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I. Introduction 

Consider a set of agents, all of whom face the 
same environment (e.g. the same data or informa- 
tion) and the same set of choices. If the agents 
differ among themselves, we would expect them to 
make different choices. Intuition, however, sug- 
gests that similar agents with similar objectives 
should make similar choices. The purpose of this 
paper is to show that it is possible to have diver- 
gence of choices despite similarity of characteris- 
tics and objectives, and, furthermore, that this is a 
stable phenomenon, in the sense that it cannot be 
eliminated by means of small changes in the 
specification of the model. A consequence of this 
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is that such phenomena cannot be considered 
' unlikely' or ' pathological'. 

The mathematical tool which we use is 
catastrophe theory t. In the following two sections 
we illustrate the phenomenon with the help of two 
simple analytical examples, while in Section 4 we 
set up a general framework and apply the classifi- 
cation theorem of catastrophe theory to it. Section 
5 provides a summary. 

2. Example 1: Forecasting the value of a random 
variable 2 

Consider a situation in which a number of 
agents are asked to make a forecast x about the 

I For an elementary exposition of catastrophe theory see 
Chillingworth (1976) and Fararo (1978). 

2 This example is based on Smith, Harrison and Zeeman 
(1981) and Zeeman (1982). It will be pointed out later that 
the work of Smith (1978) is also directly relevant to this 
example. 

0377-2217/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland) 
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Figure 1. Skew probabifity density function 
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value of a random variable Y (for example, the 
price of a particular stock). The probabihty distri- 
bution of Y is common knowledge and given by 
the density function P(Y) .  Let x be the forecast 
value and y the observed value. Then the payoff is 
as follows: if the forecast is approximately correct, 
i.e. if 0 ~< I x -  y Ifl (where fl > 0 is small), the 
agent receives a prize p > 0; if the forecast is 
considerably wrong, i.e. if I x - e l  > Y (where y 
> 0 is large) the agent has to pay a fine s > 0; in 
every other case the agent receives and pays noth- 
ing. 

Suppose the density function P ( y )  is as shown 
in Figure 1. 

We have deliberately chosen a skew distribu- 
tion so that the mode m is different from the 
mean /L. The mode represents the most likely 
outcome, while the mean represents the expected 
outcome. Will an agent's forecast be based on the 
mean or on the mode? 

We consider a large number (in fact a con- 
tinuum) of agents. Each agent is identified by a 
value, between 0 and 1, of the parameter w, which 
gives the weight the agent attaches to the prize p 
(and (1 - w) is the weight he attaches to the fine 
s). Intuitively we would expect the agent for whom 
the prize is all that matters (w = 1) to follow the 
mode m (the most likely outcome), and the agent 
who is entirely worried about the fine (w = 0) to 
follow the mean /~. We would also expect that as 
w increases from 0 to 1 the forecast varies con- 
tinuously from the mean to the mode. We now 
show that this need not be the case. 

el 

, I , 
-~r -~  0 I~ 7 x - y  

error 

Figure 2. Two-step loss function 

A agent w ~ [0, 1] will view the game as having 
the following loss function as payoff 

- w p  ifO~< I x - e l  ~ f l ,  

Lw(X , y ) =  0 i f f l <  I x - e l  ~ v, (1) 
( 1 - w ) s  if [ x - e [ > ~ , .  

For each agent w, define the risk of making 
forecast x as follows: 

Rw(x) = f L (x, y)P(y) de.  (2) 

In other words, the risk function is the expected 
loss. We assume that each agent makes the fore- 
cast x*  that minimizes Rw(x  ). 

Let 

= w p / [ w p  + (a - w)s] .  (3) 

Then we can normalize L~ by defining 

Lo(x, y)= wp + Lw(X, y) 
wp + ( 1  - w)s 

i i f 0 ~ < l x - y  I <~fl, 
= i f f l <  I x - e l  ~<y, (4) 

if [ x - y  I > y. 

Such a normalization is admissible because affine 3 
changes of L induce the same affine changes in R 
and so do not alter the critical points of R. The 

3 A transformation T: R ~ R is called affine if it takes the 
form T ( x )  = ax + b, where a and b are constants. 



G. Bonanno, E.C. Zeeman / Divergence of choices despite similarity of characteristics 381 

two-step loss function L ,  is shown in Figure 2. 
As w varies between 0 and 1, so does a and we 

can identify an agent with a value a ~ [0, 1]. The 
parameter  a can be interpreted as a measure of 
confidence: the higher a, the more confident the 
agent. 

The risk function 

= fz.o(x, y)P(y) dy (5) 

can now be computed as follows. Regard L ,  as 
the constant function, with value 1, minus two 
rectangles, the first of width 2fl and height a, and 
the second of width 23, and height (1 - a). There- 
fore 

R (x) = fL (x, y )P (y )  dy 

= 1 - a B ( x ) -  (1 - a ) F ( x )  (6) 

where 

B(x)  = fx_yl~BP(y)  d y =  f[+;P(y) dy, (7) 

r x + y  

F ( x ) = f x _ y l ~ v P ( y ) d Y = J x _ v P ( y ) d y .  (8) 

It is interesting to note that the risk function is 
smooth, despite the fact that the loss function is 
not continuous (it is a step function). The critical 
points of B are given by 

dB/dx  = P(x  + fl) - P ( x -  fl) = 0. (9) 

Therefore B has a unique maximum at m ' ,  say, 

B(x) 

F(x) 

i 

O m' p' 

Figure 3. The functions B(x) and F(x) 

X 

where m '  is the mid-point of the unique horizon- 
tal chord of P of length 2ft. Since fl is small, m '  is 
near the mode of P. Similarly, F has a unique 
maximum at /~', say, where/~'  is the mid-point  of 
the chord of length 23,. If  3, is of the order of 
about twice the standard deviation of P then it 
can be seen from Figure 1 that ~t' is near the mean 
/~ of P, as shown in Figure 3. 

Therefore if a = 0  then R e has a unique 
minimum at/x' and if a = 1 then R e has a unique 
minimum at m' .  If  0 < a < 1 then R~ is a linear 
combination of B and F, and so it is either 
unimodal, with a unique minimum between m '  
and /~', or else bimodal,  with two minima, one 
near the mode and the other near the mean, as 
shown in Figure 4. As the parameter  a varies from 
0 to 1, the decreasing family of loss functions give 
rise to a smooth decreasing family of smooth risk 
functions, one possibility being the one shown in 
Figure 4 (in the Appendix we give a very simple 
example of a bimodal risk function arising from a 
unimodal probabili ty density function and the 
two-step loss function (4) illustrating this possibil- 
ity). 

Let x* = g ( c  0 be the absolute minimum of 
R,(x). For the family shown in Figure 4 there is a 
critical value a* of the parameter  for which the 
risk function R~(x) has both minima at the same 
level. If  a < a* then the lower minimum g(a)  wilt 
be a point /~' near the mean, and if a > a* then 

r isk 
R= 

0~=1 

a = O  

0 mode mean x 
forecast  

Figure 4. The family of risk functions. The absolute minimum 
of each risk function is indicated by a solid dot. At the critical 
value a* the risk function has both minima at the same level, 

indicated by the horizontal dotted line 
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Figure 5. Discontinuous choice function 
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agent  

g(a)  will be a point m '  near the mode. Therefore 
if c~ increases past a* then g (a )  will switch 
discontinuously f rom/~ '  to m' .  

This is shown more clearly in Figure 5. The 
smooth S-shaped curve consists of all points (a,  x)  
for which x is a stationary value (minimum or 
maximum) of R~(x). The thick part  of the curve 
represents the absolute minima, the thin part  rep- 
resents the local (but not absolute) minima, while 
the dotted part  represents maxima. Therefore the 
graph of x*  = g (a )  (absolute minima) is the thick 
curve, with the discontinuity at a*.  We call this 
function x*  = g ( a )  the choice function, since it 
gives the forecast chosen by agent a (choice func- 
tions will be discussed in more general terms in 
Section 4). 

We therefore observe a phenomenon of polari- 
zation, with some agents making forecasts near the 
mean and the remaining agents making forecasts 
near the mode, while no agent makes a forecast in 
between. Figure 5 also illustrates two phenomena 
- -divergence and inaccessibil i ty--which will be 
discussed at greater length in Section 4. 

Values of x between xx and x 2 are not forecast 
by any agents (inaccessibility; these are values 
which correspond to local maxima or l oca l - -bu t  
not g loba l - -min ima  of R~) and agents with simi- 
lar characteristics and objectives (e.g. agents al 
and a2) end up making forecasts which are con- 
siderably different (divergence). 

In the preceding discussion the density function 
P was fixed, while the loss function varied within 
a one-parameter family, L, .  We can now extend 

the analysis by considering a one-parameter family 
of density functions Pn. We define the parameter  
7 as follows 

7 = / ~  - m = mean minus mode. (10) 

We can interpret 7 as a measure of the ambiguity 
of the information about the random variable Y. 
A symmetrical distribution like the normal would 
have 7 = 0. If  7 > 0 then P is skewed to the right 
as in Figure 1, and if 7 < 0 then P is skewed to 
the left. First consider only non-negative values of 
7. Let x*=g(a,  77) be the forecast chosen by 
agent a when he faces the density function Pn. If  
7 = 0 the mode and the mean coincide and there- 
fore all agents will make the same forecast x =/x 
= m. Therefore g(a, 0) is a horizontal straight 
line, hence continuous. If  7 is positive we are in 
the situation analyzed previously where the func- 
tion g(a, 71) has a discontinuity as shown in Fig- 
ure 5. The classification theorem of catastrophe 
theory, which will be stated in Section 4, enables 
us to conclude that the graph G of the choice 
function g(a, 7) is a surface which is equivalent 
to that shown in Figure 13(c) (cusp). If  the infor- 
mation is skewed the other way (~/< 0), implying 
/~ < m, then another symmetrically placed cusp 
appears, with the orientation reversed. The graph 
G of g(a, 7) would therefore look like Figure 6. If  
7 = 0 our two agents a 1 and a 2 make the same 
forecast, but if P becomes skewed either way then 
they will find their forecasts diverging in opposite 
directions, with a I always following the mean and 
o~ 2 following the mode. 

We conclude this section with a remark. We 
have considered the case where a two-step loss 

Figure 6. Skewing either way gives two cusps 
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function coupled with a unimodal density func- 
tion gives rise to a bimodal risk function (an 
example is given in the Appendix) and therefore 
to the possibility of a discontinuous choice func- 
tion. It  is worth stressing that in general the risk 
function need not be bimodal. Smith (1978) gives 
sufficient conditions on the skew density which, 
together with a double-step loss function, ensure 
bimodality of the resultant risk function (see also 
Smith, Harrison and Zeeman, 1981) 4. 

3. Example 2: Asking for the 'right' salary s 

Consider the case of a firm and a large number  
of workers. The firm believes that each worker's 
productivity is the same and equal to S, which, 
without loss of generality, we can take to be a 
positive number  less than or equal to 1. The firm, 
however, does not want to disclose its beliefs; 
instead, it asks each worker to state the salary 
x ~ [0, 1] at which he is willing to work and it will 
employ the worker if and only if x < S. All workers 
have the same utility function 6 

U(x) = x. (11) 

They differ, however, in their beliefs concerning 
the value of S. A worker's beliefs are expressed by 
a density function h: [0, 1] ~ R whose cumulative 
distribution function we denote by H. Thus H(x) 
is the probability, according to the worker 's  be- 
liefs, that S ~< x, that is, that if he requests salary 
x, the firm will not employ him. In other words, 
the worker attaches probabili ty 1 -  H(x) to the 
event that the firm will employ him if he requests 
salary x. 

We want to consider a one-parameter  family of 
beliefs, H a, where a is a one-dimensional parame-  
ter and each value of the parameter  identifies a 

4 The class of skew densities which-- toge ther  with the two- 
step loss function (4)--give  rise to a bimodal risk function 
includes the lognormal, inverse gamma  and the Pareto 
distributions (cf. Smith, 1978), as well as the one con- 
structed in the Appendix. It does not, however, include 
commonly  used densities, such as the gamma.  

s The example of this section is formally similar to Bonanno 
(1987). In fact, the function fb,c(x) given by (19) is for- 
mally identical to a revenue function. 

6 The utility function was chosen to be linear (risk-neutrality) 
only in order to simplify the analysis, but  similar results can 
be proved with concave utility functions (risk-aversion) (cf. 
Bonanno, 1986). 

worker (or agent); furthermore, we want increas- 
ing a to mean increasing pessimism. We say that 
worker a is more pessimistic than worker a '  if his 
beliefs, H a, dominate those of worker a ' ,  Ha,, in 
the sense of strict first-order stochastic dominance, 
that is, if 

H~,(x)>~H~,(x) 

for all x E [ 0 , 1 ]  and H a : g H  a, (12) 

(recall that H(x) is the probability, according to 
the worker's beliefs, that if he requests salary x 
the firm will not employ him) 7. 

For the time being we shall leave aside the 
parameter  a (worker) and consider the following 
two-parameter  family of cumulative distribution 
functions (beliefs): 

H ,c(X) 
= { b x  

1 - c + c x  
if 0 ~< x ~< (1 - c ) / ( b -  c),  

if (1 - c ) / ( b -  c) <~ x <~ 1. 
(13) 

Define 

Ph.c(x)= l -- Hb,c(x). (14) 

For a worker whose beliefs are represented by the 
point (b, c), Pe.c(X) gives the probabili ty that 
x < S, that is, the probabili ty that if he asks for 
salary x he will be employed at that salary. From 

i f  0 x ( 1  - c ) / ( b -  c),  

i f  ( 1  - c ) / ( b  - c) x 1. 

(15) 

(13) we obtain 

Pb'c ( x ) = { cl _- cxbX 

Figure 7 illustrates the function Ph,c(x) for the 
cases where b =  c = 1 and 0 < c < 1 < b. Accord- 
ing to our definition (b, c) represents more pessi- 
mistic beliefs than (b ' ,  c ' )  if and only if Pb,c(x) <~ 

7 The intuition behind our definition of greater pessimism is 
reinforced by the following well-known property (cf. Lipp- 
man  and McCall, 1982, pp. 215-216): H,, dominates H a, in 
the sense of strict first-order stochastic dominance if and 
only if for every increasing function U, 

fu(x)ho(x) dx < fU(x)ho,(x) dx. 

Therefore, worker a is more pessimistic than worker a '  if 
and only if his expected utility is less than that of worker a '  
(assuming that they have the same utility function). 
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Figure 7. The function Pb,c(X). We have labelled the angles by 
the value of their tangents. (a) Case b = c = 1; (b) Case 0 < c < 

l < b  

Pb, c,(X) (for all x, with strict inequality for some 
x). It  is easy to check that a sufficient condition 
for this is 

hb,¢ 

hb,= 

c s 

Figure 8. The density function hb,c(S ). The two shaded areas 
are equal 

We shall restrict our attention to values of the 
parameters satisfying the condition 

0 ~ < c < l < b .  (18) 

The shaded area in Figure 9 illustrates the 
region defined by (18) and the arrows at point V 
indicate the directions associated with increasing 
pessimism (East, South or South-East). 

Let 

fb ,c (x )  = U(X)Pb,~(x  ) = XPb,c(x ). (19) 

Thus fb,~(X) is the expected utility of asking for 
salary x. It  follows from (15) that the function 

b >~ b '  and c ~< c '  and not both equal. (16) 

The two-parameter family of c.d.f.'s given by 
(13) arises from the following two-parameter  
family of two-step density functions, illustrated in 
Figure 8: 

{~ i f 0 ~ < S ~ < ( 1 - c ) / ( b - c ) ,  (17) 
hb 'c(S)  = if (1 - c ) / ( b  - c) <~ S <~ 1. 

By (16), given any point in the parameter  space, 
a movement  in the South, East or South-East 
direction is associated with increasing pessimism. 

1 

Figure 9. The arrows denote the directions which are associ- 
ated with increasing pessimism (from any given starting point 

v) 



G. Bonanno, E.C. Zeeman / Divergence of choices despite similarity of characteristics 385 

i 
f b l c  

0 t 1 1 
Zb Z 

(a) 

l 
f b ~ c  

0 ! 1__ 1 
2 b  ?. 

1 

1 

3 

1 c = - -  
b 

\ 
\ 

~ 1 . M a x w e l l  
, x*=;/(=,..) - I ~ _ : - I i n e  
I 

b 
0 1 3 

Figure 11. The line of equation c = 1 /b  is the Maxwell line 

(b) 

f b ~ c  

0 2_  ± 1 
Zb Z 

(c) 

Figure 10. The function fb,c(x) (a) Case 1 /4b  > c/4; (b) Case 
1/4b  = e/4; (c) Case 1 /4b  < c / 4  

maxima at x* = 1 / 2  and x* = 1 / (2b )  (cf. Figure 
10(b)). 

The above results are visualized in Figure 11. 
Any path in the (b, c)-space ~a: A c R --+ R 2 such 
that as a increases the corresponding point ~ (a )  
moves in the South, East or South-East direction 
(like paths (1) and (2) in Figure 11), can now be 
taken as the one-parameter family of beliefs re- 
ferred to above: each value of a identifies a worker 
and increasing a means increasing pessimism. 
Whenever such path crosses the line (which, as we 
shall explain in Section 4, is called the Maxwell 
line) defined by the equation 

e = 1 /b  (21) 

fh.c(x) is the union of two parabolas, as illustrated 
in Figure 10 8 

We shall assume that each worker asks for that 
salary x* which maximizes fb.c(X). Let x * =  
g(b, c) be the point at which fb,c(X) reaches its 
maximum; then it is easy to check that 

1 / 2  if c > l / b ,  (20) 
x * =  1 / ( 2 b )  i f c < l / b ,  

while for c = 1 /b  the function (19) has two global 

8 The case 1 / ( 4 b ) >  c / 4  (Figure 10(a)) includes two more 
cases, where the max imum of the parabola on the fight goes 
inside the other parabola and therefore the function f 
becomes unimodal.  Similarly for the case 1 / ( 4 b ) <  c / 4  
(Figure 10(c)). 

there will be a discontinuous jump in the salary 
x* = g(a)  requested by worker c~ (as in the previ- 
ous section, we shall call the function x * =  g(c0 
the choice function). Path (1) in Figure 11 (given 
by b = 3 and a = 1 - c) gives rise to a counterin- 
tuitive situation, as small differences in beliefs 
give rise to large differences in choices; however, 
the jump occurs in the ' r ight '  direction: a more 
pessimistic worker asks for a lower salary (see 
Figure 12a). More surprising is the situation il- 
lustrated in Figure 12b, corresponding to path (2) 
in Figure 11 (given by c = 1 /3  and c~ = b). Here 
not only do we have a discontinuity, but the jump 
occurs in the 'wrong '  direction: a more pessimistic 
worker asks for a much higher salary than his less 
pessimistic colleague! 

The intuition behind these results is as follows. 
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salary 
X* 
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1 

, g 
0 1 

T worker  

salary 
X* 

0 3 
worker 

(b) 

Figure 12. Evolution of requested salary along paths 1 and 2 
(Figure 11) (a) Path (1) of Figure 11; (b) Path (2) of Figure 11 

well take a chance and ask for a high salary, since 
he believes there is a positive, although very small, 
probabili ty that S is in fact large. Between a very 
likely life of misery and a not impossible life of 
luxury some workers will opt for the former and 
s o m e - - t h e  slightly more pessimistic o n e s - - f o r  the 
latter. Here we can notice again the two phenom- 
ena of divergence and inaccessibility, which were 
pointed out in the previous section and will be 
discussed at length in Section 4. 

We shall conclude this section with a remark. 
The functions which we considered in this exam- 
ple are continuous but not smooth: the functions 
(15) have a kink at the point (1 - c ) / ( b  - c) and 
therefore the density functions (17) have a discon- 
tinuity at that point. It  is clear from Figure 10, 
however, that the kink (and corresponding discon- 
tinuity) are irrelevant from our point of view, 
since the point ( 1 - c ) / ( b - c )  is a (kinked) 
minimum of the functions fb,c(X) while we are 
interested in the maxima of those functions, which 
are smooth. We chose the family of functions (13) 
because of its simplicity. However, since smooth 
functions are dense in the space of continuous 
functions 9, we can choose a smooth approxima- 
tion of the family (13), (thereby eliminating the 
discontinuity in the density functions hb,¢), and 
invoke the classification theorem of catastrophe 
theory (cf. Section 4) to conclude that any suffi- 
ciently close smooth approximation of the func- 
tions considered would exhibit the qualitative 
properties illustrated above. 

When b is close to 1, the probabihty function (15) 
is almost linear (cf. Figure 7(a)) and as a conse- 
quence the function f (given by (19)) has a unique 
maximum. With c fixed, an increase in b means 
that the probabili ty of S being close to zero 
increases and the probabili ty of intermediate val- 
ues of S decreases, while the probabili ty of S 
being close to 1 remains unchanged. The maxi- 
m u m  of the function f ,  therefore, will move to the 
left towards 0, but at the same time a new local 
maximum will appear  near 1. When the probabil-  
ity of S being close to zero becomes very high 
(that is, when beliefs become very pessimistic) 
then the worker knows that if he asks for a very 
low salary he is very likely to get the job, but his 
utility will also be very low. Therefore he may as 

4. A general framework 

The purpose of this section is to set up a 
general framework which can accomodate the ex- 
amples given above and enables us to state some 
general results. 

Let A be a set of agents, with a topology on it 
which enables us to say whether two agents are 
similar (close) or different. In general each agent 
can be identified with a vector of k characteristics 
and therefore we can think of A as a subset of R k. 
We shall denote an element of A by ~t. 

The state of the environment may affect the 
action chosen by each agent and we assume that 
we can measure the data or information about the 

9 Cf. Hirsh (1976, p. 47, Theorem 2.4). 
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environment by q parameters. Let E denote the 
space of possible parameter  values, which will 
therefore be a subset of R q. Let an element of E 
be denoted by ~. 

Let X be the set of choices facing each agent. 
In general X will be a subset of R n. 

We shall make two hypotheses. 

Hypothesis 1. Each agent a ~ A in each environ- 
ment  7/~ E has an objective function 

f~,n: X--,  R (22) 

and the agent chooses x so as to maximize f~,.. 

Hypothesis 2. Similar agents in similar environ- 
ments have similar objective functions. This can 
be formalized by requiring 

F: A X E X X - - + R  (23) 

given by F(a ,  7, x)  = f~,~(x) to be smooth 1°. 

Now it is a trivial but important  consequence 
of these two hypotheses that although F is smooth, 
the resulting choice may not necessarily depend 
smoothly on the agent and environment, and can 
exhibit standard types of discontinuity. To focus 
attention upon this crucial fact we introduce the 
notion of the choice function 

g: A x E --, X (24) 

where g(a ,  ~) is defined to be the choice made by 
agent a in environment 7/. In general f~,n will 
have a unique global maximum at a unique point 
x ~ X, and so g(a ,  77)=x. However, in special 
cases f~,, may have two global maxima at the 
same level at two different points xa, x2 and in 
this case g(a ,  7) will be double-valued and equal 
to the point pair (x l ,  x2 ). Moreover, such special 
cases may be unavoidable if A x E is at least 
one-dimensional, because perturbations one way 
may raise one of the two maxima to be the unique 
global maximum, while perturbations the other 
way may raise the other maximum, causing a 
discontinuity in the choice function, as shown in 
Figure 13(b). 

If A x E is two-dimensional, a further com- 
plexity can arise with three global maxima at the 

lo The smoothness assumption is not a strong one, since every 
continuous function can be approximated by a smooth 
function (cf. Hirsh, 1976, p. 47, Theorem 2.4). 

same level, as shown in Figure 13(d), but this is 
the worst possible case, as indicated by the theo- 
rem below. 

Let G denote the graph of g, that is, 

G= x) A x e x  Xlx=g( , 
(25) 

We call G the choice graph. Over most points of 
A x E the graph G will be single-valued and con- 
tinuous, but over certain points G can be multi- 
valued and discontinuous. The theorem below 
classifies the types of discontinuity that can arise. 

We Specialize to the case k = q =  1, that is, 
where agents are distinguished by a one-dimen- 
sional characteristic and face an environment that 
can be represented by a one-dimensional parame- 
ter. Note, however, that we impose no restrictions 
on n, the dimension of the set of choices X. 

Let ~2 be the space 11 of smooth functions F: 
A x E x X ~  R. We can now state the theorem, 
which is an immediate deduction from the deep 
classification theorem of elementary catastrophe 
theory due to Ren6 Thom and the trivial Gibbs  
phase rule (see Thorn, 1972; Zeeman, 1977). 

Theorem. There exists an open dense subset Z of ~2, 
such that if  F ~ Z, then the resulting choice-graph G 
is a two-dimensional surface, which is locally equiv- 
alent at each point to one of the graphs shown in 
Figure 13. Furthermore, each graph in Figure 13 is 
stable in the sense that it cannot be eliminated by 
small perturbations of F. 

We remark that Thom's  theorem classifies the 
types of smooth surfaces M of stationary values 
that can occur, whereas we are only interested in 
those stationary values that happen to be absolute 
minima. Therefore our choice graph G is a subset 
of M and in fact is a surface-with-boundary, with 
the boundaries occurring wherever the choice 
function is discontinuous. In Figure 13 the discon- 
tinuities are indicated by vertical lines (which are 
not actually part of G). The situation is the two- 
dimensional analogue of the one-dimensional 
graph shown in Figure 5: there the S-shaped curve 
is the smooth curve M of stationary values, and 

11 The topology of 12 is an obvious one: two functions are 
close if their values are close and their partial derivatives up 
to some order are close, and, to avoid problems at infinity, 
the closeness may tail off towards infinity. This is called the 
Whitney topology (see Zeeman, 1977). 
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Figure 13. (a) Continuous choice; (b) Maxwell line; (c) Cusp point; (d) Maxwell point 

the graph G is the subset given by the thick curve, 
which is in fact a curve-with-boundary, the 
boundary points occurring where the choice func- 
tion is discontinuous. 

Notice also that G lies in A x E x X which is 
(2 + n)-dimensional, while the graphs illustrated 
in Figure 13 lie in three dimensions. The dif- 
ference is allowed for by the definition of 'local 
equivalence', which means that for each point 
p ~ A X E  there is a neighbourhood N of p in 
A x E, a picture Q in Figure 13, and a diffeomor- 
phism of N onto the horizontal square C of Q, 

throwing p onto the dot, and underlying a projec- 
tion of N x X into C x (x-axis) that throws the 
subset of G above N onto the graph in Q. 

Case (a) of Figure 13 is the intuitive situation 
that one would expect to observe: choices vary 
continuously with characteristics and environ- 
ment, and therefore similar agents in similar en- 
vironments make similar choices. 

Case (b) of Figure 13 is the counterintuitive 
situation of 'unavoidable'  polarization: despite the 
fact that agents' characteristics are spread over a 
continuous range, we observe, essentially, only 
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two types of choice rather than a continuum of 
choices. These two types of choice are separated 
by a line (a curve) in the (a, ~)-plane which is 
called the Maxwell line. The Maxwell line is the 
set of points (a, 71) at which the corresponding 
objective function f~.n(x) has two global maxima. 
Two agents lying on either side of the Maxwell 
line may have characteristics so close as to be 
almost indistinguishable, yet will make very differ- 
ent choices, x~ and x 2. In a given environment the 
set of agents is split into two by the Maxwell line. 
Similarly, for a given agent the set of environ- 
ments is split into two by the Maxwell line. If the 
environment is gradually changing then the agent 
will suddenly switch decision as she crosses the 
Maxwell line. Different agents will switch at dif- 
ferent times, so that the switch of decision will 
proceed like a wave along the spectrum of agents. 

Case (c) of Figure 13 represents the ' threshold 
of polarization'. Here the Maxwell line starts at a 
point, which marks the onset of polarization in a 
gradually changing environment. The graph arises 
from the cusp catastrophe (see Thom, 1972; Zee- 
man, 1977). Before the threshold the agents face a 
continuous spectrum of choice, but after the 
threshold they are split into two classes facing 
essentially only two types of choice, x 1 or x 3. The 
middle choice x 2 is no longer accessible to them: 
we call this phenomenon inaccessibility. Again, 
agents who are close but pass the threshold on 
either side of the Maxwell line find themselves 
gradually diverging in their choice, although previ- 
ously their choices had been relatively close: we 
call this phenomenon divergence. If the Maxwell 
line is at an angle to the environment axis, then 
there will be some agents who begin to diverge 
one way and then suddenly switch the other way 
(a very human trait!). 

Case (d) of Figure 13 respresents a 'comprom- 
ise' situation. The Maxwell line is Y-shaped, and 
at the vertex of the Y the three regions repre- 
senting essentially three different choices meet. 

We remark that this finite classification of types 
of discontinuity can be extended to higher dimen- 
sions, more precisely for parameter spaces A x E 
of up to five dimensions. The reason for this is 
that Thom's theorem classifying elementary 
catastrophes extends up to this dimension (see 
Zeeman, 1977). 

We can conclude this section by showing how 
the examples of Sections 2 and 3 fit this general 
framework. 

In the example of Section 2 the set of agents A 
is represented by the interval [0, 1] (cf. (3)) and 
the set of environments by the real line (the 
parameter 71 defined in (10) can take any value). 
The set of choices X is also the real line (each 
agent makes a one-dimensional choice consisting 
in forecasting the value of the random variable 
Y). Finally the objective function (22) is given by 

f~,n(x) = - R ~ . n ( x  ) = - f L o ( x ,  Y)Pn(Y)  dy .  

(26) 
As far as the example of Section 3 is concerned, 

we first note that the theorem stated above refers 
to two-parameter families of functions f~.n(x), 
where the parameters are a and 7- We interpreted 
those parameters as agent and environment, but it 
is clear that nothing depends on this interpreta- 
tion. What we have in Section 3 is exactly a 
two-parameter family of functions fb,c(X) (given 
by (19)) and therefore we can apply the theorem 
given above and conclude that the graph of the 
choice function g(b, c) (that is, the set of points 
(b, c, x) such that x is a global maximum of the 
function fb,c(X)) looks like Figure 13(c) (cf. Fig- 
ure 11: the Maxwell line starts at the point where 
b = c = l  and is given by the line of equation 
c = 1/b ,  for b >/1). 

5. Summary 

The purpose of this paper was to analyse situa- 
tions in which similar agents, facing similar or 
identical environments and having similar objec- 
tives, make choices which are considerably differ- 
ent. We first gave two simple examples of this 
phenomenon, the first where agents face a random 
variable and have to make a forecast of the value 
of that variable, the second where workers face a 
firm with an unknown reservation wage and have 
to state the wage at which they are willing to 
work, knowing that they will be employed if and 
only if the wage they request is below the firm's 
reservation value. In both examples each agent 
was assumed to choose the value of a variable x 
(forecast or wage) so as to maximize (or minimize) 
his objective function. We showed that agents who 
were very close to each other (having objective 
functions which were very close) ended up making 
very different choices. 
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In Section 4 we set up a very general frame- 
work, in which those examples could be accom- 
odated, and applied to it the classification theo- 
rem of catastrophe theory, which essentially says 
two things: first, that if situations like the ones 
illustrated in the examples arise, they do so in a 
stable way (in the sense that the discontinuities 
involved cannot be eliminated by small changes in 
the specification of the model); second that (lo- 
cally) there are only four qualitative types of 
situation which can arise, namely those illustrated 
in Figure 13. Moreover this classification into a 
finite number of qualitative types can be gener- 
alized to higher dimensions, for parameter space 
of up to five dimensions. 

The lesson to modellers is as follows. If in an 
investigation of some problem the data on agents' 
choices appears to present discontinuities, then 
the latter should not necessarily be ascribed to 
' random noise' and smoothed away by statistical 
techniques. An alternative approach would be to 
investigate an appropriate model that would pre- 
dict such a discontinuity, and then test that model 
statistically against the data by, for example, 
applying a least-squares fit to the discontinuous 
choice graph. Computer programmes for such 
statistical tests have been designed by Cobb (1978, 
1980). 

A p p e n d i x  

Here we give a very simple example of the 
situation analysed in Section 2, where a unimodal 
probability funct ion-- together  with the two-step 
loss function (4)--gives rise to a bimodal risk 
function. 

Consider the following one-parameter family of 
skew density functions, illustrated in Figure 14. 

l 
0 
2y 
2 - 2 y  

Px(Y) = ] 2 (1+  ~, - Y) 
/ 

[ 0  2~2+1 

if y < 0 ,  
i f0 ~ y < 1/2,  
if 1 /2  ~< y ~< 1 - 1/(2X),  

i f l - 1 / ( 2 J k )  ~< y < 1 +  X, 

i f y > ~ l + X ,  

(A.1) 

where 

X >~ 1. (A.2) 

It can be seen from Figure 14 that for each X, 

P 

i 

0 / z .  t )  

t1__1_ t ) 
/~1,, ~ rx ' --x 

_ 1 I÷X y 0 z 

Figure 14. The density function Px(Y) 

Px is the union of two triangles, each of area 1 /2  
[one with vertices (0, 0), (1/2,  1) and ( 1 -  
1 / (2~) ,  1 /~ )  and the other with vertices ( 1 -  
1 / (2~) ,  l /X) ,  (1, 0) and (1 + X, 0)]. The first tri- 
angle represents the most likely value of y (the 
mode m = 1/2),  the second represents a possibil- 
ity of higher y, with likelihood diminishing lin- 
early to zero when y = 1 + X. Thus we have 

mode m = 1 /2 ,  (A.3) 

1 [ 1  ( 1 -  1 / (2X) )  + 1 + (1 +X )  ] 
mean tt = ~ + 3 

2~k 2 + 97~ - 1 ?~ 3 
- 12~, - 6 + 4 '  ( A . 4 )  

ambiguity 7/= mean sinus mode =/~ - m 

27~ 2 + 3~ - 1 ~ 1 
- 127~ - g + 4 "  ( A . 5 )  

As in Section 2, we first consider a given den- 
sity function, that is, we fix a value of ?~, say 

= 5 (in which case, using (A.4) and (A.5) we get 
/~ = 1.56 and 71 = 1.006). Let the risk function be 
given by (6), that is, 

R~(x )  = fLo(x, y ) P ( y )  dy  (a .6 )  

where L, (x ,  y)  is the two-step loss function of 
Figure 2 and P ( y )  is given by (A.1) with ~ = 5. 
As explained in Section 2, we can write 

Ra(x  ) = 1 - a B ( x )  - (1 - a ) F ( x )  (g .7)  

where 

B ( x )  = fX+~p(y)  de  (A.8) 
Jx-/~ 
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Figure 15. The function F(x ) 

and 
r x + y  

F ( x )  = Jx-v  P ( Y )  dy .  

Choose 

f l = 0 . 1  

and 

) , = 2  

R~(x) 
-1 

(A.9) 

(A.10) 

(A.11) 

¢,=1 

Lemma 1. B ( x ) =  0.2 P(x) ,  except within 0.1 of 
discontinuities of P '  ( x ) at O, 1/2,  0.9, and 6 where 
B( x ) is smoothed with parabolas. 

Lemma 2. F (  x ) = union of parabolas, as shown in 
Figure 15. 

If we now let the parameter a vary between 0 
and 1, we get a family of C ~ risk functions as 
shown in Figure 16. It can be seen from Figure 16 

- 2  
i 

|1 0.5 1 2. 3 4 S i i i i i i 

Figure 16. The family of risk functions R~(x) 

6 7 8 
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~L 

2.-5 

~Ma~wOlll ine 1 

Figure 17. Maxwell line with vertex at a = 0.126 and ?~ = 1.86 

tha t  for values  of  a close to zero, R ( x )  is uni -  
m o d a l  wi th  a un ique  m i n i m u m  near  the mean,  
while for values of  a close to 1, R ( x )  is u n i m o d a l  
wi th  a un ique  m i n i m u m  near  the  mode .  F o r  in ter -  
med ia te  values of  a, R ( x )  is b i m o d a l  wi th  two 
min ima,  one near  the m o d e  and  the o ther  near  the  
mean.  The  Maxwel l  po in t  at  which  the two m i n i m a  
are  at  the same level is given by  a*  = 0.52. 

I f  we now let ~ vary  (subject  to ~ > / 1 ) ,  the  
Maxwel l  line, tha t  is, the  set of  po in t s  (a ,  ~ )  at  
which the g lobal  m i n i m u m  of  the r isk func t ion  
switches d i scon t inuous ly  f rom a po in t  near  the  
m e a n  to a po in t  near  the mode,  is a curve wi th  a 
ver tex at  a - - -0 .126  and  ?, = 1.860, as shown in 
F igure  17. Thus  we are in the s i tua t ion  i l lus t ra ted  
in F igure  13(c). 

No te  that ,  a l though the dens i ty  and  loss func- 
t ions are piecewise l inear,  the r isk func t ion  is 
smoo th  (more  precisely,  d i f fe ren t iab le  wi th  con-  
t inuous  derivat ive) .  The  piecewise l inear i ty  impl ies  
tha t  the r isk funct ion  does  not  have  second  der iva-  
t ive and  thus is no t  generic  at the cusp po in t  ( the 
ver tex  of the curve shown in F igure  17), bu t  
a rb i t ra r i ly  small  pe r tu rba t i ons  are. 

Final ly ,  as we said in foo tno te  4, no t  all skew 
dens i ty  funct ions  give r i s e - - t o g e t h e r  wi th  the 

two-s tep  loss funct ion ( 4 ) - - t o  a b i m o d a l  risk 
funct ion.  F o r  example ,  it  can be  shown that  the 
fol lowing dens i ty  func t ion  

P ( y )  = y / e  y 

(which is a special  case of  the g a m m a  d is t r ibu t ion)  
gives rise to a u n i m o d a l  r isk funct ion  for every 
va lue  of  the pa r a me te r s  (the same is true for  the 
g a m m a  d i s t r ibu t ion  in general) .  Thus  in this case 
the Maxwel l  set is e m p t y  and  we are in the s i tua-  
t ion i l lus t ra ted  in F igure  13(a) (con t inuous  choice).  
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