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Abstract

We establish a correspondence between the rationalizability of choice studied in the
revealed preference literature and the notion of minimal belief revision captured by the
AGM postulates. A choice frame consists of a set of alternatives 
, a collection E of
subsets of 
 (representing possible choice sets) and a function f : E ! 2
 (representing
choices made). A choice frame is rationalizable if there exists a total pre-order R on

 such that, for every E 2 E , f(E) coincides with the best elements of E relative to
R. We re-interpret choice structures in terms of belief revision. An interpretation is
obtained by adding a valuation V that assigns to every atom p the subset of 
 at which
p is true. Associated with an interpretation is an initial belief set and a partial belief
revision function. A choice frame is AGM-consistent if, for every interpretation of it,
the associated partial belief revision function can be extended to a full-domain belief
revision function that satis�es the AGM postulates. It is shown that a �nite choice
frame is AGM-consistent if and only if it is rationalizable.

1 Introduction

The dominant theory of belief revision is due to Alchourrón, Gärdenfors and Makinson
[1] and is known as the AGM theory. In their approach beliefs are modeled syntactically
as sets of formulas and belief revision is construed as an operation that associates with
every deductively closed set of formulas K (thought of as the initial beliefs) and formula �
(thought of as new information) a new set of formulas BK(�) representing the new beliefs
after revising by �.
We establish a correspondence between the AGM theory and the set-theoretic structures

studied in rational choice theory (also known as revealed preference theory; see, for example,
[22] and [24]). Rational choice theory considers structures h
; E ; fi consisting of a set of
alternatives 
, a collection E of subsets of 
 (representing possible choice sets) and a function
f from E into the set of subsets of 
, representing choices made. The main objective of
rational choice theory is to investigate the conditions under which the function f can be
rationalized by a total pre-order R on 
 in the sense that, for every E 2 E , f(E) coincides
with the best elements of E relative to R.
We re-interpret choice structures in terms of belief revision. The set 
 is now interpreted

as a set of states. A model based on (or an interpretation of) a choice structure is obtained
by adding to it a valuation V that assigns to every atomic formula p the set of states at which
p is true. Truth of an arbitrary formula at a state is then obtained as usual. Given a model

�I am grateful to three anonymous reviewers for helpful and constructive comments.
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h
; E ; f; V i we de�ne the initial beliefs as the set of formulas � such that f(
) is a subset
of the truth set of �, denoted by jj�jj. Hence f(
) is interpreted as the set of states that
are initially considered possible. We then interpret the collection of events (sets of states)
E as a set of possible items of information. If � is a formula such that k�k 2 E , we de�ne
the revised beliefs upon learning that � as the set of formulas  such that f(jj�jj) � jj jj.
Thus the event f(jj�jj) is interpreted as the set of states that are considered possible after
learning that � is the case. Hence associated with every model is a partial belief revision
function (partial because, in general, it is not the case that, for every formula �, k�k 2 E ,
that is, not every piece of information is potentially available or contemplated). We say that
a choice frame h
; E ; fi is AGM-consistent if, for every model based on it, the associated
partial belief revision function can be extended to a full-domain belief revision function that
satis�es the AGM postulates. We show that, when the set of states is �nite, the properties
of AGM-consistency and rationalizability are equivalent.
In the next section we review the notion of belief function and the AGM postulates. In

Section 3 we develop the correspondence between AGM belief revision and rational choice.
Section 4 contains a brief discussion of related literature and concluding remarks.

2 Belief revision functions

Let � be the set of formulas of a propositional language based on a countable set A of atomic
formulas.1 Given a subset K � �, its PL-deductive closure [K]PL (where �PL�stands for
Propositional Logic) is de�ned as follows:  2 [K]PL if and only if there exist �1; :::; �n 2 K
(with n � 0) such that (�1^ :::^�n)!  is a tautology (that is, a theorem of Propositional
Logic). A set K � � is consistent if [K]PL 6= � (equivalently, if there is no formula � such
that both � and :� belong to [K]PL). A set K � � is deductively closed if K = [K]

PL. A
belief set is a set K � � which is deductively closed.
Let K be a consistent belief set representing the agent�s initial beliefs and let 	 � � be

a set of formulas representing possible items of information. A belief revision function based
on K is a function BK : 	! 2� (where 2� denotes the set of subsets of �) that associates
with every formula � 2 	 (thought of as new information) a set BK(�) � � (thought of as
the revised beliefs).2 If 	 6= � then BK is called a partial belief revision function, while if
	 = � then BK is called a full belief revision function.

De�nition 1 Let BK : 	 ! 2� be a (partial) belief revision function and B
�

K : � ! 2� a
full belief revision function. We say that B

�

K is an extension of BK if, for every � 2 	,
B

�

K(�) = BK(�).

A full belief revision function is called an AGM function if it satis�es the following
properties, known as the AGM postulates: 8�;  2 �;

(AGM1) BK(�) = [BK(�)]
PL

(AGM2) � 2 BK(�)
(AGM3) BK(�) � [K [ f�g]PL
(AGM4) if :� =2 K, then [K [ f�g]PL � BK(�)
(AGM5) BK(�) = � if and only if � is a contradiction
(AGM6) if �$  is a tautology then BK(�) = BK( )

(AGM7) BK(� ^  ) � [BK(�) [ f g]PL

(AGM8) if : =2 BK(�), then [BK(�) [ f g]PL � BK(� ^  ):

1Thus � is de�ned recursively as follows: if p 2 A then p 2 � and if �;  2 � then :� 2 � and (�_ ) 2 �.
2 In the literature it is common to use the notation K�

� or K � � instead of BK(�), but for our purposes
the latter notation is clearer.
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AGM1 requires the revised belief set to be deductively closed. AGM2 requires that
the information be believed. AGM3 says that beliefs should be revised minimally, in the
sense that no new formula should be added unless it can be deduced from the information
received and the initial beliefs.3 AGM4 says that if the information received is compatible
with the initial beliefs, then any formula that can be deduced from the information and
the initial beliefs should be part of the revised beliefs. AGM5 requires the revised beliefs
to be consistent, unless the information � is a contradiction (that is, :� is a tautology).
AGM6 requires that if � is propositionally equivalent to  then the result of revising by �
be identical to the result of revising by  . AGM7 and AGM8 are a generalization of AGM3
and AGM4 that

�applies to iterated changes of belief. The idea is that if BK(�) is a revision
of K [prompted by �] and BK(�) is to be changed by adding further sentences,
such a change should be made by using expansions of BK(�) whenever possible.
More generally, the minimal change of K to include both � and  (that is,
BK(� ^  )) ought to be the same as the expansion of BK(�) by  , so long as
 does not contradict the beliefs in BK(�)� (Gärdenfors [12], p. 55; notation
changed to match ours).4

We now turn to a semantics for belief revision, using structures that are known in rational
choice theory as choice functions. We shall call them choice frames.

3 Choice frames and AGM belief revision

De�nition 2 A choice frame is a triple h
; E ; fi where

 is a non-empty set of states (or possible worlds); subsets of 
 are called events.
E � 2
 is a collection of events (2
 denotes the set of subsets of 
) such that ? =2 E and


 2 E.
f : E ! 2
 is a function that associates with every event E 2 E an event f(E) satisfying

the following properties: (1) f(E) � E and (2) f(E) 6= ?:

In rational choice theory a set E 2 E is interpreted as a set of available alternatives
and f(E) is interpreted as the subset of E which consists of the chosen alternatives (see,
for example, [22] and [24]). In our case, we think of the elements of E as possible items of
information and the interpretation of f(E) is that, if informed that event E has occurred,
the agent considers as possible all and only the states in f(E). The set f(
) is interpreted
as the states that are initially considered possible.5

In order to interpret a choice frame h
; E ; fi in terms of belief revision we need to add
a valuation V : A ! 2
 that associates with every atomic formula p 2 A the set of states
at which p is true. The quadruple h
; E ; f; V i is called a model (or an interpretation) of
h
; E ; fi. Given a modelM = h
; E ; f; V i, truth of an arbitrary formula at a state is de�ned
recursively as follows (! j=M � means that formula � is true at state ! in modelM):
(1) for p 2 A, ! j=M p if and only if ! 2 V (p), (2) ! j=M :� if and only if ! 6j=M � and (3)

3For every formula  ,  2 [K [ f�g]PL if and only if (�!  ) 2 K (since, by hypothesis, K = [K]PL).
4The expansion of BK(�) by  is [BK(�) [ f g]PL : Note, again, that, for every formula �, � 2

[BK(�) [ f g]PL if and only if ( ! �) 2 BK(�) (since, by AGM1, BK(�) = [BK(�)]PL).
5Notice that, in general, E may be a �small� subset of 2
. In the revealed preference approach, this is

because one might only have a limited number of observations concerning the choices made by an individual
(given menu sets E1; :::; En the agent was observed choosing f(E1); :::; f(En), respectively). In the belief
revision interpretation, an introspective agent (e.g. a doctor) might consider how she would change her
beliefs if she received various pieces of information (e.g. laboratory results), but might be able, or willing,
to consider only a limited number of possible items of information.
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! j=M (�_ ) if and only if either ! j=M � or ! j=M  (or both). The truth set of formula
� in modelM is denoted by k�kM. Thus k�kM = f! 2 
 : ! j=M �g.6

Given a modelM = h
; E ; f; V i we say that

� the agent initially believes that  if and only if f(
) � k kM,

� the agent believes that  upon learning that � if and only if (1) k�kM 2 E and (2)
f(k�kM) � k kM.

Accordingly, we can associate with every model a (partial) belief revision function as
follows. Let

KM = f� 2 � : f(
) � k�kMg ;7

	M = f� 2 � : k�kM 2 Eg ;

BKM : 	M ! 2� given by BKM(�) = f 2 � : f(k�kM) � k kMg :
(1)

We address the following question: what properties must a choice frame satisfy in order
for it to be the case that the (typically partial) belief revision function associated with
an arbitrary interpretation (or model) of it can be extended to a full AGM belief revision
function? This is the motivation for the following de�nition.

De�nition 3 A choice frame h
; E ; fi is AGM-consistent if, for every modelM = h
; E ; f; V i
based on it, the (partial) belief revision function BKM associated with M (see (1)) can be
extended (see De�nition 1) to a full belief revision function that satis�es the AGM postulates.

We want to �nd necessary and su¢ cient conditions for a choice frame to be AGM-
consistent.

Remark 4 It is shown in the Appendix (Lemma 17) that a necessary condition for AGM-
consistency is the following, which is known in the rational choice literature as Arrow�s
Axiom (see [24], p. 25):

8E;F 2 E, if E � F and E \ f(F ) 6= ? then f(E) = E \ f(F ): (2)

Arrow�s Axiom, however, is not su¢ cient for AGM-consistency, as the following example
shows:8


 = f�; �; 
; �; "g, E = f
; f�; �; 
g; f�; 
; �gg
f(
) = f"g, f(f�; �; 
g) = f
g and f(f�; 
; �g) = f�; 
g:

6A valuation V (and corresponding modelM) associates with every state ! 2 
 a maximally consistent
set of formulas m(!) = f� 2 � : ! j=M �g. Let M denote the set of maximally consistent sets of formulas.
Then a valuation is equivalent to a choice of a label function from 
 to M (see [19] and [21]).

7 It is straightforward to show that, for every model M, KM is a consistent and deductively closed set
(a proof can be found in [8]).

8Another well-known condition, which is necessary but not su¢ cient for AGM-consistency, is the Weak
Axiom of Revealed Preference (WARP ):

if E;F 2 E , x; y 2 E \ F , x 2 f(E) and y 2 f(F ) then x 2 f(F )

(equivalently, if E;F 2 E , E \ f(F ) 6= ? and f(E) \ F 6= ? then E \ f(F ) = f(E) \ F ).
WARP is stronger than Arrow�s Axiom as can be seen in the example of Figure 1, which satis�es Arrow�s

Axiom but not WARP (take E = f�; �; 
g and F = f�; 
; �g). To see that WARP is not su¢ cient for
AGM-consistency consider the following frame: 
 = f�; �; 
; �g, E = f
; f�; �g; f�; 
g; fa; 
gg, f(
) = f�g,
f(f�; �g) = f�g, f(f�; 
g) = f�g and f(f�; 
g) = f
g. This frame satis�es WARP vacuously, but is not
rationalizable (see De�nition 5 and Proposition 6) and thus, by Proposition 8, is not AGM-consistent.
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This choice frame is illustrated in Figure 1, where the elements of E are shown as rectangles
and the values of the function f are shown as ovals inside the rectangles. This choice frame
satis�es Arrow�s Axiom trivially (for E;F 2 E , E � F if and only if F = 
 and, for every
E 2 Enf
g; f(
)\E = ?). Consider the model based on this frame where, for some atoms
p; q; r and s, jjpjj = f�; �; 
g, jjqjj = f�; 
; �g, jjrjj = f�; 
g and jjsjj = f
g. The initial
beliefs are given by the consistent and deductively closed set K = f� 2 � : " j= �g. For
every formula � such that k�k 2 E , let BK(�) = f 2 � : f(k�k) � k kg be the revised
beliefs after receiving information �. It is straightforward to check that f(q^r); sg � BK(p)
and (p^ r) 2 BK(q) while s =2 BK(q) (since f(kqk) = f�; 
g * f
g = ksk). Since s 2 BK(p)
and s =2 BK(q),

BK(p) 6= BK(q): (3)

Suppose that B�K : �! 2� is an AGM function that extends BK . Since (q ^ r) 2 BK(p) =
B�K(p) and B�K(p) is consistent, :(q ^ r) =2 B�K(p). It follows from AGM7 and AGM8
that B�K(p ^ (q ^ r)) = [B�K(p) [ f(q ^ r)g]

PL
= [B�K(p)]

PL
= B�K(p). Similarly, since

(p ^ r) 2 BK(q) = B�K(q), by AGM7 and AGM8 B
�
K(q ^ (p ^ r)) = B�K(q). Furthermore,

since (p^ (q^ r))$ (q^ (p^ r)) is a tautology, it follows from AGM6 that B�K(p^ (q^ r)) =
B�K(q ^ (p ^ r)). Hence B�K(p) = B�K(q). Since B

�
K is an extension of BK , B�K(p) = BK(p)

and B�K(q) = BK(q); yielding a contradiction with (3).

εα β δγ

p
q
r

p

α β γ

β δγ

q
p
q
r
s

Figure 1

A choice frame that satis�es Arrow�s Axiom and a model based on it.

In rational choice theory a choice frame h
; E ; fi is said to be rationalizable if there exists
a total pre-order9 R on 
 such that, for every E 2 E , f(E) is the set of best elements of
E relative to R (see De�nition 5 below). In that context, the relation R is interpreted as a
preference relation (!R!0 if and only if ! is considered to be at least as good as !0). In our
case R can be interpreted as a plausibility relation: !R!0 if and only if state ! is considered
to be at least as plausible as state !0. Given this interpretation, if the frame is rationalizable
then, after receiving information E, the agent considers as possible (according to his revised
beliefs) all and only the states that are most plausible among the ones in E.

9A binary relation R � 
� 
 is a total pre-order if it satis�es the following properties:
Completeness: 8!; !0 2 
, either !R!0 or !0R! (or both),
Transitivity: 8!; !0; !00 2 
, if !R!0 and !0R!00 then !R!00.
Note that completeness implies re�exivity (8! 2 
, !R!).
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De�nition 5 A choice frame h
; E ; fi is rationalizable if there exists a total pre-order R
on 
 such that, for every E 2 E,

f(E) = bestR E
def
= f! 2 E : !R!0;8!0 2 Eg:10

The following proposition, due to Hansson ([16], Theorem 7, p. 455) gives a necessary
and su¢ cient condition for a choice frame to be rationalizable.

Proposition 6 A choice frame h
; E ; fi is rationalizable if and only if it satis�es the follow-
ing property: for every sequence hE1; :::; En; En+1i in E with En+1 = E1, if Ek\f(Ek+1) 6=
?; 8k = 1; :::; n; then Ek \ f(Ek+1) = f(Ek) \ Ek+1; 8k = 1; :::; n:

For instance, in the example illustrated in Figure 1, letting n = 2, E1 = f�; �; 
g,
E2 = f�; 
; �g and E3 = E1 we have that E1\f(E2) = f�; 
g 6= ? and E2\f(E1) = f
g 6= ?
and thus E1\f(E2) 6= E2\f(E1), so that, by Proposition 6, the frame is not rationalizable.
The following propositions are proved in the Appendix. The �rst states that, when 
 is

�nite, rationalizability implies AGM-consistency and the second that, when 
 is countable,
AGM-consistency implies rationalizability.

Proposition 7 Let h
; E ; fi be a choice frame where 
 is �nite. If h
; E ; fi is rationalizable
then it is AGM-consistent.

Proposition 8 Let h
; E ; fi be a choice frame where 
 is a (possibly in�nite) countable
set. If h
; E ; fi is AGM-consistent then it is rationalizable.

Putting together Propositions 7 and 8 we get that, when the set of states is �nite, the
two properties of AGM-consistency and rationalizability are equivalent.

Corollary 9 Let h
; E ; fi be a choice frame where 
 is �nite. Then the following are
equivalent:

(a) h
; E ; fi is AGM-consistent,
(b) h
; E ; fi is rationalizable.

The restriction to �nite frames in Proposition 7 can be dropped if the frame h
; E ; fi is
rationalizable by a total pre-order R that satis�es the property that every non-empty subset
of 
 has a best element.

De�nition 10 A choice frame h
; E ; fi is strongly rationalizable if it is rationalizable by
a total pre-order R � 
� 
 such that, for every non-empty E � 
, bestR E 6= ?.11

A rationalizable choice frame h
; E ; fi where 
 is �nite is strongly rationalizable. Thus
Proposition 7 is a corollary of the following result (a proof can be found in [8]).

Proposition 11 Let h
; E ; fi be a strongly rationalizable choice frame. Then h
; E ; fi is
AGM-consistent.
10 In the rational choice literature the preference relation is usually denoted by � and the set f! 2 E :

! � !0; 8!0 2 Eg is referred to as the set of maximal elements of E. In the arti�cial intelligence literature,
the preference or plausibility relation is usually denoted by � and the set f! 2 E : ! � !0; 8!0 2 Eg is
referred to as the set of minimal elements of E. In order to avoid confusion, we denote the relation by R
and refer to the best elements of a set.
11A rationalizable frame may fail to be strongly rationalizable. For example, let N denote the set of

natural numbers and let 
 = N [ f1g. Let G be the set of �nite subsets of N and E = G [ f
g. Finally,
let f(
) = f1g and, for every E 2 G; let f(E) be the largest number in E. Then the choice frame h
; E; fi
so de�ned is rationalizable by the total pre-order � (with the convention that 1 > n for every n 2 N).
However, it is not strongly rationalizable. Suppose it were strongly rationalizable in terms of a total preorder
R on 
. Then ? 6= bestR N � N. Fix an arbitrary n 2 bestR N and let E = fn; n + 1g. By hypothesis,
f(E) = bestR E. Since E � N and E \ bestR N 6= ?,

bestR E = E \ bestR N =
�

fng if n+ 1 =2 bestR N
fn; n+ 1g if n+ 1 2 bestR N:

But f(E) = fn+ 1g, yielding a contradiction.
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4 Related literature and conclusion

Choice frames provide a semantics for AGM belief revision which can be considered an
extension of Grove�s [15] system of spheres semantics to the class of partial belief revision
functions. In the Appendix we review the notion of system of spheres and prove Propositions
7 and (a weaker version of) 8 using Grove�s characterization of AGM functions.12

Choice frames o¤er a Kripke-style (Kripke [20]) semantics for belief revision. Recently
there have been several attempts to model belief revision along the lines pioneered by Hin-
tikka [17] for static beliefs, namely using a modal logic framework that, on the semantic side,
relies on Kripke-style structures. Important work in this new area was done by Segerberg
([23]) in the context of dynamic doxastic logic, Board [5] in the context of multi-agent dox-
astic logic and van Benthem [3] in the context of dynamic epistemic logic (see also [2], [9]
and the recent survey in [10]). More closely related to the analysis of this paper is Bonanno
[6] where belief revision is studied within a temporal logic, which, on the semantic side,
relies on branching-time frames where with each instant are associated two relations, one
representing beliefs and the other representing information. As shown in [7], one can view
such branching-time frames as a temporal generalization of the choice frames considered in
this paper.
We conclude by noting that Corollary 9 can be viewed as analogous to the frame char-

acterization results of modal logic (see, for example, [4]): given a �nite rationalizable choice
frame, every model based on it gives rise to a partial belief revision function which can
be extended to a full AGM function and, conversely, a frame with this property must be
rationalizable.

A Appendix

We shall prove Proposition 7 using Grove�s [15] notion of system of spheres, which we recall
below. As before, let A be an in�nitely countable set of atoms and � the set of propositional
formulas built on A. Let M be the set of maximally consistent sets of formulas for the
propositional logic whose set of formulas is �. If H � � let MH = fx 2M : H � xg. For a
formula � we shall write M� instead of Mf�g.

De�nition 12 A system of spheres centered on X � M is a collection S of subsets of M
satisfying the following properties:
(S.1) For all U; V 2 S, either U � V or V � U ;
(S.2) X is the smallest element of S, that is, X 2 S and, for every U 2 S, X � U ;
(S.3) M 2 S;
(S.4) if � is a consistent formula, then there exists a smallest sphere in S denoted by

S(�) intersecting M� (if � is a contradiction, de�ne S(�) to be M).

Notation 13 For every M �M, let [M ] = f� 2 � : � 2 x;8x 2Mg.

Theorem 14 (Grove [15]) If K � � is a consistent belief set and S a system of spheres
centered on MK then the function B�K : � ! 2� de�ned by B�K(�) = [S(�) \M�] is an
AGM function based on K. Conversely, if B�K is an AGM function based on a consistent
belief set K, then there exists a system of spheres S centered on MK such that, for every
formula �, B�K(�) = [S(�) \M�].

Let h
; E ; fi be a frame and V a valuation, giving rise to the model M = h
; E ; f; V i.
As noted in Footnote 6, we can associate with M a function m : 
 ! M as follows:

12 I am grateful to two anonymous referees for pointing out these simpler proofs.
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m(!) = f� 2 � : ! j= �g.13 For F � 
 let m(F ) = fm(!) : ! 2 Fg. Clearly, for every
formula �, m(k�k) � M�. By de�nition of K (see (1)), K = [m(f(
))]; furthermore, for
every formula � 2 �, if k�k = E 2 E , then

[m(f(E))] = BK(�): (4)

In fact, for every formula  ,  2 [m(f(E))] ,  2 x; 8x 2 m(f(E)) ,  2 m(!);8! 2
f(E), ! j=  ;8! 2 f(E), f(E) � k k ,  2 BK(�):

Proof of Proposition 7.14 Let h
; E ; fi be a �nite rationalizable frame and let R be
a total pre-order on 
 such that, for every E 2 E , f(E) = bestR E. For every ! 2 
,
let D(!) = f!0 2 
 : !0R!g and let � = fD(!) : ! 2 
g. Since 
 is �nite, � can
be written as a sequence hD0; :::; Dni satisfying: (i) D0 = f(
), (ii) Dj � Dj+1, for all
j = 0; :::; n � 1, (iii) Dn = 
 and (iv) for every E 2 E , since f(E) = bestR E 6= ?,
f(E) = E \Dr(E) where r(E) is the smallest index j 2 f0; :::; ng such that E \Dj 6= ?:15
Let S = fm(D0); :::;m(Dn);Mg. We �rst show that S is a system of spheres centered
on m(D0) = m(f(
)). Since, Dj � Dj+1 it is clear that m(Dj) � m(Dj+1), for every
j = 0; :::; n � 1.16 Thus (S.1 ) and (S.2 ) of De�nition 12 are satis�ed; (S.3 ) is satis�ed by
construction and (S.4 ) is satis�ed because of �niteness of S. It follows from Theorem 14
that the function B�K : �! 2� de�ned by B�K(�) = [S(�) \M�] is an AGM belief revision
function. We need to show that B�K is an extension of BK(�), that is, that if k�k 2 E
then [S(�) \M�] = BK(�): Let � be such that k�k = E 2 E , so that m(E) � M�. Since
f(E) = E \Dr(E), S(�) = m(Dr(E)), so that m(f(E)) = m(E \Dr(E)) � S(�)\M�: Thus
[S(�) \M�] � [m(f(E))] and, therefore, by (4), [S(�) \M�] � BK(�): For the converse,
let  2 BK(�); then f(E) � k k. Suppose that  =2 [S(�) \M�]. Then there exists an
x 2 S(�) \M� such that  =2 x. Since S(�) = m(Dr(E)), there exists an ! 2 Dr(E) such
that x = m(!). Since x 2 M� and k�k = E, ! 2 E. Thus ! 2 E \Dr(E) = f(E) so that,
since f(E) � k k, ! j=  , that is,  2 x = m(!), yielding a contradiction.

We now turn to the proof of Proposition 8. For the case where the frame h
; E ; fi is
such that E is a countable set, Proposition 8 can also be proved using Grove�s approach.
First of all, as Grove ([15], p. 160) notes, a system of spheres centered on X is equivalent
to a total pre-order 6 on M that satis�es the following properties:
(S61) X = min6M (where, for every T �M, min6 T = fx 2 T : x 6 y;8y 2 Tg),
(S62) if � is a consistent formula, then min6M� 6= ?:
Theorem 14 can thus be restated in terms of a total pre-order 6 onM. We shall make use

of the following related result in Gärdenfors and Rott ([14], Theorem 4.4.1, p. 79), which,
in turn, is based on a result of Katsuno and Mendelzon ([18], Theorem 3.3, p. 269).17

Theorem 15 (Gärdenfors and Rott [14]) B�K : �! 2� is an AGM belief revision function
based on a consistent belief set K if and only if there exists a total pre-order 6 on M such
that, (1) MK = min6M and (2) for every formula �, MB�

K(�)
= min6M�.

When E is a countable set, the above theorem can be used to prove Proposition 8 by
constructing a model where, for every E 2 E , there is an atom pE 2 A such that kpEk = E.

Proof of Proposition 8 when E is countable. Let h
; E ; fi be an AGM-consistent
frame where 
 and E are countable sets. Construct a model where, for every ! 2 
 there is
13Note that the function m in general is not injective, that is, it is possible that ! 6= !0 and m(!) = m(!0).

Furthermore, in general, m(
) is a proper subset of M.
14An alternative proof, that does not rely on Grove�s notion of system of spheres, is given in [8].
15For a generalization of this see Freund ([11], Theorem 5, p. 246).
16Note that it could be that m(Dj) = m(Dj+1) for some, or even all, j.
17This result is also a consequence of the representation of rational inference relations by means of total

preorders (see [19]) and the identity between AGM revisions and rational relations (see [13]).
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an atom p! 2 A such that V (p!) = f!g and for every E 2 Enf
g there is an atom pE 2 A
such that V (pE) = E. Let BK be the associated (partial) belief revision function and B�K
an AGM extension of BK (it exists since the frame is AGM-consistent). By Theorem 15
there exists a total pre-order 6 of M such that

(a) MK = min6M and
(b) for every � 2 �; MB�

K(�)
= min6M�:

(5)

De�ne R � 
�
 as follows: !R!0 if and only if m(!) 6 m(!0) (recall that m : 
!M
is de�ned by m(!) = f� 2 � : ! j= �g). First we show that f(
) = bestR 
. Fix
arbitrary ! 2 f(
) and !0 2 
. By de�nition of K (see (1)), m(f(
)) � MK . Thus,
by (a) of (5), m(!) 6 m(!0); hence !R!0. Since !0 was chosen arbitrarily, it follows that
! 2 bestR 
. Hence, since ! 2 f(
) was chosen arbitrarily, f(
) � bestR 
. Suppose
that bestR 
 * f(
). Then there exists an � 2 bestR 
 such that � =2 f(
). Hence
f(
) � k:p�k = 
nf�g, that is, :p� 2 K so that :p� 2 x for every x 2 MK . Thus, since
� j= p� (that is, p� 2 m(�)), m(�) =2 MK . By de�nition of choice frame, f(
) 6= ?. Fix a
� 2 f(
). Then m(�) 2 MK and thus, by (a) of (5), since m(�) =2 MK , it is not the case
that m(�) 6 m(�). Hence it is not the case that �R�, contradicting the hypothesis that
� 2 bestR 
.
Now let E 2 E with E 6= 
. We want to show that f(E) = bestR E. Fix arbitrary

! 2 f(E) � E = kpEk and !0 2 E. Since BK(pE) = f� 2 � : f(E) � k�kg, m(f(E)) �
MBK(pE). Thus, since m(E) � MpE , it follows from (b) of (5) that m(!) 6 m(!0) and
thus !R!0. Hence f(E) � bestR E. Suppose that bestR E * f(E). Then there exists an
� 2 bestR E such that � =2 f(E). Hence f(E) � k:p�k, that is, :p� 2 BK(pE) so that
:p� 2 x for every x 2MBK(pE). Thus, since � j= p� (that is, p� 2 m(�)), m(�) =2MBK(pE).
By de�nition of choice frame, f(E) 6= ?. Fix a � 2 f(E). Then m(�) 2MBK(pE) and thus,
by (b) of (5), since m(�) =2 MBK(pE), it is not the case that m(�) 6 m(�). Hence it is not
the case that �R�, contradicting the hypothesis that � 2 bestR E.

The assumption that E is a countable set is restrictive. For example, it rules out the
case where 
 = N (the set of natural numbers) and E = 2N. An alternative proof, which
does not require the assumption that E is countable, is given below. This proof may be of
independent interest, since it is not based on the notion of system of spheres. Instead it
relies on Hansson�s result (Proposition 6). We begin with several lemmas. This �rst lemma
is well known and the proof is omitted (a proof is given in [8]). The second lemma does not
require any restrictions on the sets 
 and E .

Lemma 16 Let H � � and  2 �. Then, for every formula �, � 2 [H [ f g]PL if and
only if ( ! �) 2 [H]PL.

Lemma 17 If h
; E ; fi is an AGM consistent choice frame then it satis�es Arrow�s Axiom:
if E;F 2 E are such that E � F and E \ f(F ) 6= ? then f(E) = E \ f(F ).

Proof. Fix arbitrary E;F 2 E such that E � F and E \ f(F ) 6= ? and suppose that
f(E) 6= E \ f(F ). Then either E \ f(F ) * f(E) or f(E) * E \ f(F ).
Case 1: E \ f(F ) * f(E). Let ! 2 E \ f(F ) be such that ! =2 f(E). Construct a model

based on this frame where, for some atoms p, q and r, kpk = E, kqk = F and krk = f!g.
Let BK be the associated (partial) belief revision function and B�K be an AGM extension
of BK (it exists since, by hypothesis, the frame is AGM consistent). Since kpk = E 2 E
and f(E) � E � F = kqk, q 2 BK(p) and thus q 2 B�K(p). Since p is not a contradiction,
byAGM5 B�K(p) is consistent. Thus :q =2 B�K(p) and therefore, by AGM7 and AGM8,

B�K(p ^ q) = [B�K(p) [ fqg]
PL
= [B�K(p)]

PL
=(by AGM1) B�K(p) (6)
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Since kqk = F 2 E , kpk = E and E \ f(F ) 6= ?, :p =2 BK(q) = B�K(q). Thus, by AGM7
and AGM8, B�K(q ^ p) = [B�K(q) [ fpg]

PL
: It follows from this and (6) that

B�K(p) = [B
�
K(q) [ fpg]

PL
: (7)

Since ! =2 f(E) and krk = f!g, f(E) � k:rk, that is, :r 2 BK(p) and hence (since B�K is
an extension of BK)

:r 2 B�K(p): (8)

Since ! 2 E, ! 2 kr ^ pk. Thus, since ! 2 f(F ), f(F ) \ kr ^ pk 6= ? so that f(F ) *
k: (r ^ p)k = k(p! :r)k and thus, (p! :r) =2 BK(q) = B�K(q). Hence, by Lemma 16,
:r =2 [B�K(q) [ fpg]

PL. This, together with (7), contradicts (8).

Case 2: f(E) * E \ f(F ). Let ! 2 f(E) be such that ! =2 E \ f(F ). Since f(E) � E,
! 2 E. Thus ! =2 f(F ). As before, construct a model where, for some atoms p, q and r,
kpk = E, kqk = F and krk = f!g. A repetition of the argument used above (leading to (6),
making use of the hypotheses that E � F and E \ f(F ) 6= ?) yields (7). Since ! =2 f(F )
and krk = f!g, f(F ) � k:rk and thus, since kqk = F , :r 2 BK(q) = B�K(q), which implies
that

:r 2 [B�K(q) [ fpg]
PL

: (9)

On the other hand, since ! 2 f(E) and kpk = E, :r =2 BK(p) = B�K(p). This, together
with (7), contradicts (9).

De�nition 18 Let F = h
; E ; fi and F+ = h
; E+; f+i be two choice frames. We say that
F+ is an extension of F if E � E+ and, for every E 2 E, f+(E) = f(E):

Lemma 19 Let F = h
; E ; fi be an AGM-consistent choice frame where 
 is a (possibly
in�nite) countable set. Let hE1; :::; En; En+1i be a sequence in E such that En+1 = E1
and, 8k = 1; :::; n, Ek \ f(Ek+1) 6= ?. Let G = E1 [ ::: [ En. Then there exists an
extension F+ = h
; E+; f+i of F such that (i) E+ = E [ fGg, and (ii) 8k = 1; :::; n; if
Ek \f+(G) 6= ? then f+(Ek) = Ek \f+(G). Furthermore, there exists a j 2 f1; :::; ng such
that Ej \ f+(G) 6= ?:

Proof. Let F = h
; E ; fi be an AGM-consistent frame where 
 is countable and �x an
arbitrary sequence E1; :::; En+1 in E such that En+1 = E1 and, 8k = 1; :::; n, Ek\f(Ek+1) 6=
?. Let G = E1 [ ::: [ En. If G 2 E , then the result follows from Lemma 17 (take F+ = F
and apply Arrow�s Axiom). Suppose, therefore, that G =2 E . Construct a model based
on this frame where for every state ! 2 
 there is an atom p! such that kp!k = f!g:
Furthermore, for every i 2 f1; :::; ng; let pi be an atom such that kpik = Ei: Let BK be
the associated (partial) belief revision function and let B�K be an AGM extension of BK (it
exists since, by hypothesis, F is AGM-consistent). Let

J = fi 2 f1; :::; ng : :pi =2 B�K(p1 _ ::: _ pn)g : (10)

First we show that J 6= ?. Suppose that J = ?: Then, for every i 2 f1; :::; ng,
:pi 2 B�K(p1 _ ::: _ pn). Hence, since (by AGM1) B�K(p1 _ ::: _ pn) is deductively closed,
(:p1 ^ ::: ^ :pn) 2 B�K(p1 _ ::: _ pn): Thus, since (:p1 ^ ::: ^ :pn) is equivalent to :(p1 _
::: _ pn),

:(p1 _ ::: _ pn) 2 B�K(p1 _ ::: _ pn): (11)

By AGM2,
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(p1 _ ::: _ pn) 2 B�K(p1 _ ::: _ pn) (12)

Since (p1 _ ::: _ pn) is not a contradiction, by AGM5, B�K(p1 _ ::: _ pn) is consistent, so
that, for every formula �, it is not the case that both � and :� belong to B�K(p1 _ :::_ pn);
contradicting (11) and (12). Thus J 6= ?:
De�ne h
; E+; f+i as follows: E+ = E [fGg (where G = E1[ :::[ En); for every E 2 E ,

f+(E) = f(E) and

f+(G) =
S
j2J

f(Ej): (13)

Fix an arbitrary k 2 f1; :::; ng and suppose that Ek\f+(G) 6= ?. We want to show that
f+(Ek) = Ek \ f+(G) (note that, by de�nition of f+, f+(Ek) = f(Ek)).

First we show that k 2 J . Suppose that k =2 J , that is,

:pk 2 B�K(p1 _ ::: _ pn): (14)

Since, by hypothesis, Ek \ f+(G) 6= ?, f+(G) 6= ? and thus, by (13), there exists an
s 2 J such that Ek\f(Es) 6= ?: Thus f(Es) * 
nEk = k:pkk and therefore :pk =2 BK(ps).
Since kpsk = Es 2 E , BK(ps) = B�K(ps). Thus

:pk =2 B�K(ps): (15)

Since s 2 J , :ps =2 B�K(p1 _ ::: _ pn). Thus, by AGM7 and AGM8 (and noting that ps is
equivalent to ((p1 _ ::: _ pn) ^ ps)),

B�K(ps) = [B
�
K(p1 _ ::: _ pn) [ fpsg]

PL
: (16)

It follows from (15), (16) and Lemma 16 (and the fact that, by AGM1, B�K(ps) =
[B�K(ps)]

PL) that

(ps ! :pk) =2 B�K(p1 _ ::: _ pn): (17)

Since (:pk ! (ps ! :pk)) is a tautology and (by AGM1) B�K(p1_ :::_pn) is deductively
closed, (:pk ! (ps ! :pk)) 2 B�K(p1 _ ::: _ pn). It follows from this and (14) that
(ps ! :pk) 2 B�K(p1 _ ::: _ pn), contradicting (17).
Thus we have shown that k 2 J , that is,

:pk =2 B�K(p1 _ ::: _ pn): (18)

Hence, by (13), f(Ek) � f+(G). Furthermore, by de�nition of choice frame, f(Ek) � Ek.
Thus f(Ek) � Ek \ f+(G):
Now we show the converse, namely that Ek \ f+(G) � f(Ek). Suppose not. Then there

exists an � 2 Ek \ f+(G) such that � =2 f(Ek), that is, f(Ek) � k:p�k, so that

:p� 2 BK(pk) = B�K(pk): (19)

By (18) and AGM7 and AGM8 (and noting that (p1 _ ::: _ pn) ^ pk is equivalent to pk),
B�K(pk) = [B

�
K(p1 _ ::: _ pn) [ fpkg]

PL
: Hence, by (19) and Lemma 16,

(pk ! :p�) 2 B�K(p1 _ ::: _ pn): (20)

Since � 2 f+(G), there exists an s 2 J such that � 2 f(Es). Thus :p� =2 BK(ps) =
B�K(ps). Furthermore, since s 2 J , :ps =2 B�K(p1 _ ::: _ pn) (see (10)), so that (16) holds
and, therefore, by Lemma 16,
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(ps ! :p�) =2 B�K(p1 _ ::: _ pn): (21)

Since � 2 Ek, f�g = kp�k � kpkk = Ek; that is, kp� ! pkk = 
. Hence f(Es) �
kp� ! pkk, that is, (p� ! pk) 2 BK(ps) = B�K(ps). Thus, by (16) and Lemma 16,

(ps ! (p� ! pk)) 2 B�K(p1 _ ::: _ pn): (22)

Since (ps ! (p� ! pk)) is equivalent to (ps ^ p� ! pk), it follows from (20), (22)
and the fact that (by AGM1) B�K(p1 _ ::: _ pn) is deductively closed, that ((ps ^ p� !
pk) ^ (pk ! :p�)) 2 B�K(p1 _ ::: _ pn) so that (ps ^ p� ! :p�) 2 B�K(p1 _ ::: _ pn). But
(ps ^ p� ! :p�) is equivalent to (ps ! :p�): Hence (ps ! :p�) 2 B�K(p1 _ ::: _ pn),
contradicting (21). Thus we have shown that f(Ek) = Ek \ f+(G); since f(Ek) = f+(Ek),
it follows that f+(Ek) = Ek \ f+(G):
It only remains to show that there exists a j 2 f1; :::; ng such that Ej \ f+(G) 6= ?:

Since f+(G) =
S
j2J

f(Ej), it follows that there exists a j 2 f1; :::; ng such that f(Ej) =

f(Ej) \ f+(G). By de�nition of choice frame, ? 6= f(Ej) � Ej . Thus Ej \ f+(G) 6= ?:

Lemma 20 Let F = h
; E ; fi be a choice frame and let hE1; :::; En; En+1i be a sequence in
E such that En+1 = E1 and, 8k = 1; :::; n, Ek \f(Ek+1) 6= ?. Let G = E1[ :::[ En and let
F+ = h
; E+; f+i be an extension of F such that (i) E+ = E [ fGg and (ii) 8k = 1; :::; n; if
Ek \ f+(G) 6= ? then f+(Ek) = Ek \ f+(G). Then, for every k = 1; :::; n

if Ek+1 \ f+(G) 6= ? then

8<: Ek \ f+(G) 6= ?
and

Ek \ f(Ek+1) = f(Ek) \ Ek+1:
(23)

Proof. Fix a k 2 f1; :::; ng and assume that Ek+1 \ f+(G) 6= ?. Then, by hypothesis (ii),
f(Ek+1) = Ek+1 \ f+(G): Thus

Ek \ f(Ek+1) = Ek \ Ek+1 \ f+(G): (24)

By hypothesis, Ek \ f(Ek+1) 6= ?. Thus, by (24), Ek \ Ek+1 \ f+(G) 6= ? so that

Ek \ f+(G) 6= ?: (25)

It follows from (25) and hypothesis (ii) that f(Ek) = Ek \ f+(G), so that

f(Ek) \ Ek+1 = Ek \ Ek+1 \ f+(G): (26)

From (24) and (26) we get that Ek \ f(Ek+1) = f(Ek) \ Ek+1:

Corollary 21 Let F = h
; E ; fi be a choice frame and let hE1; :::; En; En+1i be a sequence
in E such that En+1 = E1 and, 8k = 1; :::; n, Ek \ f(Ek+1) 6= ?. Let G = E1 [ :::[ En and
let F+ = h
; E+; f+i be an extension of F such that (i) E+ = E [ fGg, (ii) 8k = 1; :::; n; if
Ek \ f+(G) 6= ? then f+(Ek) = Ek \ f+(G) and (iii) there exists a j 2 f0; :::; n� 1g such
that Ej+1 \ f+(G) 6= ?. Then, for every k = 1; :::; n; Ek \ f(Ek+1) = f(Ek) \ Ek+1.

Proof. By Lemma 20, Ej \ f(Ej+1) = f(Ej) \Ej+1 and Ej \ f+(G) 6= ?. Thus applying
the lemma again we get Ej�1\f(Ej) = f(Ej�1)\Ej (taking j�1 = n if j = 1). Repeating
this argument n� 1 times (interpreting j � r as n� (j � r) if j � r < 1) yields the desired
result.

Proof of Proposition 8. Let F = h
; E ; fi be an AGM-consistent choice frame where

 is a (possibly in�nite) countable set. Let hE1; :::; En; En+1i be a sequence in E such that
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En+1 = E1 and, 8k = 1; :::; n, Ek \f(Ek+1) 6= ?. By Lemma 19 and Corollary 21, for every
k = 1; :::; n; Ek \ f(Ek+1) = f(Ek) \ Ek+1. It follows from Proposition 6 that h
; E ; fi is
rationalizable.
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