decreasing

in ft2, we have proved the following

Proposition 4. Let the paramet ers a, b, c, d, U s, E satisfy inequality

( 4 0 )  ( f o r  e x a m p l e ,  E : 1 ,  ( J o : 0 , 9 9 ,  a :  c : 7 ,  b  : 0 ' 1 ' 9 ,  d :  1 ' 1 ) '

then the two-stage game has a unique perfect equilibrium at which

one firm enters with the lowest-quality product (kz : c), the other

firm enters with the highest-quality product (kL: d) and both firms

make positive profi.ts.

To complete the proof of proposition 4 we only need to show that

at equilibrium both firms make positive profits. This is done in the

Appendix.

As concluding remark we observe that, since in this example equi-

librium in unique and characterizedby the maximum degree of product

differentiation, we can also deduce a negative answer to the question

whether, in general, Cournot competition leads to less product dif-

ferentiation than Bertrand competition.

Gle,cotuo BoNeNNo

Nffield College, Oxford, U.K'
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APPENDIX

Proof of lemma 2. lf h: kz: k, the demand function for the homo-
geneous product is given bv (9). The inverse demand function is therefore
given by

E (U (h) - Uo)
p : G ( q ) :

where g denotes total output.
Then the revenue function of

output  of  f i rm i  ( i :1 ,  2) .
by

u (k)

Let qi be the
firm i is given

E (u (k) - uo)

( r -s )

R,t. (qt, ez) : p qi. : (1  -  qr-  Q) qt  ( i i )
u (h)

Ra is strictly concave in ga and solving the first-order conditions we
obtain a unique Cournot-Nash equilibrium given by

Q , @ ) :  Q , @ ) : l F  ( i i i )

The corresponding equilibrium revenues are given by

( i )

:  . , .  :  . - .  E ( U ( k ) _ r y o )
R , ( A ) : R s ( A ) :  

, r r A

- If h, I kr, then the demand functions are given by (15) (where r :
U (At) and t : U (ftr) and thus y ( *). The inverse demand functions are
therefore given by

l - .  ,  D ( * - u o )  E ( y - u " )  E ( x - U 6 )

|  
? r :  u r  ( 4 r '  Q i l : -  4 t -  -  gz  *

l * x x c

| (')
I  E ( y - U " )  E ( y - U o )  E ( y - g o )

L?,: 
Gr(qr, ez):- -- h-- :" -,  : '  o, * -t  

,

The revenue function of f irm i (i:1,2) is therefore given by

Rt (qu qz) : fi Gr (qb qe) (ui)

(iu)
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For cvery (r, y) (with y < x), R; is strictly concave in q1. Therefore
solving the first-order conditions we obtain a unique Cournot-Nash equi-
librium given by

2 x - y - U 6
Q r @ ,  Y ) :

and

Proof of proposition 2. Lct

W: U(lc,  d))

antl  lct

Q - {@, y) e Wzly <-= x}

Since

A RrlA kL: @ Rrl? x) U' (hr)

4 * - y - 3 U o
(vii)

(viii)
N * U o

0" (x, nt\ : -'  
4 x - ! - 3 U o

l'he corresponding equilibrium revenues are given by (18) and (19)
respectively and are obtained as follows. From R; : qt Gi we obtain
6 &10 qi -- Q I q5@ G1l0 qi) and' therefore

Ri.: qi,Gr: qi. i:L - nu, 
o Go

a q t  0 q ,

Sincc by definit ion of (Qr, Qr)

0 R i
(Qr, Q,) :  o

o q i

we finally obtain

Rr : Ro (Q,, Q): - qrzis\Q,, Q,)
o q t

Finally, note that whcn ru : y (and hencc A, : Ar), (18) and (19) coincide
with (iv).

(i*)

(*)

(*i)
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and

a tr;a k,: (o irJa i u' (k,)

and. fJ'is always positive, it is sufficient to prove that 0 h-ll x and
are positive on p. In fact we have

ah ,  :
0 x

(xii)

a n l a y

: ul,
I

U 6 ( 2 x - t - U o ) '

x 2 ( 4 x - t - 3 U o ) z

E ( 2 x - y - U o )
f t ( * ,  y ) :

x 2 ( 4 x - y - r U o ) "

fr(*, y) : Uo (4 x - Y - 3 Uo) (2 x - I - uo) *

l 4 x ( x - g o ) ( y - U " ) .

2 (x - Uo) (2 x - y - Uo) (2 y - 2 Uo) l _
x ( 4 x - y - 3 u o ) "  )

(xiii)

(xiv)

(*u)

2 E ( y - U o ) ( x - U 6 ) z
+ (xvr )'  

y ( + t c - y - t U o ) "

: f t (x,  v)fr(* ,  Y)

where

and

Since (* ,  y)ep impl ies x ly)  Uo,  both/ t  ar .df ,  are posi t ive on p.

Thus d h1A * is positive. On the other hand,

O R , U 6 E ( x - U o ) '

0 y  y ' ( 4 x - t - 3 U o ) '

which is positive on p.

Proof of proposition 3. Let o and p be any two numbers such that

p > a> Uo)> 0 (xv i i )

and let U be the set of utility functions given by (20).
Fix an arbitrary U e U. Then, by proposition 1, the set of perfect equi-

libria of the correiponding two-stage game is non-empty and consists of
all the points (/, krx) e K such that &r* is a global maximum of the fun-
ction Rr* (d, kr) on [c, d]. Consider the function Rr* given by (17b) with
x : (J (d) : P. This function is zero when y : Uo and greater than zero
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for y ) Ur. Hence if o : t/ (c) is sufficiently closc to Ur, it must be

6 /

A R,*

i ( f '  
o )>o

From now on we shall assume that a is sufficiently close to (Jo f.or
(xviii) to be satisfied. It then follows that all the globai maxima krx of
tlre function Rr* (d, Ar) on fc, df are such that

(xviii)

(xix)

(*)

We want to show that there is a function V e (J such that all the perfect
equilibria of the corresponding two-stage game are of the form (4 Ar; with
kr>. k, that is, at a perfect equilibrium the two firrr,s choose p-d.rctt
rvhose qualities differ by less than e and, furthermore, both firms make
positivc profits (note that, once we have shown the existence of such a
utility function v e [/ then the existence of perfect equilibria at which both
firms make positive profits follows directly from proposition 1). Let

Let hx be the smallest of these global maxima (the set of global maxima
does indeed have a smallest element, because it is a compact subset of
lr, dl)-

Now fix an arbitrary e ) 0 and let f ie(c, d)be an arbitrary point such
that

hr* )u ,

f i  < d - e

r* : (kx - c)l(d- c)

, : ( f i - c ) l ( d - c )

Definc ,rr. r,rr,"tio,l ;:t::f', ^ o,

t  k - c  \ r
h ( h ) : c * ( d _ , ) (  ,  

_ l
\  d - c  /

l'inally, let V:lc, dl- 8. be given by

v (k) :  u  (h(k) )

and

and

(xxi)

(xxii)

(xxiii)

(xxiv)

(**u)
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r :  V  ( k r )

l :  V  ( h z )

Then  Z  ( t ) :U  ( t ) : o  ,  V (d ) :U (d ) :B  and  V  i s  C r  and  s t r i c t l y
increasing on [c, d]. Thus Ze U (intuitively, V is obtained from U- by up-
plying u "h".rgi of coordinates h-r:lc, dl--->lc, d] which takes A* to [).

The payoff functions of the second-stage game are still given by (17)
where now

and

@ ,  i r Q

(xxvi)

(xxvii)

(xxvii i)

A perfect equilibrium of the two-stage game is norv given by hr: 6
and hr: ft. \f the original game had several equilibria' the new gamc rvill
have the same number of equilibria, but they will all be of the form (d, kr)
with ft, ) ft and thus d- kzle (because of the way we chose A*).

Proof of Lemma 3. First of all, we want to show that

a2  R ,
( x .  v ) > 0 .  f o r  a l l

o y o N

where the set p is dcfined by (30). Differentiating (xiii) with respect to y
we obtain

(xxix)
orh, of, . . . af,

l o  T  , i  -

0 y 0 x  0 y " - ' " ^  A y

where /r and f, are given by (xiv) and (xv) respectively. Since /t and f,
are positive on p, it will be enough to shorv that also (A fJA I and (0 f "10 y)
are non-negative on Q and at least one is positive. In fact we havc

0 f '  z E ( x - y )
(xxx)

0 y  x 2 ( 4 x - y - r U o ) "

which is non-negativc for all (r, y) such that I ) y ) Ue, and

@ f J A i  :  4 x 2 - 1 0 x U " ' l  ( 2 y U o 1 ' 6  U o z )  : g a @ )  .  ( x x x i )

For each y, the function gy (r) is strictly convex in rc and reaches its
minimum value at xo :5 Uo/4. Since

gu@o) :  -  ( l l4) Uoz * 2y Uo> Ql\  Uo')  0
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(since y ) (J), it follows that g, (,) > 0 for all

b i la i is positive on Q.
Now consider the extension of the function

defined by (29), which contains the set p' In p*

(r, y) with

y : (l -s) r'$ s Uo , with constant

we have (substituting (xxxii) for y in (xiii))

89

y and x and thcrefore

A R1A x to the set pit
along rays of the form

s e [ 0 ,  i ] (xxxii)

O R '

0 x

Differentiating (xvi)

a z i
v  t \ 2

a * o y : -

U 6 E ( l { s ) 2  4 E ( 1 - t ' )
* - r A  

+ ' f
(xxxiii)

y : ( 1 - s ) r c  * s  t / "  , u 2 ( 3  f s ) 2

rvhich is strictly decreasing in r for every s e 10, 1]' Figure 1 shows the

set O* and the directions along which 0 R1A x decreases (obtained from

(**uii) and (xxxii i))..- - 
T'h" oroof of 

,-I"*ma 
3 can now be completed using the argument

given in ihe text after lemma 3'

Proof of lemma 4. We first show that

++@, v) <o for all (*, Y)'Q
o N o y

with respect to ,r we obtain

2 E Uo(, - Uo) (Y - U")

y ' ( 4 x - y - t U o ) "

4 D (x - U") (y - Uo) (2 x * y -_3 U")_ 
(xxxv)

y ( 4 x - Y - t U o ) n

which is negative for all (r, y) such that x2^l).U9'

We ca.,"now shorv that' ioi "ach (*, !)tp with (x, y)'# (U(c)' U(c))

(xxxiv)

(xxxvi)oR,  oR ,
7 @, y) < ^ (u (c), u (c))

o y  o y

First of all, setting x - y in (xvi) we can sce that along the diagonal

ls :y  in  p  we have

0rt, (xxxvii)
o v  l * : y

which is strictly decreasing in

U O E  2 E
- l -  --  -

9xz  
'  

27  *

x.



Now f ix  an arb i t rary (* ,  y)e p wi th (* ,  y)* (U(r) ,  U(c)) .  I f  y :
U (c) then (xxxvi) follows directly from (xxxiv) . If y ) U (c) then 

'Uy 
lxxxvii;

we have

o R ,  a R "
Q y - ' ' i <  a t  

Q Q ) ' u ( c ) )  ( x x x v i i i )

and by (xxxiv)

oR, aR.,
oy u, i2 a, @,9 (xxxix)

Since (d n;a nr1 : @ hJA y) U, (kr) and. U, is positive, lemma 4
follows from (xxxvi).

. Proof of proposition 4. It only remains to prove thar at equilibrium
both firms make positive profits. Now,

h"(d,  c)  :  kr@, c)  > 0

and by (41)

q(d,  c) t  h1(c,  c)  :  R,  (c ,  c)  > 0.

Economic Notcs 2-1986
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