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Vertical Differentiation with Cournot Competition *

1. Introduction

In this paper we reconsider the problem of whether two firms
in the same market would choose to produce a homogeneous product
or differentiated products. This problem was first studied by Hotelling
(1929) in a model where the type of product differentiation is that which
Lancaster (1979) labelled «horizontal differentiation». In Hotelling’s
model consumers are uniformly distributed on a line segment and there
are two firms which produce a homogeneous product and can locate
at any point on that segment. Consumers face a transportation cost
which is a linear function of the distance travelled and each consumer
buys exactly one unit of the good from that firm which quotes the least
delivered price, namely mill price plus transportation cost. The notion
of equilibrium used by Hotelling is that which today would be called
subgame perfect equilibrium of a two-stage game in which firms first
choose their location and then compete in prices. Hotelling’s conclusion
was that both sellers would locate at the centre of the market. D’Aspre-
mont, Gabszewicz and Thisse (1979) recently showed that the above
«principle of minimum differentiation » could not in fact be proved
in Hotelling’s model, since - due to the linearity of the transportation
cost - when firms are located sufficiently close to each other the second-
stage game has no Nash equilibria in prices. They also showed that
if one replaces the hypothesis of linear transportation cost with that
of quadratic transportation cost, then the model actually yields a unique
perfect equilibrium at which the two firms decide to locate as far as
possible from each other, that is, at the two extremes of the market L,

* This paper is based on chapter 3 of my Ph. D. thesis which I submitted at the London
School of Economics in May 1985. I am grateful to Oliver Hart, Avner Shaked, John Sutton
and an anonymous referee for helpful comments and suggestions.

1 In a more recent paper, Gabszewicz and Thisse (1986) showed that the problem of
non-existence of a Nash equilibrium in prices in Hotelling’s model (when firms are located
sufficiently close to each other) is a serious one, since it is present even when the transpor-
tation cost function is quadratic with a non-zero linear term. In this case the demand fun-
ctions are continuous and the non-existence of equilibria is due to the fact that the profit
functions are not quasi-concave.
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'The problem was recently reconsidered in a number of papers
which concentrated on a different type of product differentiation, namely
that which Lancaster labelled «vertical differentiation» (Gabszewicz
and Thisse (1979, 1980), Shaked and Sutton (1982)). In these models
products differ in quality and if two distinct products are offered at
the same price, then all consumers will agree in choosing the same
(higher quality) alternative. The paper which is most relevant in this
context is the one by Shaked and Sutton (1982). In their model firms
play a three-stage game in which they first choose whether or not to
enter the market, then the quality of their products and finally their
prices. Costs of production are assumed to be zero. Shaked and Sutton
show that for some values of the parameters the game has a unique
subgame perfect equilibrium at which only two firms enter the market;
furthermore, the two firms choose to produce differentiated products
and earn positive profits at equilibrium. The intuition behind this result
is that firms resort to product differentiation in order to relax price
competition.

"The purpose of this paper is to investigate further the implications
of Shaked and Sutton’s result and its robustness relative to the solution
concept (or type of competition) which is adopted for the post-entry game.
We shall thercfore remain within the case of vertical differentiation.

We consider the case of two firms which play a two-stage game in
which they first choose the quality of their products and then their
prices or outputs. We study the subgame perfect equilibria (Selten
(1975)) of this game. The results we obtain are the following:

(1) The two firms may decide to produce a homogeneous product or
differentiated products, depending on the solution concept adopted for
the marketing stage of the game. If this is Bertrand-Nash then products
will be differentiated; if Cournot-Nash, then a homogencous product
will result (sections 3 and 4).

(i) In the Bertrand-Nash case, utility functions exist such that
the amount of differentiation compatible with perfect equilibrium is
arbitrarily small (section 5).

(iii) If costs of production are introduced into the analysis— so that
higher quality invokes higher cost — then Cournot-Nash may give
rise to a unique perfect equilibrium with maximum product differentiation
(an example is given: section 6).
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Cournot competition in the case of vertical differentiation has
recently been investigated by Gal-Or in a number of papers (Gal-Or
(1983a, 1983b, 1984)). However, the problems studied by the author
differ from the one considered here. An interesting interpretation of
the Cournot-Nash solution concept was recently given by Kreps and
Sheinkman (1983).

2. The Model

The model of consumer behaviour which we use was first introduced
by Gabszewicz and Thisse (1979) and subsequently used in a number
of papers (Gabszewicz and Thisse (1980), Shaked and Sutton (1982)).

Let k ¢ [¢,d] (with ¢ < d), be a physical characteristic (e.g. location)
of a given product. Higher k means higher quality and all consumers
agree on this 2. There is a continuum of consumers, represented by the
unit interval [0,1]. Consumers have identical preferences but different
incomes. The income of consumer ¢ ¢ [0,1] is given by

E() = Et, E>0. ()

Consumers are assumed to make indivisible and mutually exclusive
purchases and every consumer buys at most one unit of the good. Thus if
consumer ¢ is faced with the alternative of buying a product of quality
k1 or a product of quality k2 (or nothing) and decides to buy the first,
then he buys that product only and a single unit of it. All consumers

2 As an example, consider the following case, in the same spirit as Hotelling’s model.
A homogeneous product can be sold at any point of a line segment, which we take to be
the unit interval [0, 1]. There are many consumers, all located at the right extreme of the
line segment. Consumers have different incomes but identical preferences, in particular they
all dislike travelling. The utility a consumer derives from not consuming the good and keeping
his/her income e is given by (3). On the other hand, if (s)he consumes one unit of the good
and an income e and has to travel a distance s to obtain the good, his/her utility is
V1, e, s) = Uy ef (s) where — f (s) is disutility of travelling and therefore f' (s) < 0. In this
example, s = 1-—Fk, where k&[0, 1] denotes the location of the shop. We can write
V(k, € = Uyef (1 —k) and define U (k) = U, f(1 —k). Clearly, U’ (k) > 0. The para-
meter & (location) can now be interpreted as an index of quality and, provided U, f (1) > U,
we have an example of the general model of section 2. Alternatively (Gabszewicz and Thisse
(1986)), one could imagine the consumers being spread out over the segment (rather than
bunched at one extreme) while the firms are established on the same side of the segment,
outside of the market.

Later on in the paper (section 5) we shall consider alternative utility functions U (k).
In the example above this would mean looking at different ¢ economies’ where consumers,
while they still dislike travelling, differ in their marginal disutility of travelling. These dif-
ferences may result in different location patterns for the two firms.
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have the same utility function V' (&, e), which denotes the utility of having
one unit of a product of quality k% and income e. We shall assume that

V (ke = U (k) e )

When the consumer- does not purchase the product, his/her utility is
given by

V (0,e) = Use, with Uy > 0. (3)

We shall assume that U (k) is continuously differentiable, that consumers
like the good, that is,

U(k) > U, for all ke [c, d] “4)

and that higher & means higher quality, that is, that U (k) is increasing
on [c, d]:

U' (k) > 0 for all ke [c, d]. (5)

Let there be two firms ,1 and 2, and let k; & [c, d] be the quality
of firm s product ( = 1,2). Without loss of generality we can assume
that

ke < Ry (6)

(otherwise it would be sufficient to renumber the firms).
We now derive the demand functions faced by the firms for any given
choice of qualities k; and k.

Suppose the two firms choose the same quality k. Then a consumer
te [0,1] is indifferent between purchasing the commodity at price p and
not purchasing it if

VOE@®) =V (k E@)—p) (7)
and, using (1)-(2) and solving for ¢, we obtain that the indifferent consu-
mer is given by

U (k)

T TEFom—uy?

(8)
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Consumers richer than #' will prefer to buy the commodity and
consumers poorer than ¢’ will prefer not to buy it. Therefore total demand
is given by 1 —1' or

U (k)

: = 1—
D (p) E W R — Uy P

(9)

Now suppose the two firms choose different qualities, k1 > ko.
Let p; be the price of firm 7 ( = 1,2) and let

% = Uks) and y = U (ko) (10)

(thus x > ). Consumer ¢ will be indifferent between quality k1 and
quality kg if and only if

V (ki E(t)—p1) = V (ke, E(t) —p2) (11)

and, using (1)-(3) and solviag for £, we obtain that the indifferent consu-
mer is given by

] x y 12
I = p1— b2
E@—y) = E(x—y)

(notice that 7 > 0 requires p2 << p1, since x > y). All ¢ < ¢ will
prefer the low quality k2 and all consumers ¢ > { will prefer the high
quality k;.

Next, define #, to be the consumer who is indifferent between
buying nothing and buying the low-quality good: solving

V (ke, E(8) —p2) = V (0, E(?) (13)

for ¢+ we obtain

(14)
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Then, over the relevant range ®, demand for the high-quality good
and the low-quality good, denoted by Di (p1, p2) and D3 (p1, p2),
respectively, is given by

- . y
Dl(pl, Pz)ZI—i: — P1+ P2
E(x—y) E(x—y)
(15)
X y(x— U,)
Dy (p1, po) =E—t, = p1— P2
B E(x—) E(x—y)(—Uo)

Let
K = {(k1, ko) ¢ [c, d]*/ka < ka} (16)

The two firms play a two-stage game as explained in the intro-
duction. We shall investigate the subgame perfect equilibria of this
game.

Therefore, we have to work backwards from the second-stage game,
the solution of which transforms the first-stage game in a two-person
game with payoff (profit) functions defined on K. These payoff func-
tions will depend on the solution concept which is adopted for the
second-stage game. In the next two sections we consider two alternative
solution concepts.

3. The Post-entry Game as Bertrand-Nash

In this and the following section we shall make the common
assumption of zero production costs *. We first consider the case in

3 More precisely, the demand functions are given as follows. By (12) D, = 0 if p, > p,.
Also, Dy = 0 if py >> (y — U,)/y, where the RHS is the reservation price of the richest con-
sumer for the low-quality good. Thus (15) requires p; < min {p,, (y — Up)/s}.

Similarly, Dy = 0 if p; > (x — Uy)/x, where the RHS is the reservation price of the
richest consumer for the high-quality good. Also, D, == 0 if p, < p; but £ > 1, where { is
given by (12); this is equivalent to p; > (x — ¥)/x - ¥ pafx. If pg > py and py < (v — Up)/x,
then Dy = 1 — x py/(x — Uy). Thus (15) requires p; < p; and py, < min {{(x — y)[x + y py/x,
(x — Upg)/x}. It can be shown that there is no loss of generality in restricting oneself to the
price range for which (15) is satisfied.

¢ The assumption of zero production costs is justified as follows in the literature. If
at equilibrium one firm refrains from increasing the quality of its product, even though the
higher quality could be produced at zero cost, then a fortiori it will refrain from increasing
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which the second-stage game is Bertrand-Nash, that is, each firm —
having chosen the quality of its own product in the previous stage
and having observed the quality chosen by the other firm — now selects
its price in order to maximise its own profits, taking as given the price
of the other firm. The following proposition is a simple extension of
Shaked and Sutton’s (1982) result to the case where the range of
incomes extends to zero (or, equivalently, to the case where the unit
cost of production is so high that at least one consumer cannot afford
to buy the good at any price exceeding unit variable cost).

Lemma 1. For every choice of quality k; and ks by firms 1 and 2
respectively (with kg <C k1), there exists a unique Bertrand-Nash equi-
librium of the second-stage game at which the profits (revenues) of
firms 1 and 2 are given by

YE(x— U (x—y)
B x(4x —y —3U,)2

R*

(17a)

and

s PO U)x—y) (= —Uo)
v —y 30y

(17b)

respectively, where x == U (k1) and y = U (k).

Lemma 2 is easily proved, by considering that the profit (revenue)
function of firm 7 (i==1, 2) is given by R;(p1, p2) = pi Di (p1, p2),
where D;(p1, ps) is given by (15). R; is strictly concave in p; and
taking first-order conditions we obtain (17a) and (17b) (note that when
x =y, that is, when the products are homogeneous, then both (17a)
and (17b) become zero, in accordance with Bertrand’s theorem).

Proposition 1. Assume that the costs of production are zero. Then
if the sccond-stage game is Bertrand-Nash, the set of perfect equilibria
of the two-stage game is non-empty. Each perfect equilibrium satisfies

the quality of its product if the higher quality is more expensive to produce. All the essential
features are present in the zero-cost case and nothing important is lost by not considering
production costs.
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the following properties: (i) the two firms enter the market with
differentiated products, (ii) one firm chooses the highest-quality product,
(iii) both firms make positive profits.

Proposition 1 states the intuitive «anti-Hotelling» result first
proved by Shaked and Sutton (1982): if the firms produce a homo-
geneous product, their profits will be zero by Bertrand’s theorem;
thus firms will try to relax price competition by introducing some
degree of product differentiation. A proof of proposition 2 can be
found in Bonanno (1985) and is based on the following facts: (a)
both R1* and Ry* are strictly increasing in k1, (b) R1* is strictly greater
than Ro* for all (k1, ks2) with k1 > ks, (c) Re* is positive if and only
if ky < k1.

We shall discuss the implications of the result of proposition 1
in section 5.

4. The Post-entry Game as Cournot-Nash

In this section we consider the case in which the post-entry game
is Cournot-Nash, that is, each firm — having chosen the quality of
its own product in the previous stage and having observed the quality
chosen by the other firm — now selects its output in order to maximise
its own profits, taking as given the output of the other firm.

The following lemma and proposition are the parallel of the results
of the previous section.

Lemma 2. For every choice of quality k1 and k2 by firms 1 and 2
respectively (with ke < k1), there exists a unique Cournot-Nash equi-
librium of the second-stage game at which the profits (revenues) of
firms 1 and 2 are given by

jel _ E(x— Lro) (Zx—‘y - []o)2 (18)
x(4x —y—3U,)2

and

- Ep—U)—Uop
y (4x —y —3U,)?

(19)
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respectively, where x :'_U(kl) and y = U (ky).
Proof. See Appendix.

The proof of lemma 2 is straightforward and along the lines of the
proof of lemma 1 (we first invert the demand functions (15) and then
solve the first-order conditions involving profit functions in which
now outputs rather than prices are the decision Varlables)

The proof of the following prop051t10n~g1ven in the Appendix

—1s based on the following properties of R: and Rs. For every kg,
Ry (kl, k) is a strictly increasing function of k; and, similarly, for every

k1, Rs (k1, k2) is a strictly increasing function of ks. That is, it never
pays one firm to choose a quality which is lower than that chosen by

the other firm (since 0R2/5 k2 > 0) and, on the other hand, either
firm can always do better by increasing the quahty of its own product

(since ¢ Rl/(7 ki > 0). Therefore, since Ry and Ry are always positive,
there can be only one perfect equilibrium, where both firms choose
the highest quality.

Proposition 2. Assume that the costs of production are zero. Then
if the post-entry game is Cournot-Nash there is a unique perfect equi-
librium of the two-stage game where both firms enter with the highest-
quality product and make positive profits.

Proof. See Appendix.

We can summarize the results of propositions 1 and 2 as follows.
In the case of vertical differentiation firms have a tendency to increase
the quality of their products, since consumers are willing to pay higher
prices for products of higher quality. However, in the Bertrand-Nash
case, price competition becomes fiercer the more similar the products
of the two firms. Thus in the Bertrand-Nash case there is a counter-
acting tendency and the net result is that firms choose to maintain
some degice of product differentiation. In the Cournot-Nash casc,
on the other hand, this counteracting tendency is absent and therefore
the two firms will both choose to locate at the upper extreme of the
quality space. Thus, in the Cournot-Nash case with zero production
costs, Hotelling’s principle of minimum differentiation holds.

We shall investigate further the Cournot-Nash case in section 6.
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5. Discussion of the Bertrand-Nash Case

Proposition 1 (section 3) is essentially a corollary to Bertrand’s
theorem, which says that if two firms produce (at zero costs) a homo-
gencous product and compete in prices, then the only Nash equilibrium
is one where both firms charge zero price and thereforc make zero
profits. If the two firms can make positive profits by producing dif-
ferentiated products, it is obvious that they would do so.

D’Aspremont, Gabszewicz and Thisse (1983) have tried «to go
a step further» and argue

«that under mild assumptions, the ‘Principle of Minimum Differ-
entiation’ never holds, so that, given the product specification of one
of the sellers, it can never become advantageous to the other one to
choose his own specification arbitrarily close to it, if prices adapt them-
selves at a non-cooperative equilibrium» (p. 20).

The argument put forward by the authors is very general (it applies
both to vertical and horizontal differentiation) and goes as follows. If
on the diagonal of the quality space (where the two qualities coincide)
firms’ profits are zero (by Bertrand’s theorem), then — by continuity —
they will be almost zero at points close to the diagonal and therefore
the two fims will always want to be sufficiently away from the diagonal.

In this section we show that the above argument — although
correct — does not imply (at least in the case of vertical differentiation)
that there is a lower bound to the degree of product differentiation ob-
served in equilibrium.

Let U be the set of utility functions defined on the quality space
[¢, d] and taking on the same values at ¢ and d. That is, let a and
f be any two numbers such that U, <a < f and let

U= {U:c,d] - &UisC! increasing, U (¢) = aand U (d) = f}. (20)

For the purpose of the proof of the following proposition we re-
quire a to be sufficiently close to U,.

Proposition 3. Assume that the second stage game is Bertrand-Nash
and that the costs of production are zero. Then for every real number
¢ > (), there exists a utility function U in U such that the set of perfect
equilibria of the corresponding two-stage game is non-empty and
all perfect equilibria are characterized by the fact that the two firms
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enter with products whose qualities differ by less than ¢ and make
positive profits (one firm always chooses the highest-quality product).

Proof. See Appendix.

The smaller ¢, the more convex the utility function or, in other
words, utility increases very slowly with quality at first and then the
function becomes very steep near d. As a consequence, firms will
tend to cluster at the upper bound of the quality space.

6. Discussion of the Cournot-Nash Case

In this section we investigate the robustness of the «principle of
minimum differentiation » proved in section 4. In particular, we want
to see if that result holds also when costs of production are introduced.
Clearly, if production costs are independent of quality, then the result
of proposition 2 is not affected. Typically, however, higher quality is
coupled with higher costs. We shall consider the following cost function
(which we assume to be continuously differentiable):

Clg, )=C(k), with C()=0 and C'(B>0 (21)

where ¢ is output and % is quality. That is, there is a fixed set-up
cost which increases with quality and zero marginal cost (the assumption
of zero marginal cost i1s not important and we make it only in order
to simplify the analysis). It is possible to think of situations in which
marginal cost does not vary with quality, while the set-up cost increases
with quality. For example, if consumers are concentrated in one area
(at the end of a line, say: cf. footnote 2), higher quality could mean
a location which is closer to that area, and the set-up cost could be
rent, which is higher the closer the firm locates to the «residential »
area.

The profit (payoff) functions of the first-stage game (calculated at
the Cournot-Nash equilibrium of the second-stage game) are now
given by

71 (k1, ko) = Ri (k1, k2) — C (k1) (22)
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and

72 (R1, ko) = Ry (ky, ke) — C (ko) (23)

where Ry and R, are given by (18) and (19) respectively. Since the
proof of proposition 2 depended on the fact that the payoff function
of each player was strictly increasing in the player’s decision variable
(that is, aRAl/(') k1 >0 and aR;/a ke > 0), the result of proposition
2 can still be true when the payoff functions are given by (22) and
(23). In fact let

my—=min of (0Riok) on K (24)
ms = min of (Rsfoks) on K (25)
mg=max of C’' on [ d]. (26)

Then a sufficient condition for the existence of a unique perfect
equilibrium of the two-stage game at which both firms enter with
the highest-quality product is

ma < min {my1, mo} . (27)

In other words, if cost does not increase too much with quality,
we would still observe no product differentiation in equilibrium.

We shall now construct an example, however, where the cost
function is a special case of (21) and the two-stage game has a unique
perfect equilibrium at which one firm enters with the lowest-quality
product, the other firm with the highest-quality product and both firms
make positive profits,

We shall first establish two properties of the partial derivatives
0]%1/0 k1 and 0 j?z/(') kz. .

The first property is that in the set K (defined by (16)) 0 R1/0 ki
has a unique global minimum at (d, ¢):

Lemma 3. For every (ki1, k2) e K with (k1, ko) # (d, ©)

J Ry Ry
(k1, k) >
J ki 1

(d, ¢) (28)
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Proof. Tt is shown in the Appendix that in the set
O* = {(x, ))/Uo <y < < U(d); (29)
61%1/0.% decreases along the directions illustrated in Figure 1.

y

u(d)

(U,.Us) Uld)

Fig. 1 - The set Q* and the directions along which the function aﬁllax decreases.

Established this, the proof of lemma 3 is immediate. In fact, since
(9 R1/0 ki) = (0 R/ &) U’ (k1) and U’ is positive, it is enough to show
that for each (x, y)e Q, where Q is defined by

Q={ U@ <y<x<U@y, (30)

with (x, y) # (U (d), U (c)) we have

~ -~

0 R1 0 Ry
(x ) > W(U(dx U(c)) (1)

) X

This is easily proved as follows. Fix an arbitrary (x, y)& Q with
(x, ¥) 7 (U(d), U(c)). Let A= (v, y) and let B be the point where
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the ray through (U,, U,) and A meets the line x = U (d) (see Figure
2). Then, by the property illustrated in Figure 1,

-

8 je1 0 Rl 6 Rl
()2 (B) > (U (@), U ) (32)
Jx Jx ox
y
u(d)
Q
B
]
A
V() SEEERRES
H X
(u,,u,) u(c) u(d)

Fig. 2 - The arrows denote directions along which 6§1Iax decreases in the set Q < Q*.

The second property we want to establish is that 61%2/6 ks has a
unique global maximum at (¢, ¢):

Lemma 4. For every (ki, ke) e K with (k1, k2) # (¢, ¢)

-~ ~

"0 Rs d Re
(k1, kz) <

¢ ¢ (33
0 ko O ke 9 )

Proof. See Appendix.
We are now ready to construct our example. Let the utility function

be given by
Uk)y=ak, with a>0 and ac > U, (34)
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and let the cost function be given by the following special case of
(21):
C(g, By =bk—r¢), b>0 (35)

The profit functions of firms 1 and 2 are therefore given by

71 (ky, ke) = Ry (R, k2) — b (k1 — ¢) (36)
and

% (k1, ko) = Ra (k1, k) — b (ks — ¢) (37)

Now, using (18) and (34) we obtain (cf. (xiil) in the Appendix)

0 Ry EU,(2ad —ac— U,)?

- (d, )= +
d k1 ad? (4 ad — ac — 3 U,)?

4 E(ad — U,) (ac — U,) (2 ad — ac — U,)
d(4ad —ac—3 U,)3

=M (38)

and using (19) and (34) we obtain (cf. (xvi) in the Appendix)

0 Rs EU, 2FE

ﬁ(cy C) =

+-
0 ke 9 ac? 27 ¢

I
h

(39)

Then by (28) and (33) if b satisfies the following inequality (recall
that b is the marginal cost of quality: cf. (35))

L<b<M (40)

(where L is the RHS of (39) and M the RHS of (38)) we have that
for all (k1, ke) e K with (k1, ko) £ (d, ¢)

0 m ( (7]%1
o ke 0k

(k1, ko) —b>M—b >0 (41)
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and for all (ki, k2) e K with (ki, ka) # (¢, ¢)

~

8 T2 a Rz
(k1, k2) =
0 k2 0 k2

(ky, ks) —b <L —b <0 (42)

"Thus since 7 is strictly increasing in k; and 72 is strictly decreasing
in ks, we have proved the following

Proposition 4. Let the parameters a, b, ¢, d, U,, E satisfy inequality
(40) (for example, E=1, Up=1099, a=c=1, b=10.19, d=11),
then the two-stage game has a umique perfect equilibrium at which
one firm enters with the lowest-quality product (k2 = c), the other
firm enters with the highest-quality product (k1 = d) and both firms
make positive profits.

To complete the proof of proposition 4 we only need to show that
at equilibrium both firms make positive profits. This is done in the
Appendix.

As concluding remark we observe that, since in this example equi-
librium in unique and characterized by the maximum degree of product
differentiation, we can also deduce a negative answer to the question
whether, in general, Cournot competition leads to less product dif-
ferentiation than Bertrand competition.

Giacomo BoNaNNO

Nuffield College, Oxford, U.K.
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APPENDIX

Proof of lemma 2. If ky = k, = k, the demand function for the homo-
gencous product is given by (9). The inverse demand function is therefore
given by

E(U k) — U,
P=G(q)=ﬁ(l(]zk) %) (1—9q (1)

where g denotes total output. Let ¢; be the output of firm 7 (i =1, 2).
Then the revenue function of firm 7 is given by

E(U (k) — U,)

Ri(q1 @) =pq = W (I1—g—g)q (i1)

R; is strictly concave in g¢; and solving the first-order conditions we
obtain a unique Cournot-Nash equilibrium given by

1 (k) = g2 (F) =1]3 (i)

The corresponding equilibrium revenues are given by

P . E(U (k) — Uo) .
1(k) = R, (k) = W— (iv)

If ky < ky, then the demand functions are given by (15) (where x =
U (k) and y = U (k,) and thus y < ). The inverse demand functions are
therefore given by

E(x—U,) E(y—U,) E(x— Us)
P1=GC1(q1, ¢2)=— 9 — g: + °
x x x
(v)
E(y— U, E(y—U,) E(y—U,)
P2=G,(q1, ¢2)=— 91— ’ gs +
y y y

The revenue function of firm ¢ (i =1, 2) is therefore given by

Ri(q1, 92) = ¢: Gi (g1, ¢o) (vi)
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For every (x, y) (with y < x), R; is strictly concave in ¢;. Therefore
solving the first-order conditions we obtain a unique Cournot-Nash equi-
librium given by

zx'—y——Uo

(_?1 (% 3) = m (vii)
and

N x— U

g2 (%, ) = j‘;—xjy———i?;a, (viii)

The corresponding equilibrium revenues are given by (18) and (19)
respectively and are obtained as follows. From R;==¢;G; we obtain

0 R;i|0 q; == Gi + ¢: (0 G1/0 q;) and therefore

2 G 0 R; \ Gy
;= q: G = ¢ —
i qi Urg i P! 7 qi 5 7
Since by definition of (§y, §,)
oR; y—0
91y 92) =

0 qi :

we finally obtain
. 0 G

7 (91 q2)

Finally, note that when & = y (and hence &, = £,), (18) and (19) coincide
with (iv).

Proof of proposition 2. Let
W=U (e, d)) (ix)
and let
Q= A{(x y)e Wy < a} ()
Since

0 Ryf0 ky = (0 Ryf0 ) U' (k) (xi)
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and
O Ryf0 ky = (3 RO 3) U’ (ko) (xii)

and U’ is always positive, it is sufficient to prove that & R,/6x and 0 R,[0y
are positive on Q. In fact we have

gmax—y—Uw 26— Up) 25—y —Us) 2y —2U0) | _

=F

[#(ba—y—3To SEx—y—3 U 5
=f1(% 3)f2 (% 3) (xiii)
where

EQx—y—U,) _
filw, y) = W (hx—y—3 Uy (xiv)
and

fo(x, ) =Us(4a—y—3Uop) 25—y — U -+
+4x(x— Up) (y— Uy . (xv)

Since (x, y) & Q implies & >y > U, both f, and f, are positive on Q.
Thus & R,/0 x is positive. On the other hand,

ORy,  UsE(x— U, 2E(y— Up) (x — Up)? (i

ay y2(4x—y—3Up? y(dx—y—3Upy?

which is positive on Q.
Proof of proposition 3. Let a and f be any two numbers such that
B>a> U, >0 (xvii)

and let U be the set of utility functions given by (20).

Fix an arbitrary U e U. Then, by proposition 1, the set of perfect equi-
libria of the corresponding two-stage game is non-empty and consists of
all the points (d, k,*) & K such that k,* is a global maximum of the fun-
ction R,* (d, k,) on [¢, d]. Consider the function R,* given by (17b) with
x = U(d) = B. This function is zero when y =: U, and greater than zero
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for y > U,. Hence if a = U (c) is sufficiently close to U, it must be

o R,*
dy

B, a)>0 (xviii)

From now on we shall assume that g is sufficiently close to U, for
(xviii) to be satisfied. It then follows that all the global maxima k,* of
the function R,* (d, k,) on [¢, d] are such that

ko* > ¢ (xix)

Let k* be the smallest of these global maxima (the set of global maxima
does indeed have a smallest element, because it is a compact subset of
e, d]).

Now fix an arbitrary ¢ > 0 and let [ & (¢, d) be an arbitrary point such
that

E<d—e (xx)

We want to show that there is a function V& U such that all the perfect
equilibria of the corresponding two-stage game are of the form (d, k,) with
ky>[;, that is, at a perfect equilibrium the two firms choose products
whose qualities differ by less than e and, furthermore, both firms make
positive profits (note that, once we have shown the existence of such a
utility function Ve U then the existence of perfect equilibria at which both
firms make positive profits follows directly from proposition 1). Let

= (k* —o)/(d— ) (xxi)
and

o= (b —old—o) (xxii)
and

r = log r*/log 7 (xxiii)

Define the function #%:[c, d]— [c, d] by

) =+ d—oFZC) (xxiv)
)( d—c¢

Finally, let Ve, d]—> & be given by

V (k) = U (h (k) (xxv)
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Then V(e)=U()=a, V(d)=U(d)=p and V is C? and strictly
increasing on [c,d]. Thus Ve U (intuitively, V' is obtained from U by ap-
plying a change of coordinates A-1:[c, d]— [¢, d] which takes k* to [).

The payoff functions of the second-stage game are still given by (17)
where now

x =V (k) (xxvi)
and

y=V(ky) (xxvii)

A perfect equilibrium of the two-stage game is now given by k; =d
and k, = fi. If the original game had several equilibria, the new game will
have the same number of equilibria, but they will all be of the form (d, &,)
with &, > [ and thus d — k, < & (because of the way we chose &¥).

Proof of Lemma 3. First of all, we want to show that

02 R,

(%, »)>0, for all (%, ¥)eQ (xxviii)
dyodx

where the set Q is defined by (30). Differentiating (xiii) with respect to y
we obtain

2R of af.
A
Oyodx oy oy

(xxi1x)

where f; and f, are given by (xiv) and (xv) respectively. Since f; and f,
are positive on Q, it will be enough to show that also (0 f,/0 y) and (0 f2/0 )
are non-negative on () and at least one is positive. In fact we have

2 2E(x—y)
= (xxx)
oy x2(4x—y—3Up)?
which is non-negative for all (x, ) such that x >y > U,, and
Bfaf0y) =452 —10x Uy -}- 2y Up - 6 Up?) == gy (x) . (xxxi)

For each y, the function gy (x) is strictly convex in x and reaches its
minimum value at x° =5 U,/4. Since

gy (®0) = — (U Ut +2y Us > (7/4) U > 0
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(since y > Uy), it follows that gy (x)> 0 for all y and x and therefore
dfs/0y is positive on Q.

Now consider the extension of the function 9 R,J0x to the set Q%
defined by (29), which contains the set Q. In Q¥ along rays of the form
(%, y) with

y=1—s)x+s U, , with constant se[0, 1] (xxxii)

we have (substituting (xxxii) for y in (xiii))
R, UE(1+5? 4E(1—s?)
= (xxxiii)

0« y:(l——s)x—}—on— %*(34-9)° x(3+9)?°

which is strictly decreasing in x for every se[0, 1]. Figure 1 shows the
set O%* and the directions along which @ R,/0 x decreases (obtained from
(xxviii) and (xxxiii)).

The proof of lemma 3 can now be completed using the argument
given in the text after lemma 3.

Proof of lemma 4. We first show that
2R,
oxdy

(x, ) <0  forall (x3)e0Q (xxxiv)

Differentiating (xvi) with respect to x we obtain

2R, 2E U, (x— Us) (y — Uy)

dx0y - y2(4x—y—3Up)®
4E(x——Uo)(y—Uo)(2x—{—y~—3 U,)

— (xxxv)

y(4x——y—3 U,)*

which is negative for all (x, ) such that x =y > U,.
We can now show that for each (x, ¥)& Q with (x, ¥) 4 (U (c), U(¢))

dR,

oR, .
(x, ) <——(U(c), U(e)) (xxxvi)
oy

First of all, setting x =y in (xvi) we can sce that along the diagonal
x =19 in Q we have
oR, UE 2E

—_ e (xxxvii)

0y |nw—y 9a% &

which is strictly decreasing in x.
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Now fix an arbitrary (x, y)& Q with (x, ¥) £ (U(c), U(e)). If y = .
U (¢) then (xxxvi) follows directly from (xxxiv). If y > U (c) then by (xxxvii)
we have

O R, oR,
—— (0 ) <——(U(), U(e)) (xxxviii)
9y Oy
and by (xxxiv)
OR, oR, _
W »y= (%, ¥) (xxxix)

Since (0 Ryf0 ky) = (0 Ry/0y) U’ (ks) and U’ is positive, lemma 4

follows from (xxxvi).

Proof of proposition 4. It only remains to prove that at equilibrium
both firms make positive profits. Now,

5y (d, ¢) = Ry (d, ¢)> 0
and by (41)

7y (d, ¢) > 7y (¢, €) = Ry (c, ¢) > 0.
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