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Abstract

The notion of a vector replacement system, developed in the computer science literature, is used to analyze the
reachability problem in integer-valued input-output models. An integer-valued input-output system with initial resources is
a 5- tuple (n,^,  A,  B,  p) ,  where n is  the number of  commodit ies,  lz  the number of  product ion processes,  A is  the n x m
input matrix, B is the nx ln output matrix and p €l)i" is the initial vector of resources. The elements of A, B and p are
non-negative integers. A vector p' is reachable from p if it is possible to transform p into p'through a sequence of
production processes, without ever violating the feasibil ity constraint represented by the available resources.

l. Introduction

The notion of an input-output system was first introduced by von Neumann in 1937 [von
Neumann (1945)]. The open Leontief system [Leontief (1941)] is a special case of it. An
input-output system is a 4-tuple (n,* ,A,8 ) ,  where n is the number of  commodit ies,  m the
n u m b e r o f p r o d u c t i o n p r o c e s s e s , , 4 i s a n n x m i n p u t m a t r i x a n d B i s a n n X m o u t p u t m a t r i x . T h e
e l e m e n t s o f A a n d B a r e n o n - n e g a t i v e r e a l n u m b e r s . T h u s f o r i e { 1 , . . . , n } a n d 7 e { 1 , . . . , f f i } ,
the element a,,of ,4 is the quantity of commodity i used by production processT, when the latter is
operated at unit intensity, while the element b,,of B is the quantity of commodity i produced by
process 7 (when operated at unit intensity). It is assumed that each production process requires at
least one input (every column of A contains at least one positive entry). When n : m and B is the
identity matrix, then A is called a Leontief matrix. An important assumption that is usually made
when dealing with input-output systems is that all the production processes can be scaled up or
down by an arbitrary factor, that is, the corresponding technology displays constant returns to
scale. We shall see later that for the analysis of section 2 the assumption of constant returns to
scale is not needed.

An input-output system with initial resources is an input-output system together with a
non-negative vector po e S" of init ial resources. A question that has been addressed only
indirectly and implicitly in the literature is the following: Given an input-output system with
initial resources pr, what are all the possible commodity vectors p into which Fo can be
transformed? This question motivates the following definition.

* I am grateful to Kanapathipil lai Sanjeevan for introducing me to the computer science literature referenced in this paper
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Definit ion. Given an input-output system with init ial resources g.0, we
commodity vector p c l)t' is reachable from p",, through the sequence
negative intensity vectors in l)t- if

F :  F o  +  ( B  -  A ) ( * ,  t  x ,  +  ' ' '  *  * r )  ,

t L r +  ( B  -  A ) ( x l *  x - , * " '  + x , ) > 0 ,  f o r e v e r y  r : I , . , k

A x  1 5  p 1 1  ,

and

A * , =  t r r , , t  ( B  -  A ) ( r r l  x r . *  " ' l  x ,  , ) ,  f o r  e v e r y  r : 2 , .  .  .  , k  .  ( 4 )

Finally, we say that p' c !)t" , l tr '  20, is coverable from F,, if either (1) p' s ltr, or (2) there exists
a p>p. '  and a sequence of  intensi ty vectors (" , . " ,  x*)  such that p" is reachable f rom p,, ,
through this sequence.

The interpretation of the above definit ion is clear. Starting from p., by activating x, one first
o b t a i n s  p r : F o + ( B - A ) * , . T h e n f r o m  p t , b y  a c t i v a t i n g x 2 , o n e o b t a i n s  F z : F t + ( B - A ) x r , e t c .
Condition (1) requires that at the end of the sequence, by activating xk, one obtains F*: F.
Cond i t ion  (2 )  requ i res  tha t ,  fo r  every  r :7 , . . . , k ,  p ,  be  non-negat ive .  Cond i t ion  (3 )  requ i res
that the init ial activity vector x, be feasible, given p.,,. Finally, condition (4) requires that, for
every r :2, . . , k, activity vector x, be feasible given p, r.

The reachabil ity or coverabil ity problem has only been addressed implicit ly in the input-output
l iterature. For example, an implicit answer to the coverabil ity problem in a Leontief framework is
implied by the following theorem [for a proof see Gale (1960, ch. 9)].

Theorem. Let A be an n X n Leontief matrix. Then the following conditions are equivalent:
(1) There exists a positive vector tcl)i" such that i> Ai (if * and z are two vectors in l) lt ' ,

p>1, wlz means that every component of w is greater than the corresponding component of z).
(2) The matrix (I - A) is invertible and its inverse is non-negative (where I denotes the identity

matrix).
(3) I < 1 , where ). is the maximum eigenvalue of A (recall that, by the Perron-Frobenius

theorem, there exists a positive real number A" such that: (1) ), is an eigenvalue of A, and (li) if ),' is a
real or complex eigenvalue of A, then lI'l < i).

A Leontief matrix that satisfies any of the above conditions is called productive. Using the
above theorem it is easy to prove the following.

Proposition. Let A be a productive Leontief matrix. Let pt,,>0 be a vector of initial resources and
let y elJl" be an arbi.trary non-negative vector. Then y is coverable from p.n.

Sketch of proof. Consider first the case where A is irreducible. Let .tr be the maximum eigenvalue
of A and i be a corresponding eigenvector. Then by the Perron-Frobenius theorem, i > 0.
Choose a scalar e)0 smal l  enough so that Aet<F..By act ivat ing the product ion vector Ei ,  po
can be transformed into

p  :  l l o -  Ae i  *  e i )  p ' -  A*  +  ) ,e i  (s ince  i<  1 )  :  p , ,  .

Repeating a sufficiently large number of t imes we obtain a commodity vector p' > y.

say that the non-negative
( x r , x . , .  .  .  , x t )  o f  n o n -

( 1 )

(2 )

(3 )
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If A is not irreducible, change some of the zero entries of A to 6 > 0, small enough so that the
resulting matrix is sti l l  productive and is irreducible. Then apply the above reasoning to the new
matrix. n

Two things are crucial for the validity of the above proposition: (1) the hypothesis that trr,o ) 0,
and (2) the fact that there are constant return to scale. For example, let

and ,,, : (to'n)

Then, even though 4 is productive,, the only vectors that can be covered from p(.t are those of the

form (o,0), with 0 < ct < 10. On the other hand, if po > 0, but small, and all the process have some

minimum scale of operation, it may not be possible to activate any production process. Notice also

that von Neumann's technological expansion rate for this input-output system (where the output

matrix is the identity matrix) is 7.727 with corresponding optimal intensity vector (0.94I, 0.337).

In the next section, drawing from the computer science literature, we provide an answer to the

coverability problem for arbitrary vectors p,, and p, within a framework that does not require the

assumption of constant return to scale.

2. The Karp-Miller coverability tree

We shall analyze input-output systems (with init ial resources) (n.m.A,B. pr) with the added
restriction that all the elements of. A, B and p,, be (non-negative) integers [such a system is known
as a vector replacement system in the computer science literature and was introduced by Keller
(1972) ;  i t i sagenera l i za t ionof  thenot ion  o f  avec toradd i t ionsys tem tha twasf i rs t in t roducedby
Karp and Miller (1969); if the two matrices A and B are replaced by the matrix B-A, whose
entries are therefore allowed to be negative integers, then one obtains a vector addition system].
The restriction that the elements of A, B and p.o belong to the set N of non-negative integers is
not an important restriction for the following reason. In any application the entries of the input
and output matrices wil l be rational numbers. It is therefore possible to redefine the units of
measurement for some or all the commodities in such a way that all the entries become integers.
For example, consider the (Leontief) system examined before, where

o : (3:1 3:l) and u: (; ?)
For each commodity define a new unit which is equal to 1/10 of the old unit. Then the input and
output matrices become

o : ( 1  : )  a n d  u : ( f o  $ )
Notice that we do not assume constant returns to scale. Thus it may not be possible to scale a

production process up or down by an arbitrary factor a ) 0. However, it is certainly possible to
repeat a production process several times. For instance, the first production process in the above
example can be repeated three times leading to a total output of 30 units of good 1 and a total
consumption of 12 units of good 1 and 3 units of good 2.

F o r  e v e r y  j : 7 , . . . , m , I e t  e , e l \ l ^  b e  t h e  u n i t  i n t e n s i t y  v e c t o r  w h o s e T t h  c o o r d i n a t e  i s  1  a n d

l 7

n  _  ( 0 . 4  0 . 5 \^ - \ o . t  0 . 3 /
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all the other coordinates are 0. Given a vector of init ial resources, po€N", the definit ion of

coverability of 11, €N" from pt, is the same as in section 1, except that we require each activity

v e c t o r  x ,  i n  t h e  s e q u e n c e  ( x , , . . . , x * )  t o  b e l o n g  t o  t h e  s e t  { e , , € 2 , - . . , e  * } .
Karp and Miller (1969) constructed an algorithm that yields the so-called coverability tree.

Associated with each node of the tree is an extended vector. While the initial vector of resources,

tr1., is a point in N', an extended vector is a point in the set (N U {*})". The symbol co stands for
'infinity'- and represents a.number of units of a commodity that can be made arbitrarily large. For

any integer k, we define:

c x . - l k : @ ,  o o - k : @ ,  1 7  ( x , ,  @ < o o

Let a,denote the 7th column of the input matrix A and b, denote the 7th column of the output

matr ix B ( j :1, . . . ,m).  Given a vector of  in i t ia l  resources, l f ,o,  ws associate p,o wi th the root of

the  t ree .  For  every  j :1 , . . .  ,mfor  wh ich  Foza j ,  we cons t ruc t  a  new node and assoc ia te  w i th  i t

the commodity vector [L' : pr- aj + bi.We then repeat the procedure starting from this new

vector  p ' ( fo r  every  j :11  . . .  ,mfor  wh ich  p '>a j ,we cons t ruc t  a  new node and assoc ia te  w i th  i t

the vector lL": p' - a, * b1, etc.). However, we iniroduce rules aimed at making the tree finite, so

that, starting from the rooi, every path leads to a terminal node. Obvious terminal nodes are dead

ends (a  dead end is  a  vec tor  p  such tha t ,  fo r  no  j :1 ) . .  .  ,m,  p=  o) ,  o r  nodes  whose assoc ia ted

vectors are duplicates of vectors previously obtained. The symbol .o is used to obtain the

remaining terminal  nodes. Consider a feasible sequence of  uni t  intensi ty vectors c:€jr€jr . . . .€ io

which starts at a commodity vector g.' and leads to the commodity vector ;r", with LL" 2 lL',

lL" +p'. Since the sequence o was feasible starting from p',it wil l sti l l  be feasible startingftom p""

ancl wil l lead to a new commodity vector lL"': l t" + (lr" -;r, ') [since the sequence o always adds

(lt" - t" ')). If we repeat cr n times, we add the commodity vector (p" - p') n times. Thus, for

those commodities that were increased by the sequence, we can create an arbitrarily large number

of units simply by repeating the sequence o as often as desired. During the construction of the

tree, if at any time we obtain a vector p" with lL" > 1.t ' and p" + F', we replace p" with an

extended vector where there is the symbol m in place of those components of pt" that are greater

than the corresponding components of p' (the discussion based on Fig. 1 below wil l i l lustrate

this) .
The Karp-Miller coverability tree is constructed using the following algorithm. Every node u of

the t ree is assigned two labels:  an extended vector p[u]  e (NU {*}) '  and a label  ( [u]e {open,
interior', duplicate, dead end, infinite). The algorithm terminates when there are no nodes u such

that ( fu l : 'open' .

STEP 1. Let p.,, be the vector of init ial resources. Label the root u,, as follows: p[uo] : Fo,
( l ru l : 'open ' .

STEP 2. While nodes u such fhat (lv): 'open' exist, do the following:

STEP 2.1.  Select  a node u such that ( [u] : 'open' .

S-IEP 2.2. If p[u] is identical to p[u'] for some node u' *u on the path from the root to

u,  then set ( [u] : 'dupl icate '  and go back to Step 2.1.

STEP 2.3.  I f  there is no j : I , .  .  .  , ,  m for which plul>a,,  set  ( [ r ] :  'dead end'  and go

back to Step 2.1.
STEP 2.4. If each coordinate of p,[u] is the symbol *, set (ful: ' infinite' and go back to

S t e p  2 . 1 .
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exist j : I

Set /[u] : ' interior'. Draw a new vertex w and an arc from u to
w. Label the arc with production process i. Obtain the
commodity vector LL' : plul- a,* b,.
IF on the path from the root to u there exists a node z * u such
that p.' 2 l"[z] and p' + t"Izl, then replace each component of

;r' which is greater than the corresponding component ot p.[z]
with the symbol m; let p" be the resulting extended vector; set

t" [w]:  1tr"  and ( [w]: 'open' ;  ELSE go to the next step.
Set plr l :  p. '  and ( l r l : 'open' .

19

STEP 2.5. While there
every such 7.
STEP 2.5. I .

STEP 2.5.2.

STEP 2.5.3.

Karp and Miller proved that the algorithm terminates (all nodes are labeled as either interior or

duplicate or dead-end or infinite) and therefore yields a finite tree. Thus the coverability problem
is decidable.

Example. Let

A : B - and Fo 
--

Then using the Karp-Miller algorithm one obtains the coverability tree of Fig. 1. Activating
p r o c e s s  1  a t  u n i t  i n t e n s i t y  l e a d s  f r o m  ( 7 , 2 , 2 , I )  t o  ( 1 , 2 , 2 , I )  -  ( 1 , 0 ,  2 , , 0 )  +  ( 0 , 0 , 0 , 5 )  :

(0,,2,0,6). The only process that can be activated (at unit intensity: for brevity, from now on the
c lause 'a t  un i t  in tens i ty 'w i l l  be  omi t ted)  a t  (0 ,2 ,0 ,6 )  i s  p rocess  2  wh ich  leads  to  (2 ,0 ,2 ,5 ) .  Here

the only process that can be activated is process 1, leading to (1,0,0, 10), which is a dead end,
since no process can be activated. This explains the left branch of the tree. Similarly for the right
branch. Now let us go back to the root. Activating first process 2and then process 3leads first to
(3,0,4,0) and then to (3,6,0,2).  Now act ivat ing process 2 ( the only one that can be act ivated)
we wou ld  ge t  (5 ,4 ,2 ,1 ) .  Th is  i s  g rea ter  than (1  ,2 ,2 ,1 ) :  p [uo ] .  The f i rs t  and second components
are greater, hence we replace them with the symbol oo. Thus p[us] : (*, *,2,1). This means that
be repeating the sequence of processes (2,3,2> a sufficiently large number of t imes one can
increase the quantity obtained of commodities 1 and2 to any desired level. Activating process 1 at
p [u r ]  :  ( * ,  * ,2 ,1 )  one wou ld  ob ta in  ( *  -  t :  @,  @,0 ,6)  wh ich  is  g rea ter  than p . [u r ] ,  the  las t
component being greater. Therefore we replace the last component with m and let pluef:
(-, *,0, .o). The remaining nodes are obtained similarly.

3. Conclusion

The purpose of this paper was to show the relevance and usefulness of some concepts and
techniques developed in the computer science literature for the analysis of the production
possibility set of an economy, starting from an initial vector of resources. For a more extensive
analysis of input-output systems, using the notion of a Petri net (also developed in the computer
science literature), see Bonanno (1993).
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