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Abstract
Doxastic characterizations of the set of Nash equilibrium outcomes and of
the set of backward-induction outcomes are provided for general perfect-
information games (where there may be multiple backward-induction so-
lutions). We use models that are behavioral, rather than strategy-based,
where a state only specifies the actual play of the game and not the hypo-
thetical choices of the players at nodes that are not reached by the actual
play. The analysis is completely free of counterfactuals and no belief re-
vision theory is required, since only the beliefs at reached histories are
specified.

1 Introduction

We provide a doxastic (that is, belief-based, rather than knowledge-based)
characterization of the set of Nash equilibrium outcomes and of the set of
backward-induction outcomes for general finite perfect-information games: pre-
vious characterizations were provided only for games with no relevant ties
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or generic games.1 We make use of models that are behavioral, rather than
strategy-based, in the sense that a state only specifies the actual play of the
game and not the hypothetical choices of the players at counterfactual nodes,
that is, nodes that are not reached by the actual play. Our analysis is completely
free of counterfactuals (both objective and subjective), as explained below.

We use the history-based definition of extensive-form game (see, for exam-
ple Osborne and Rubinstein (1994)); details are provided in Section 2. If h and
h′ are two histories we denote by h ≺ h′ the fact that h is a proper prefix of h′,2

while h � h′ means that h is a prefix of h′, that is, either h ≺ h′ or h = h′. The set
of decision histories is denoted by D and the set of terminal histories by Z.

The following are the main features of our approach.

1. The models that we use are behavioral models where a state specifies the
actual sequence of moves. Strategies play no role.3 We denote the set of
states by Ω and use a function ζ : Ω→ Z to specify, for every state ω ∈ Ω,
the terminal history ζ(ω) (that is, the play of the game) associated with ω.

2. For every state ω we specify only the actual beliefs of the relevant player
at every decision history that is actually reached at ω (that is, for decision
histories h such that h ≺ ζ(ω)). No objective or subjective counterfactuals
are postulated. Furthermore, no belief revision theory is needed, since
the models that we use do not specify “initial” beliefs nor do they rely
on any restriction about how the beliefs of a player evolve along a given
play (should a player move more than once along that play).

3. In line with the philosophy literature that emphasizes that “the deliberat-
ing agent cannot, before choice, predict how he will choose” (Levi 1997,
p.65),4 at every reached decision history we endow the active player with
a belief about what will happen if she takes action a, for every available
action a. Thus the beliefs that we model are “pre-choice” or “deliberation-
stage” beliefs. This is a departure from the standard approach in the
game-theoretic literature where it is assumed that, at every state, if a
player takes a particular action then she knows that she takes that action.

1See, for example, Aumann (1995), Balkenborg and Winter (1997), Ben-Porath (1997), Bonanno
(2013), Clausing (2003), Halpern (2001), Perea (2012; 2014), Quesada (2003), Samet (1996; 2013),
Stalnaker (1998). Surveys of the literature on the epistemic foundations of backward induction are
provided in Brandenburger (2007), Perea (2007a) and (Perea 2012, p.463).

2If one identifies histories with nodes in the tree, then h ≺ h′ means that node h is a predecessor
of node h′.

3Behavioral models were first introduced in Samet (1996).
4See also Gilboa (1999), Ginet (1962), Goldman (1970), Ledwig (2005), Spohn (1977; 1999).
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4. We use a very weak notion of rationality, which has been referred to in
the literature as “material rationality”.5 First of all, for every state ω,
rationality is only evaluated at decision histories that are actually reached
atω (and only for the active players at those decision histories). Secondly,
if h is a decision history that is reached at state ω, the player who is active
at h is rational if the action that she actually takes at h (at stateω) is optimal
given her beliefs, in the sense that it is not the case that - according to her
beliefs - there is another action of hers that guarantees higher utility.

The first result (Proposition 1) provides the following characterization of
the set of Nash equilibrium outcomes:6

• Given a perfect-information game and an arbitrary model of it, if ω is a
state where, at every reached history, (1) no player has false beliefs, (2)
every player is rational and (3) no player has uncertainty about what will
happen after any of her choices, then ζ(ω) - the terminal history associated
with ω - is a Nash equilibrium play (that is, there is a Nash equilibrium
whose associated play is ζ(ω)).

• If z is a terminal history generated by a Nash equilibrium, then there is
a model of the game and a state ω in that model such that (a) ζ(ω) = z
and (b) at ω and at every reached history (1) no player has false beliefs,
(2) every player is rational and (3) no player has uncertainty about what
will happen after any of her choices.

The above conditions under (1)-(3) are expressed as events, denoted by T,R and
C, respectively (T for ‘Truth’, R for ‘Rationality’ and C for ‘Certainty’). Thus
the set of Nash equilibrium outcomes is characterized by the event T ∩ R ∩ C.

The second result (Proposition 2) provides a characterization of the set of
backward-induction outcomes in terms of a strengthening of the above condi-
tions, obtained by intersecting the event T ∩ R ∩ C with one more event, ITRC
(where I stands for ‘Iterated’), which expresses the following conditions: the
root player believes that if she takes action a and a is a decision history then (1)
the active player at a has correct beliefs, is rational and has no uncertainty, (2)
the active player at a believes that if he takes action b and ab is a decision history
then the active player at ab has correct beliefs, is rational and has no uncertainty,

5See, for example, Aumann (1995; 1998), Battigalli et al. (2013), Samet (1996).
6For simplicity, the characterization is provided for games where no player moves more than

once along any play, but we explain how to extend the result to general games.
The words ’outcome’, ’play’ and ’terminal history’ will be used interchangeably.
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(3) the active player at a believes that the active player at ab believes that if she
takes action c and abc is a decision history then the active player at abc has
correct beliefs, is rational and has no uncertainty, and so forth. This condition
can be expressed using belief operators as explained in Section 5.1. Proposi-
tion 2 provides the following characterization of the set of backward-induction
outcomes:7

• Given a perfect-information game and an arbitrary model of it, if
ω ∈ (T∩R∩C)∩ ITRC then ζ(ω) - the terminal history associated with ω -
is a backward-induction outcome.

• If the terminal history z is a backward-induction outcome, then there is a
model of the game and a state ω in that model such that (a) ζ(ω) = z and
(b) ω ∈ (T ∩ R ∩ C) ∩ ITRC.

The paper is organized as follows. The next section introduces the class
of behavior-deliberation models, Section 3 defines the notion of rationality,
Section 4 provides the characterization of Nash equilibrium outcomes, Section
5 characterizes the set of backward-induction outcomes, Section 6 examines
related literature and Section 7 discusses a number of conceptual issues that are
raised by the approach put forward in this paper. The proofs are given in the
Appendix.

2 Behavioral models of perfect-information games

We use the history-based definition of extensive-form game, which is as follows.
If A is a set, we denote by A∗ the set of finite sequences in A. If h = 〈a1, ..., ak〉 ∈ A∗

and 1 ≤ j < k, the sequence
〈
a1, ..., a j

〉
is called a proper prefix of h. We denote

the fact that h′ is a proper prefix of h by h′ ≺ h, while h′ � h means that either
h′ ≺ h or h′ = h. If h = 〈a1, ..., ak〉 ∈ A∗ and a ∈ A, we denote the sequence
〈a1, ..., ak, a〉 ∈ A∗ by ha.

Definition 2.1. A finite extensive form with perfect information (without chance
moves) is a tuple 〈A,H,N, ι〉whose elements are:

• A finite set of actions A and a finite set of histories H ⊆ A∗ which is closed
under prefixes (that is, if h ∈ H and h′ ∈ A∗ is such that h′ ≺ h, then

7This characterization is not restricted to games where no player moves more than once along
any play.
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h′ ∈ H). The null history 〈〉 , denoted by ∅, is an element of H and is a
prefix of every history. A history h ∈ H such that, for every a ∈ A, ha < H,
is called a terminal history. The set of terminal histories is denoted by Z.
D = H \ Z denotes the set of non-terminal or decision histories. For every
history h ∈ D, we denote by A(h) the set of actions available at h, that is,
A(h) = {a ∈ A : ha ∈ H}.

• A finite set N of players and a function ι : D → N that assigns a player
to each decision history. Thus ι(h) is the player who moves at history h;
we refer to that player as the active player at history h. For every i ∈ N, Di
denotes the set of decision histories of player i, that is, Di = {h ∈ D : ι(h) =
i}.

Given an extensive form, one obtains an extensive game by adding, for every
player i ∈ N, a utility (or payoff ) function ui : Z→ R (whereR denotes the set of
real numbers; recall that Z is the set of terminal histories).

From now on, histories will be denoted more succinctly by listing the cor-
responding actions, without angled brackets, without commas and omitting
the null history: thus instead of writing 〈∅, a1, a2, a3, a4〉 we will simply write
a1a2a3a4.

Before introducing the definition of a model of a game, we recall the fol-
lowing facts about belief relations and operators. If Ω is a set (whose elements
are called “states”) and B ⊆ Ω ×Ω is a binary relation on Ω (representing the
beliefs of an individual), for every ω ∈ Ω we denote by B(ω) the set of states
that are reachable from ω using B, that is, B(ω) = {ω′ ∈ Ω : ωBω′}.8 B is serial
if B(ω) , ∅, for every ω ∈ Ω; it is transitive if ω′ ∈ B(ω) implies B(ω′) ⊆ B(ω)
and it is euclidean if ω′ ∈ B(ω) implies B(ω) ⊆ B(ω′). Subsets of Ω are called
“events”. Given an event E ⊆ Ω, we say that at ω ∈ Ω the individual believes
E if and only if B(ω) ⊆ E. Thus one can define a belief operator B : 2Ω

→ 2Ω as
follows: BE = {ω ∈ Ω : B(ω) ⊆ E}; hence BE is the event that the individual
believes E. It is well known that seriality of B corresponds to consistency of
beliefs (if the individual believes E then it is not the case that she believes not
E : BE ⊆ ¬B¬E, where, for every event F, ¬F denotes the complement of F in
Ω), transitivity corresponds to positive introspection (if the individual believes
E then she believes that she believes E : BE ⊆ BBE) and euclideanness corre-
sponds to negative introspection (if the individual does not believe E then she
believes that she does not believe E : ¬BE ⊆ B¬BE).9

8As is customary, we take ωB(ω′) and (ω,ω′) ∈ B as interchangeable.
9For more details see Battigalli and Bonanno (1999).
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To define a model of a game, we begin with a set Ω, whose elements are
called states and whose subsets are called events. We interpret each state in terms
of a particular complete play of the game, by means of a function ζ : Ω → Z
that associates, with every state ω, a terminal history ζ(ω) ∈ Z. Next we add,
for every decision history h ∈ D, a binary relation Bh on Ω representing the
beliefs of ι(h), the active player at h;10 however, we do so only at histories that
are actually reached at a given state, in the sense that Bh(ω) , ∅ if and only if
h ≺ ζ(ω).

Definition 2.2. Given a perfect-information game, a model of it is a tupleM =
〈Ω, ζ, {Bh}h∈D〉where

• Ω is a set of states.

• ζ : Ω→ Z.

• For every h ∈ D, Bh ⊆ Ω×Ω is a belief relation that satisfies the following
properties:

1. Bh(ω) , ∅ if and only if h ≺ ζ(ω) [beliefs are specified only at reached
decision histories and are consistent].

2. If ω′ ∈ Bh(ω) then Bh(ω′) = Bh(ω) [beliefs satisfy positive and nega-
tive introspection].

3. Ifω′ ∈ Bh(ω) then h ≺ ζ(ω′) [the active player at history h knows that
h has been reached].

4. If Bh(ω) , ∅ then, for every action a ∈ A(h), there is an ω′ ∈ Bh(ω)
such that ha � ζ(ω′) .

The last condition states that, for every action a available at h, there is a
state ω′ that the active player at h considers possible (ω′ ∈ Bh(ω)) where she
takes action a (that is, history ha is a prefix of ζ(ω′)). This means that, for
every available action, the active player at h has a belief about what will, or
might, happen if she chooses that action. Note that this way of modeling
beliefs is a departure from the standard approach in the literature, where it is
assumed that if, at a state, a player takes a particular action then she knows
that she takes that action. The standard approach thus requires the use of
either objective or subjective counterfactuals in order to represent a player’s
beliefs about the consequences of taking alternative actions.11 In our approach

10Thus it would be more precise to write Bι(h) instead of Bh, but we have chosen the lighter
notation since there is no ambiguity, because at every decision history there is a unique player who
is active there.

11For a critical analysis of the use of counterfactuals in dynamic games see Bonanno (2015).
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a player’s beliefs refer to the deliberation or pre-choice stage, where the player
considers the consequences of taking any available action, without pre-judging
her subsequent decision.12

Since the state encodes the player’s actual choice, that choice can be judged
to be rational or irrational by relating it to the player’s pre-choice beliefs. Thus
it is possible for a player to have the same beliefs at two different states, say
α and β, and be labeled as rational at state α and irrational at state β, because
the action she ends up taking at state α is optimal given those beliefs, while the
action she ends up taking at state β is not optimal given those same beliefs. The
formal definition of rationality is given in Section 3.

Consider the game shown in Figure 1, together with a model of it.13 We
represent a belief relation B as follows: for any two states ω and ω′, ω′ ∈ B(ω)
if and only if either ω and ω′ are enclosed in the same rounded rectangle or
there is an arrow fromω to the rounded rectangle containingω′.14 The relations
shown in the model of Figure 1 are those of the active players: the relation at
the null history ∅, B∅, is that of Player 1, the relation at history a1, Ba1 , is that of
Player 2, etc.15

Consider a state, say δ. Then δ describes the following beliefs: at the null
history ∅ (the root of the tree) the active player (Player 1) believes that if she
takes action a1 then Player 2 will either follow with action d2 (state β) or with
action a2 followed by action d3 of Player 3 (state γ) and if she takes action d1
then the play will end (state α); at history a1 the active player (Player 2) knows
that Player 1 played a1 and believes that if he takes action a2 then Player 3 will
follow with d3 (state γ) and if he takes action d2 the play will end (state β); at
history a1a2 the active player (Player 3) knows that Players 1 and 2 played a1
and a2, respectively, and believes that if she takes action a3 then Player 1 will
follow with d4 (state δ) and if she takes action d3 then the play will end (state
γ), etc. At state δ, Player 1 ends up playing a1 (at the root of the tree), Player 2
ends up playing a2, Player 3 ends up playing a3 and Player 1, at her last move,
ends up playing d4 .

12This issue is further discussed in Section 7.3.
13The root of the tree corresponds to the null history ∅, Player 2’s decision node corresponds

to history a1, Player 3’s decision node to history a1a2 and Player 1’s last decision node to history
a1a2a3.

14In other words, for any two states ω and ω′ that are enclosed in a rounded rectangle,
{(ω,ω), (ω,ω′), (ω′, ω), (ω′, ω′)} ⊆ B (that is, the relation is total on the set of states contained in
the rectangle) and if there is an arrow from a state ω to a rounded rectangle then, for every ω′ in
the rectangle, (ω,ω′) ∈ B.

15Thus B∅(ω) = {α, β, γ} for every ω ∈ Ω = {α, β, γ, δ, ε}, Ba1 (ω) = {β, γ} for every ω ∈ {β, γ, δ, ε},
Ba1a2 (ω) = {γ, δ} for every ω ∈ {γ, δ, ε} and Ba1a2a3 (ω) = {δ, ε} for every ω ∈ {δ, ε}.
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Figure 1: A perfect-information game and a model of it

In the model of Figure 1, under each state that is considered possible (by the
relevant player) we have recorded the action actually taken by the player and
that player’s payoff (at the terminal history associated with that state). This
will be useful when assessing the rationality of a player at a state. The issue of
rationality is addressed in the next section.

Remark 1. It is worth stressing that the notion of model that we are using allows for
erroneous beliefs. For example, in the model of Figure 1, at state δ and history a1 Player
2 has incorrect beliefs about the subsequent move of Player 3 if she herself plays a2: she
believes that Player 3 will follow with d3 while, in fact, Player 3 plays a3.

3 Rationality

We use a very weak notion of rationality, which has been referred to in the
literature as “material rationality” (see, for example, Aumann (1995; 1998),
Battigalli et al. (2013), Samet (1996)). We say that, at state ω and at a decision
history h that is reached at ω, the active player is rational if her actual action (at
h and ω) is “optimal” given her beliefs, in the sense that it is not the case that -
according to her beliefs - there is another action of hers that guarantees higher
utility.16

16Note that rationality in the traditional sense of expected utility maximization implies rationality
in our sense; thus anything that is implied by our weak notion will also be implied by the stronger
notion of expected utility maximization. On the other hand, our notion has the advantage that it
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Definition 3.1. Let ω be a state, h a decision history that is reached at ω (that is,
h ≺ ζ(ω)) and a, b ∈ A(h) two actions available at h. We say that, at ω and h, the
active player ι(h) believes that b is better than a if, ∀ω1, ω2 ∈ Bh(ω), if ha � ζ(ω1)
(that is, a is the action taken at history h at state ω1) and hb � ζ(ω2) (that is, b
is the action taken at history h at state ω2) then uι(h)(ζ(ω1)) < uι(h)(ζ(ω2)) (recall
that, for every player i, ui : Z → R is player i’s utility function on the set of
terminal histories). In other words, the active player at h believes that b is
better than a if, restricting attention to the states that she considers possible, the
maximum utility that she obtains if she plays a is less than the minimum utility
that she obtains if she plays b.

For example, in the model shown in Figure 1, at state δ and at the null
history ∅ it is not the case that the active player (Player 1) believes that action a1
is better than action d1 (since β ∈ B∅(δ), a1 ≺ ζ(β) = a1d2, α ∈ B∅(δ), d1 � ζ(α) = d1
and u1(a1d2) = 0 < u1(d1) = 1) and it is also not the case that Player 1 believes
that action d1 is better than action a1 (since γ ∈ B∅(δ), a1 ≺ ζ(γ) = a1a2d3,
α ∈ B∅(δ), d1 � ζ(α) = d1 and u1(d1) = 1 < u1(a1d2d3) = 2); in other words, at
state δ Player 1 believes that if she plays d1 her utility will be 1 and if she plays
a1 her utility might be 0 or might be 2. On the other hand, at state δ and at
decision history a1 the active player (Player 2) believes that action a2 is better
than action d2.

Using Definition 3.1 we can define the event that the active player is rational
at decision history h; we denote this event by Rh.

Definition 3.2. Let h be a decision history and ω a state. Then ω ∈ Rh if and
only if (1) h ≺ ζ(ω) and (2) if ha � ζ(ω) (that is, a ∈ A(h) is the action played at h
at state ω) then, for every b ∈ A(h), it is not the case that, at state ω and history
h, player ι(h) believes that b is better than a.

For example, in the model of Figure 1 we have that R∅ = Ω, Ra1 = {γ, δ, ε}
(Player 2 believes that a2 is better than d2 and thus he is rational at, and only at,
those states where he plays a2), Ra1a2 = {γ} and Ra1a2a3 = {ε}.

Definition 3.3. Let R be the event that at every reached decision history the
active player is rational: ω ∈ R if and only if ω ∈ Rh for all h ∈ D such that
h ≺ ζ(ω).

For example, in the model of Figure 1 we have that R = {α, γ}.

does not rely on the assumption of von Neumann-Morgenstern preferences: the utility functions
can be just ordinal utility functions.
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4 Nash equilibrium play

Suppose that we have a model of a perfect-information game where there is a
state ω such that, at every reached decision history, the active player is rational
(that is, ω ∈ R: see Definition 3.3); what can we say about ζ(ω), the actual play
at that state? In general, we cannot conclude that ζ(ω) is a Nash equilibrium
outcome. To see this, consider the game and model shown in Figure 2, where
R = {α, β}.17 Thus α ∈ R and yet ζ(α) = a1b2 which is an outcome that cannot be
generated by a Nash equilibrium (that is, there is no Nash equilibrium whose
associated outcome is a1b2, since - when Player 2’s strategy is to play b2 - Player
1’s payoff would increase from 0 to 1 if she switched her choice from a1 to a2).
In this model, at state α Player 1 erroneously believes that if she plays a1 then
Player 2 will follow with b1 (β ∈ B∅(α) and ζ(β) = a1b1) while, as a matter of
fact, Player 2 plays b2.

In order to obtain a characterization of Nash equilibrium outcomes we need
to rule out erroneous beliefs.

It is well-known that, in general, correctness of beliefs corresponds to the
property of reflexivity of the belief relations, which in our case would be ex-
pressed as follows: ∀ω ∈ Ω,∀h ∈ D, if h ≺ ζ(ω) then ω ∈ Bh(ω). However, there
are two reasons why one should not assume the belief relations to be reflexive:
the first is a general conceptual reason and the second is a reason specific to our
class of models.

The conceptual reason is that when the belief relations are assumed to be re-
flexive, beliefs become necessarily correct (and one can speak of knowledge rather
than belief). As Stalnaker (Stalnaker (1996)) points out, it is methodologically
preferable to carry out the analysis in terms of (possibly erroneous) beliefs and
then - if desired - add further conditions that are sufficient to rule out incorrect
beliefs at a particular state. The reason why one should not start with the as-
sumption of necessarily correct beliefs (that is, reflexivity of the belief relations)
is that this assumption has strong intersubjective implications:

“The assumption that Alice believes (with probability one) that Bert
believes (with probability one) that the cat ate the canary tells us
nothing about what Alice believes about the cat and the canary
themselves. But if we assume instead that Alice knows that Bert
knows that the cat ate the canary, it follows, not only that the cat in
fact ate the canary, but that Alice knows it, and therefore believes it
as well.” [Stalnaker (1996), p. 153.]

17In fact, R∅ = Ra1 = {α, β}.
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Figure 2: A game and a model of it
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Thus we want a weaker notion of correctness of beliefs which, for example,
allows for the possibility that a player has correct beliefs about the beliefs of
another player without subscribing to those beliefs, that is, without at the same
time believing that the beliefs of that player are in fact correct.

The second reason why one should not assume reflexivity of the belief rela-
tions is specific to our structures: reflexivity would imply complete uncertainty
in the mind of each active player as to what will happen if she chooses alterna-
tive actions. This is due to the fact that, by Point 4 of Definition 2.2, for every
action available at a decision history h, there should be a state where player ι(h)
(the active player at h) takes that action; if player ι(h) happens to believe that
after taking, say, action a the following player will play, say, action b rather than
action c, then at a state where, as a matter of fact, action c is played player ι(h)
must have erroneous beliefs, that is, the relationBh is not reflexive at that state.
For example, in the model of Figure 1 at history a1a2 imposing reflexivity of the
belief relation of Player 3 would require Ba1a2 (γ) = Ba1a2 (δ) = Ba1a2 (ε) = {γ, δ, ε},
implying complete uncertainty in the mind of Player 3 as to what will happen
if she plays a3.

Thus we need to define correctness of beliefs locally, that is, as an event,
which may or may not hold at a particular state.

Definition 4.1. Let Th ⊆ Ω (where T stands for ‘Truth’) be the event that the
active player at decision history h has correct beliefs:

ω ∈ Th if and only if h ≺ ζ(ω) and ω ∈ Bh(ω).

Let T be the event that, at every reached history, the active player has correct
beliefs:

ω ∈ T if and only if, ∀h ∈ D such that h ≺ ζ(ω), ω ∈ Th.

For example, in the model of Figure 1, T∅ = {α, β, γ}, Ta1 = {β, γ}, Ta1a2 =
{γ, δ}, Ta1a2a3 = {δ, ε} and T = {α, β, γ}; in the model of Figure 2, T∅ = {β, γ}, Ta1 =
{α, β} and T = {β, γ}.

The example of Figure 3 shows that rationality and correct beliefs at every
reached decision history are not sufficient to guarantee the play of a Nash
equilibrium outcome; that is, even if ω ∈ T ∩ R, it is not necessarily the case
that ζ(ω) is a Nash equilibrium outcome. Here we have that T = {α, β, γ} and
R = {β, δ} so that T ∩ R = {β},18 but ζ(β) = a1b1 which is not a Nash equilibrium

18In this model T∅ = {α, β, γ},Ta1 = {α, β},Ta2 = {γ, δ},R∅ = Ω,Ra1 = {β} and Ra2 = {δ}.
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outcome.19 The issue in this case is that Player 1 is uncertain as to what will
happen if she plays a1: she does not know whether Player 2 will play b1 or
b2; since Player 1 considers it possible that, if she plays a1, Player 2 will play
b2 (state α) and believes that her choice of a2 would be followed by Player 2
playing c1 (state γ) and u1(a1b2) = 2 > u1(a2c1) = 1, it is rational for her to play
a1 (see Definition 3.3). Thus we need to add one more restriction on beliefs,
namely that a player is not uncertain as to what will happen if she chooses any
particular action.

Definition 4.2. Let Ch ⊆ Ω (where C stands for ‘Certainty’) be the event that the
active player at decision history h has no uncertainty about what will happen
after any of her choices at h:

ω ∈ Ch if and only if h ≺ ζ(ω) and, ∀a ∈ A(h),∀ω′, ω′′ ∈ Bh(ω),
if ha � ζ(ω′) and ha � ζ(ω′′) then ζ(ω′) = ζ(ω′′).

Let C be the event that at every reached decision history the active player has
no uncertainty about what will happen after any of her choices:

ω ∈ C if and only if, ∀h ∈ D such that h ≺ ζ(ω), ω ∈ Ch.

For example, in the model of Figure 3, C∅ = ∅,20 Ca1 = {α, β} and Ca2 = {γ, δ},
so that C = ∅; in the model of Figure 2, C∅ = {α, β, γ} and Ca1 = {α, β} so that
C = {α, β, γ}.

Remark 2. Note that the event Ch only expresses the fact that at history h the active
player has no doubt as to what actions future players will take; however her “doubtless”
beliefs might be erroneous. In other words, ifω ∈ Ch then at history h player ι(h) might
be certain that after her own action a the subsequent player will play b and yet, as a
matter of fact, at state ω action a is followed (at history ha) not by action b but by a
different action c. If, however, ω belongs to the intersection of events Ch and Th then,
at state ω, player ι(h) has correct beliefs about what will happen after the action she
actually takes (at h and ω), while there is no way of telling whether or not she is also
correct about what would happen after alternative choices at h, because the models that
we are considering are not reach enough to address that issue (see Remark 6 below).

Before stating the main result of this section, we need one more definition.

19If Player 2’s strategy selects choice b1 at decision history a1, then Player 1’s best reply is to play
a2 rather than a1.

20Because, for every ω ∈ Ω, α, β ∈ B∅(ω), a1 ≺ ζ(α), a1 ≺ ζ(β) and ζ(α) = a1b2 , ζ(β) = a1b1.
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Definition 4.3. A game satisfies the no-consecutive-moves condition if no
player moves more than once along any given play, that is, if, ∀h, h′ ∈ D,
h ≺ h′ implies ι(h) , ι(h′).21

The following proposition provides a doxastic characterization of the set of
Nash equilibrium outcomes (or terminal histories) for games that satisfy the no-
consecutive-moves condition.22 The characterizing condition is that at every
reached history, the active player (1) has correct beliefs, (2) is rational and (3) has
no uncertainty about what will happen after any of her choices. This condition
is expressed by the event T ∩ R ∩ C. The proof is given in the Appendix.

Proposition 1. Consider a perfect-information game G that satisfies the no-consecutive-
moves condition. Then,

(A) If terminal history z is the outcome of a pure-strategy Nash equilibrium
of G then there is a model of G and a state ω in that model such that
(1) ζ(ω) = z and (2) ω ∈ T ∩ R ∩ C.

(B) For any model of G and for every state ω in that model, if ω ∈ T ∩ R ∩ C
then there is a pure-strategy Nash equilibrium of G whose corresponding
outcome is ζ(ω).

Note that it is only Part B of Proposition 1 that requires the restriction
to games that satisfy the no-consecutive-moves condition: Part A is true for
arbitrary perfect-information games. To see why the restriction is needed for
Part B, consider the game and model of Figure 4, where α ∈ T ∩ R ∩ C23 and
yet ζ(α) = a2 which is not a Nash equilibrium outcome: if Player 2’s strategy
is b1 then Player 1’s best reply is either (a1, c1) or (a1, c2), with corresponding
outcome a1b1, and if Player 2’s strategy is b2 then Player 1’s best reply is (a1, c2),
with corresponding outcome a1b2c2. The reason why Player 1 is nevertheless
rational at state α, where she plays a2, is that - in her beliefs - she takes her own
choice of c1 at her future decision history a1b2 as given, while changing her plan
of action at the root from a2 to “first a1 and then c2” would increase her payoff
from 1 to 2, making her choice of a2 irrational.

In order to obtain a general version of Proposition 1, that does not require
the restriction to games that satisfy the no-consecutive-moves condition, all is

21The so-called agent form of a game is obtained by treating a player at different decision histories
as different players with the same payoff function. Thus the agent form of a game satisfies the no-
consecutive-moves condition (but the latter is a weaker condition). Several papers in the literature
on the epistemic foundations of backward induction in perfect-information games restrict attention
to games in agent form (see, for example, Balkenborg and Winter (1997), Stalnaker (1998)).

22At the end of this section we discuss how this restriction can be relaxed.
23In this model, T = {α, β},R = {α} and C = Ω, so that T ∩ R ∩ C = {α}.
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needed is a modification of Point 4 of Definition 2.2 where ’action at h’ is replaced
with ’plan of action at h’. A plan of action for player i at her decision history
h is defined as follows. Let {h1, ..., hm} be the (possibly empty) set of decision
histories of player i that are successors of h (that is, for every j = 1, ...,m, h ≺ h j);
then a plan of action of player i at h is a pair (a, {a1, ..., am}) where a is an action at
h (a ∈ A(h)) and, for every j = 1, ...,m, a j is an action at h j (a j ∈ A(h j)); if there are
no successors of h that are decision histories of player i, then a plan of action at
h coincides with an action at h. The modified Point 4 of Definition 2.2 would
require that, for every plan of action of player i at her decision history h there
be a state that player i considers possible at h where she “plays” that plan of
action. We have opted for the simpler version of Definition 1 because it turns
out to be sufficient for a characterization of the stronger - and more appealing
- notion of backward induction, without requiring the restriction to games that
satisfy the no-consecutive-moves condition. The characterization is given in
the following section.

5 Backward induction

By Proposition 1, the conditions expressed by the event T ∩R ∩C characterize
the notion of Nash equilibrium play in perfect-information games. It follows
that for backward induction one needs stronger conditions, since not every
Nash equilibrium outcome is a backward-induction outcome. In this section
we identify the additional conditions that are required for a characterization
of backward induction. Intuitively, rationality is not enough, because it is also
necessary for a player to believe that, no matter what action she takes, the next
player will act rationally and will believe that future players will act rationally,
and so on. To see this, consider the game and model shown in Figure 5, where
T = {α, β},R = {β} and C = Ω, so that T∩R∩C = {β} and yet ζ(β) = a1b1, which is
not a backward-induction outcome (the unique backward-induction outcome
is a1b2c2). At state β and history a1 Player 2, although rational himself, does not
believe that, after his choice of b2, Player 1 will act rationally: he believes that
Player 1 would follow with c1 (γ ∈ Ba(β) and ζ(γ) = a1b2c1). It follows that,
since β ∈ B∅(α), at state α it is not the case that Player 1 at history ∅ believes
that if she takes action a1 then at history a1 Player 2 will believe that if he takes
action b2 then Player 1 will play rationally at history a1b2. This is what we need
to rule out in order to obtain a characterization of backward induction.

Before proceeding we need to introduce a definition.



18 Behavior and deliberation

d,1 c,0

e,0 f,2

b,1 a,0

d

2

2
0

a b

1
1

state: 



0

a

0
1

2
2

c

e f

1

1

adfb ade ac
decision
history:

ad

 

Figure 5: A game and a model of it



G Bonanno 19

Definition 5.1. Consider a model of a perfect-information game. Let ω ∈ Ω be
a state and let h = a1a2...am (m ≥ 1) be a decision history (thus a1 ∈ A(∅) and, for
every i = 2, ...,m, ai ∈ A(a1...ai−1)). We say that h is reachable from ω if there exists
a sequence 〈ω0, ω1, ..., ωm〉 in Ω such that: (1) ω0 = ω, (2) for every i = 1, ...,m,
a1...ai ≺ ζ(ωi), (3) ω1 ∈ B∅(ω0) and, for every i = 2, ...,m, ωi ∈ Ba1...ai−1 (ωi−1). We
say that any such sequence 〈ω0, ω1, ..., ωm〉 leads from ω to h.

For example, in the model of Figure 1, decision history a1a2a3 is reachable
from α via the sequence 〈α, β, γ, δ〉.24

Remark 3. Consider a model of a perfect-information game. Letω ∈ Ω be an arbitrary
state and h ∈ D an arbitrary decision history. Then there is a sequence that leads from
ω to h.25

By Proposition 1, the play of Nash equilibrium outcomes is characterized by
the conditions expressed by the events Th ∩Rh ∩Ch, for every reached history
h. We now show that, in order to characterize the play of backward induction
outcomes, we need to add “forward iterated belief” in Th ∩ Rh ∩ Ch.

Definition 5.2. Consider a model of a perfect-information game. Let ITRC
(where I stands for ‘Iterated’) be the following event: ω ∈ ITRC if and only if, for
every decision history h = a1...am (m ≥ 1), and for every sequence 〈ω0, ω1, ..., ωm〉

leading from ω to h, ωm ∈ Th ∩ Rh ∩ Ch.

Definition 5.2 expresses the following condition: the root player (player ι(∅))
believes that if she takes action a and a is a decision history then: (1) the active
player at a has correct beliefs, is rational and has no uncertainty, (2) the active
player at a believes that if he takes action b and ab is a decision history then the
active player at ab has correct beliefs, is rational and has no uncertainty and
believes that if she takes action c and abc is a decision history then the active
player at abc has correct beliefs, is rational and has no uncertainty, and so forth.
All of this can be expressed formally using belief operators, as explained at the
end of this section.

So far, characterizations of backward induction have been provided for
perfect-information games in generic position (or that satisfy the somewhat

24β ∈ B∅(α), a1 ≺ ζ(β) = a1d2, γ ∈ Ba1 (β), a1a2 ≺ ζ(γ) = a1a2d3, δ ∈ Ba1a2 (γ) and a1a2a3 ≺ ζ(δ) =
a1a2a3d4. Another sequence that leads from α to a1a2a3 is 〈α, γ, γ, δ〉.

25Proof. Let h = a1...am (m ≥ 1). By Point 1 of Definition 2.2, B∅(ω) , ∅ (since ∅ is a prefix of
every history, in particular of history ζ(ω)). Hence, since a1 ∈ A(∅), by Point 4 of Definition 2.2 there
exists an ω1 ∈ B∅(ω) such that a1 � ζ(ω1). Thus, since a2 ∈ A(a1), by Point 4 of Definition 2.2, there
exists an ω2 ∈ Ba1 (ω1) such that a1a2 � ζ(ω2), etc.
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weaker condition of “no relevant ties”),26 which have a unique backward-
induction solution. By contrast, the following characterization applies to
arbitrary perfect-information games, that is, also those that have multiple
backward-induction solutions (note that, unlike Proposition 1, the character-
ization given in Proposition 2 is not restricted to games that satisfy the no-
consecutive-moves condition). The proof is given in the Appendix.

Proposition 2. Consider a perfect-information game G. Then,
(A) If terminal history z is the outcome of a backward-induction solution

of G then there is a model of G and a state ω in that model such that
(1) ζ(ω) = z and (2) ω ∈ (T ∩ R ∩ C) ∩ ITRC.

(B) For any model of G and for every state ω in that model, if
ω ∈ (T ∩ R ∩ C) ∩ ITRC then there is a backward-induction solution
of G whose corresponding outcome is ζ(ω).

Remark 4. Note that the event (T ∩ R ∩ C) ∩ ITRC is equivalent to the seemingly
weaker event (T∅ ∩ R∅ ∩ C∅) ∩ ITRC.27

Remark 5. In games that have no relevant ties one can dispense with the events Ch,
since the no uncertainty condition is a consequence of (loosely speaking) the uniqueness
of a rational choice at every decision history.28 Thus for this subclass of games, the
event that characterizes the set of backward-induction outcomes is (T ∩ R) ∩ ITR.29

26See, for example, Aumann (1995), Balkenborg and Winter (1997), Ben-Porath (1997), Bonanno
(2013), Clausing (2003), Halpern (2001), Perea (2012; 2014), Quesada (2003), Samet (1996; 2013),
Stalnaker (1998). A perfect-information game has no relevant ties if, ∀i ∈ N, ∀h ∈ Di, ∀a, a′ ∈ A(h)
with a , a′, ∀z, z′ ∈ Z, if ha is a prefix of z and ha′ is a prefix of z′ then ui(z) , ui(z′). All games in
generic position satisfy this condition.

27Proof. It is clear that (T∩R∩C)∩ ITRC ⊆ (T∅ ∩R∅ ∩C∅)∩ ITRC since T∩R∩C ⊆ T∅ ∩R∅ ∩C∅.
To prove the converse, let ω ∈ (T∅ ∩R∅ ∩C∅)∩ ITRC and let h = a1...am (m ≥ 1) be a decision history
such that h ≺ ζ(ω); we need to show that ω ∈ Th ∩ Rh ∩ Ch. Since ω ∈ ITRC, it will be sufficient
to show that h is reachable from ω via the constant sequence 〈ω0, ω1, ..., ωm〉 with ωi = ω for every
i = 0, 1, ...,m. Point (1) of Definition 5.1 is trivially true and point (2) follows from the hypothesis
that h ≺ ζ(ω) and the fact that, for every i = 1, ...,m − 1, a1...ai ≺ h. As for Point (3), we have, first of
all, that ω1 = ω ∈ B∅(ω∅ = ω) because ω ∈ T∅. Thus a1 is reachable from ω through the sequence
〈ω,ω〉 and hence, since ω ∈ ITRC, ω ∈ Ta1 , that is, ω ∈ Ba1 (ω). It follows that a1a2 is reachable from
ω through the sequence 〈ω,ω,ω〉 and hence, since ω ∈ ITRC, ω ∈ Ta1a2 , that is, ω ∈ Ba1a2 (ω), and so
forth.

28The proof is by induction. At a “last” decision node (that is, a decision node followed only by
terminal nodes) there is a unique rational choice, since there are no ties. Hence at an immediately
preceding node the active player who believes that after each of her choices the corresponding
player will play rationally, cannot have uncertainty about the subsequent choices of those future
player; hence, since there are no relevant ties, also this player has a unique rational choice. One
then extends this argument backwards in the tree by induction.

29The event ITR is defined as in Definition 5.2 but without reference to the events Ch: ω ∈ ITR if
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5.1 Expressing the event ITRC using belief operators

We now turn to a discussion on how to interpret the event ITRC in terms of
iterated beliefs, using belief operators.30 Recall that, given a belief relation
B ⊆ Ω × Ω and an event E, we say that at state ω the individual believes E if
B(ω) ⊆ E and use this to define a belief operator B : 2Ω

→ 2Ω as follows: for
every E ⊆ Ω, BE = {ω ∈ Ω : B(ω) ⊆ E}. Consider the game and model of Figure
6. At state α and history ∅ Player 1 believes that if she plays a1 then Player 2
will play b2, which is a rational choice for Player 2 (indeed, the only rational
choice). We would like to express this by writing α ∈ B∅Ra1 .31 However, this is
not the case because Ra1 = {β} and B∅(α) = {β, γ} so that B∅(α) * Ra1 . There are
two ways of addressing this issue.

1. Using material conditionals. In propositional logic, the material condi-
tional ‘if p then q’ is true when either p is false or q is true. Correspondingly,
the set of states where it is true that ‘if event E occurs then event F occurs’
is represented by the event ¬E ∪ F (where ¬E denotes the complement of E).
Given a perfect-information game and a model of it, for any decision history h
denote by [h] the set of states where h is reached:

[h] = {ω ∈ Ω : h ≺ ζ(ω)}.

For example, in the model of Figure 6, [a1] = {α, β} so that the material condi-
tional ‘if Player 1 plays a1 then Player 2 chooses rationally at a1’ is represented
by the event ¬[a1] ∪ Ra1 = {γ} ∪ {β} and thus we do have that, at state α, Player
1 believes that if she plays a1 then Player 2 will act rationally at history a1:
α ∈ B∅(¬[a1] ∪ Ra1 ) (since B∅(α) = {β, γ} ⊆ ¬[a1] ∪ Ra1 = {β, γ}). In the model of
Figure 6 the event ITRC coincides with the eventB∅(¬[a1]∪Ra1 ) = {α, β, γ}. Since
T ∩ R ∩ C = {β}, it follows that (T ∩ R ∩ C) ∩ ITRC = {β} and, in accordance to
Proposition 2, ζ(β) = a1b2 is the backward-induction outcome.

In the model of Figure 7, the event ITRC is the intersection of the following
events:32

and only if, for every decision history h = a1...am (m ≥ 1), and for every sequence 〈ω0, ω1, ..., ωm〉

leading from ω to h, ωm ∈ Th ∩ Rh.
30The interpretation of the event ITRC given below in terms of “forward belief in rationality”

is conceptually similar to the notion of “forward belief in material rationality” given in (Perea
2007a, Definition 2.7). However, the latter definition is obtained in a class of models where the
space of uncertainty is the set of the opponents’ strategies, rather than the set of terminal histories
(furthermore, Perea uses the “type-space” approach rather than the state-space approach followed
in this paper). The difference between the two classes of models is discussed in Section 7.2.

31That is, at state α and history ∅, player ι(∅) = 1 believes that at history a1 player ι(a1) = 2 will
act rationally.

32In this model, R∅ = {β, ε, η},Ra1 = {ε},Ra2 = {β, δ},Ra1b1 = {α, η},R = {β, ε},T∅ = {α, β, δ, ε},Ta1 =
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• B∅
(
¬[a1] ∪ (Ta1 ∩ Ra1 ∩ Ca1 )

)
= B∅({β, γ, δ, ε}) = {γ, δ, ε, η}

• B∅
(
¬[a2] ∪ (Ta2 ∩ Ra2 ∩ Ca2 )

)
= B∅({α, β, δ, ε, η}) = Ω

• B∅Ba1

(
¬[b1] ∪ (Ta1b1 ∩ Ra1b1 ∩ Ca1b1 )

)
= B∅Ba1Ω = B∅Ω = Ω.33

Thus ITRC = {γ, δ, ε, η}. Since T ∩ R ∩ C = {β, ε}, (T ∩ R ∩ C) ∩ ITRC = {ε} and, in
accordance to Proposition 2, ζ(ε) = a1b2 is a backward-induction outcome. This
game has a second backward-induction outcome, namely a2c1; although in this
model there is no state ω such that ω ∈ (T ∩ R ∩ C) ∩ ITRC and ζ(ω) = a2c1, by
Part B of Proposition 2 one can construct a model of this game where such a
state exists.

In general, using belief operators and the material conditional, the event
ITRC is the intersection of all the following events, for every decision history
h = a1a2...am (m ≥ 1):

• B∅
(
¬[a1] ∪ (Ta1 ∩ Ra1 ∩ Ca1 )

)
• B∅Ba1

(
¬[a2] ∪ (Ta1a2 ∩ Ra1a2 ∩ Ca1a2 )

)
• ...

• B∅Ba1Ba1a2 ...Ba1a2...am−1

(
¬[am] ∪ (Ta1a2...am ∩ Ra1a2...am ∩ Ca1a2...am )

)
.

2. The alternative (and essentially equivalent) approach is to extend the
definitions of Th,Rh and Ch by adding to those events all the states at which
history h is not reached. In other words, define the following events:

T̂h = ¬[h] ∪ Th, R̂h = ¬[h] ∪ Rh, Ĉh = ¬[h] ∪ Ch (1)

Using this approach the event ITRC is the intersection of all the following events,
for every decision history h = a1a2...am (m ≥ 1):

• B∅(T̂a1 ∩ R̂a1 ∩ Ĉa1 )

• B∅Ba1 (T̂a1a2 ∩ R̂a1a2 ∩ Ĉa1a2 )

• ...

• B∅Ba1Ba1a2 ...Ba1a2...am−1 (T̂a1a2...am ∩ R̂a1a2...am ∩ Ĉa1a2...am ).
{ε, η},Ta2 = {β, γ, δ},Ta1b1 = {α, η},T = {β, δ, ε},C∅ = Ω,Ca1 = {α, ε, η},Ca2 = {β, γ, δ},Ca1b1 =
{α, η},C = Ω, [a1] = {α, ε, η}, [a2] = {β, γ, δ} and [b1] = {α, η}.

33Note that, if state ω and decision history h are such that h is not reached at ω (that is, h ⊀ ζ(ω)),
then, by Definition 2.2, Bh(ω) = ∅ and therefore Bh(ω) ⊆ E, for every event E, that is, ω ∈ BhE. For
example, in the model of Figure 7, Ba1 ({α, β}) = {β, γ, δ}, since, for every ω ∈ {β, γ, δ}, Ba1 (ω) = ∅.
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6 Related literature

To the best of our knowledge, with one exception (Ben-Porath (1997))34 existing
characterizations of Nash equilibrium have been restricted to strategic-form
games (Aumann and Brandenburger (1995), Bach and Tsakas (2014), Barelli
(2009), Perea (2007b), Polak (1999)). Proposition 1 provides a characterization
of Nash equilibrium outcomes in perfect-information games in terms of three
conditions at reached decision histories: (1) correct beliefs (event T), (2) ra-
tionality (event R) and (3) no uncertainty (event C). Before comparing our
characterization to Ben Porath’s characterization we point out the limited sense
in which beliefs are postulated to be “correct”, that is, the limited sense in which
event T captures the notion of correct belief.

Remark 6. Given a decision history h, the event Th (Definition 4.1) captures the
notion of correct beliefs: if ω ∈ Th, that is, if ω ∈ Bh(ω) (for h such that h ≺ ζ(ω)),
then the active player at history h does not have false beliefs. Does this mean that she
is correct in her beliefs about what will happen if she takes any of her actions at h? For
the action she actually takes at h (that is, for that action a ∈ A(h) such that ha � ζ(ω))
her beliefs are indeed correct, but for any other action a′ ∈ A(h) \ {a} the models that we
are using are not sufficiently rich to answer the question, since such an answer would
involve the evaluation of a counterfactual, as explained below.

Consider, for example, state δ in the model of Figure 7, where at decision
history ∅ Player 1 believes that if she takes action a1 then Player 2 will follow
with b2 (state ε) and if she takes action a2 then Player 2 will follow with c1 (state
δ). The latter belief is correct at state δ, where - as a matter of fact - Player 2
plays c1, but is the former belief also correct, that is, is it true - at state δ - that if
Player 1 played a1 then Player 2 would play b2? From the point of view of state
δ, the proposition ‘if Player 1 plays a1 then Player 2 plays b2’ is a counterfactual
proposition, that is, one that has a false antecedent. The standard theory of
counterfactuals (Lewis (1973), Stalnaker (1968)) requires that we identify a state
δ′ which is such that (1) it is “most similar” to state δ and (2) it is true at δ′ that
Player 1 plays a1 (that is, ha ≺ ζ(δ′)); one then declares the counterfactual true
at state δ if - at this alternative state δ′ - Player 2 actually plays b2.35 There is

34It should also be noted that, for perfect-information games with no relevant ties, Battigalli et al.
(2013) shows that in every type structure there is a unique play consistent with common strong
belief of material rationality and that play is a Nash equilibrium play.

35Stalnaker (Stalnaker (1968)) postulates a “selection function” f : Ω × 2Ω
→ Ω that associates

with every state ω and event E a unique state f (ω,E) ∈ E, while Lewis (Lewis (1973)) postulates
a selection function F : Ω × 2Ω

→ 2Ω that associates with every state ω and event E a set of states
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no reason why, in the model of Figure 7, one should take ε to be the closest
or most similar state to δ where Player 1 plays a1; indeed Player 1 might have
false beliefs, at state δ, about the consequences of taking action a1. We could
enrich our models by adding a counterfactual selection function, but it is not
clear what value there would be in such an extension: from the point of view of
evaluating the rationality of an action what matters is the player’s belief, even
if such belief is erroneous.36

Theorem 2 in Ben-Porath (1997) states that, if the following conditions hold
at a state, then the associated outcome is a Nash equilibrium outcome: (1) there
is Common Certainty of rationality, (2) there is Common Certainty that each
player assigns positive probability to the true profile of strategies and beliefs of
the other players and (3) there is Common Certainty of the support of the beliefs
of each player.37 A player is certain of an event A if she assigns probability 1 to
A; there is Common Certainty of A if event A occurred, each player is certain
of A, each player is certain that every other player is certain of A, and so forth.
The following are the main differences between our characterization of Nash
equilibrium outcomes and Ben Porath’s characterization:

• Ben Porath restricts attention to generic games.

• Ben Porath uses a stronger notion of rationality, namely expected utility
maximization.

• The models considered by Ben Porath are not behavioral models but
strategy-based models: a state specifies a full strategy for each player,
rather than just the actions actually taken.38

• Ben Porath’s characterization is in terms of common belief : beliefs about
beliefs about beliefs ..., while the characterization we provide is in terms

F(ω,E) ⊆ E. Stalnaker declares the proposition ‘if E then G’ true at ω if and only if f (ω,E) ∈ G,
while Lewis requires that F(ω,E) ⊆ G.

36For an extensive discussion of this issue see Bonanno (2015).
37As the author notes, Theorem 2 does not provide a full characterization of Nash equilibrium

outcomes as there are Nash equilibria that are inconsistent with extensive-form rationality. How-
ever, if only normal-form rationality is assumed, that is, if one assumes that a player optimizes
only with respect to her initial beliefs (and not necessarily at every node), then the conditions of
Theorem 2 provide a full characterization of Nash equilibrium outcomes.

38Furthermore, Ben Porath uses the “type space” approach where a state is identified with an
n-tuple of types, one for each player (n is the number of players); the type of a player specifies his
strategy as well as a belief function that assigns, for every node in the tree, a probabilistic belief
over the set of profiles of types of the other players. Each player is assumed to know his own type;
in particular, each player knows his own strategy.
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of “facts” and does not require any form of beliefs about beliefs (in our
models iterated beliefs are required for backward induction outcomes,
not for Nash equilibrium outcomes).39

The characterization of backward-induction outcomes provided in Propo-
sition 2 is in terms of a, by now well-understood,40 condition, namely that
players should believe that future players will be rational and will believe the
same about players who will choose after them and so forth. Since the litera-
ture on the epistemic foundations of backward induction has been thoroughly
reviewed by Perea (Perea (2007a),(Perea 2012, p.463)) and Brandenburger (Bran-
denburger (2007)) it is unnecessary to go into the details of each contribution.
The distinguishing features of our approach were listed in Section 1.

As noted earlier, the purely behavioral point of view that we have adopted
(consisting in associating with every state a play of the game rather than a
strategy profile) was first introduced by Samet (Samet (1996)). The other papers
that take a purely behavioral point of view are based on a specification of
each player’s initial beliefs as well as her disposition to revise those beliefs in
response to information that she might receive during the play of the game; this
is done either probabilistically using conditional probability systems (Battigalli
et al. (2013)) or by means of qualitative belief revision structures (Baltag et al.
(2009), Stalnaker (1996; 1998)). Those models impose the constraint that, if at
a state player i chooses strategy si, then she knows that she uses strategy si
(that is, at every state that she considers possible, she uses strategy si); thus

39Epistemic characterizations of Nash equilibrium in strategic-form games have not relied on
the condition of common belief of rationality. For example, in their seminal paper Aumann
and Brandenburger Aumann and Brandenburger (1995) showed that, in games with more than
two players, if there exists a common prior then mutual belief in rationality and payoffs as well as
common belief in each player’s conjecture about the opponents’ strategies imply Nash equilibrium.
However, Polak Polak (1999) later showed that in complete-information games, Aumann and
Brandenburger’s conditions actually do imply common belief in rationality. More recently, Barelli
Barelli (2009) generalized Aumann and Brandenburger’s result by substituting the common prior
assumption with the weaker property of action-consistency, and common belief in conjectures with
a weaker condition stating that conjectures are constant in the support of the action-consistent
distribution. Thus, he provided sufficient epistemic conditions for Nash equilibrium without
requiring common belief in rationality. Later, Bach and Tsakas Bach and Tsakas (2014) obtained a
further generalization by introducing even weaker epistemic conditions for Nash equilibrium than
those in Barelli (2009): their characterization of Nash equilibrium is based on introducing pairwise
epistemic conditions imposed only on some pairs of players (contrary to the characterizations in
Aumann and Brandenburger (1995) and Barelli (2009), which correspond to pairwise epistemic
conditions imposed on all pairs of players). Not only do these conditions not imply common belief
in rationality but they do not even imply mutual belief in rationality.

40See Balkenborg and Winter (1997), Baltag et al. (2009), Clausing (2003; 2004), Feinberg (2005),
Perea (2014), Stalnaker (1998).
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subjective counterfactuals (or dispositional belief revision) are needed in order
to represent a player’s beliefs about the consequences of choosing a strategy
different from si.

The closest paper to the present one is Bonanno (2013), which also uses
behavioral models and the weak notion of rationality postulated in this paper.
The main differences are: (1) Bonanno (2013) only deals with backward induc-
tion and not Nash equilibrium, (2) the characterization of backward induction
provided in Bonanno (2013) is obtained only for games without relevant ties
and thus does not cover games with multiple backward-induction solutions41

and (3) the models considered in Bonanno (2013) are explicitly dynamic models,
while in the models considered in this paper time plays no explicit role.

7 Discussion

7.1 On the relationship between backward induction and subgame-
perfect equilibrium

An anonymous referee raised the issue whether Proposition 2 should be viewed
as a characterization of the notion of subgame-perfect equilibrium (SPE) or of
the notion of backward induction solution (BIS). Are the two notions different?
This is a subtle point, which hinges on the meaning of the expression “backward
induction solution”. If by BIS one means “the set of choices selected by the
backward-induction algorithm”, then the two notions of SPE and BIS coincide
in finite games with perfect information (with or without relevant ties): a
pure-strategy profile s is a SPE if and only if s is a possible output of the
backward-induction algorithm. By giving an alternative interpretation to the
notion of “backward induction solution”, one can draw a distinction (in perfect-
information games with relevant ties) between SPE and BIS, but this requires
using a different class of models from the one considered in this paper: one
needs to consider models where states are interpreted in terms of strategy profiles
(rather than in terms of terminal histories). For example, in the game of Figure
2, the set of pure-strategy subgame-perfect equilibria is {(a1, b1), (a2, b2)} while
one could consider the set of “backward induction solutions” to be the larger set
{(a1, b1), (a2, b2), (a2, b1)}, that is, one can also view (a2, b1) as a BIS in the following
sense. One can construct a model where the strategy profile associated with
a state ω is (a2, b1) and, at ω, both players are rational because (1) Player 1

41The conditions for backward induction provided in Bonanno (2013) are conceptually the same
as those expressed by the event (T ∩ R) ∩ ITR (see Remark 5).
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knows that his strategy is a2 and, on the supposition that he plays a1, believes
that Player 2 would play b2 – which is a rational choice for Player 2 – and
(2) if Player 1 were to play a1 then Player 2 would play b1 – which would be
a rational choice for her. Thus, in such a model, at state ω, Player 1 would
have erroneous beliefs about what would happen if he played a1 (instead of the
chosen action a2). On the other hand, in the approach proposed in this paper
one cannot distinguish between the strategy profile (a2, b2) (which is a SPE) and
the strategy profile (a2, b1) (which is not even a Nash equilibrium), since the
associated outcome (namely, a2) is the same, and states are only described in
terms of outcomes, not in terms of strategies. Indeed, as pointed out in Remark
6, in the models used in this paper at a state where Player 1 chooses action a2 one
cannot even assess whether Player 1’s beliefs about what would happen if she
played a1 are correct or not. Thus the question whether Proposition 2 should
be viewed as a characterization of the notion of subgame-perfect equilibrium
or of the notion of backward induction solution (assuming that one is adopting
a broad interpretation of the latter) seems to lie, conceptually, outside the scope
of the framework adopted in this paper.

Several contributions in the literature have explored the relationship be-
tween the notion of SPE and “backward-induction-like” procedures in general
extensive-form games (that is, games with possibly imperfect information).
Kaminski (Kaminski (2009)) defines a backward-induction equilibrium (BIE) as
a strategy profile that survives “backward pruning” and proves that in a large
class of extensive-form games a strategy profile is a BIE if and only if it is a
SPE, thus extending the equivalence beyond perfect-information games. Penta
(Penta (2009)) proposes an alternative extension of the notion of backward
induction to extensive games with imperfect information: his “backward ratio-
nalizability procedure” iteratively eliminates strategies and conditional belief
vectors starting from the end of the game and proceeding backwards towards
the root. Perea Perea (2014) provides an epistemic characterization of this pro-
cedure in terms of the notion of “common belief in future rationality”.42 He
also introduces a new algorithm, the “backward dominance procedure”, which
differs from Penta’s procedure in that it operates only on strategies (rather than
strategies and conditional belief vectors)43 and shows that the strategies that

42Defined as follows: players are rational and always believe in their opponents’ present and
future rationality and believe that every opponent always believes in his opponents’ present and
future rationality and that every opponent always believes that every other player always believes
in his opponents’ present and future rationality, and so on.

43In the first round the algorithm eliminates, at every information set of player i, strategies
of player i himself that are strictly dominated at present and future information sets, as well as
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survive the backward dominance procedure are exactly the strategies that can
be chosen under common belief in future rationality if one does not impose
(common belief in) Bayesian updating. The generalized notions of backward
induction proposed by Penta and Perea are weaker than SPE.44 Both authors
rely on the approach commonly used in the literature where the underlying
space of uncertainty is the set of the opponents’ strategies, while in our ap-
proach the underlying space of uncertainty is the set of terminal histories.

7.2 On the space of uncertainty: strategy profiles versus termi-
nal histories

There is a large literature on the issue of whether common belief of rational-
ity implies backward induction in perfect-information games (Artemov (2010),
Aumann (1995; 1996; 1998), Bach and Heilmann (2011), Balkenborg and Win-
ter (1997), Baltag et al. (2009), Battigalli et al. (2013), Ben-Porath (1997), Bin-
more (1996; 1997), Clausing (2003; 2004), Halpern (2001), Quesada (2003), Samet
(2013), Stalnaker (1998)). Most of this literature has focused on games without
relevant ties and has employed models of games where the underlying space of
uncertainty is the set of the opponents’ strategies. In contrast, in our approach
the underlying space of uncertainty is the set of terminal histories. An anony-
mous reviewer suggested that, by not modeling hypothetical or counterfactual
beliefs, one might give up the ability to model the reasoning of the players in
dynamic games. The lively debate on the relationship between (common belief
of) rationality and backward induction (most notably, Aumann (1995; 1996),
Binmore (1996; 1997), Halpern (2001), Stalnaker (1998)) has centered on the is-
sue of what is the correct way of modeling hypothetical or counterfactual beliefs
about players’ rationality. For example, Stalnaker ((Stalnaker 1998, pp.45-46))
claims that Aumann (Aumann (1995)) “equivocates between epistemic and
causal ‘if’s” and that “a strong and implausible belief revision policy has been
implicitly built into [Aumann’s] definition of substantive rationality”. Refer-
ring to a “centipede-like”game (that is, a game with a structure similar to the

strategies of players other than i that are strictly dominated at present and future information sets.
In every further round k those strategies are eliminated that are strictly dominated at a present or
future information set Ii of player i, given the opponents’ strategies that have survived up to round
k at that information set Ii. The strategies that eventually survive the elimination process constitute
the output of the backward dominance procedure.

44Perea (Perea (2014)) also suggests that, in general extensive-form games, the two notions of
common belief in future rationality and sequential equilibrium reflect the difference between BIS
and SPE.
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game shown in Figure 1 above), he illustrates this point as follows ((Stalnaker
1998, p.48))

¢ÅBob has the following initial belief: Alice would choose A2 on
her second move if she had a second move. This is a causal ‘if’ –
an ‘if’ used to express Bob’s opinion about Alice’s disposition to act
in a situation that they both know will not arise. Bob knows that
since Alice is rational, if she somehow found herself at the second
node, she would choose A2. But to ask what Bob would believe
about Alice if he learned that he was wrong about her first choice
is to ask a completely different question – this ‘if’ is epistemic; it
concerns Bob’s belief revision policies, and not Alice’s disposition
to be rational. No assumption about Alice’s substantive rationality,
or about Bob’s knowledge of her substantive rationality, can imply
that Bob should be disposed to maintain his belief that she will act
rationally on her second move even were he to learn that she acted
irrationally on her first.¢

While the traditional models (where the underlying space of uncertainty is the
set of the opponents’ strategies) allow one to address a rich set of issues – in
particular, the issues mentioned above concerning belief revision – they also
raise the question of what it means to interpret a state in terms of a strategy pro-
file. As Halpern ((Halpern 2001, p.433)) points out, in this type of models “one
possible culprit for the confusion in the literature regarding what is required
to force the backward induction solution in games of perfect information is the
notion of a strategy”. For example, consider the game of Figure 1 above and a
state where Player 1’s strategy is (d1, a4):

According to strategy (d1, a4), Player 1 plays a4 at history a1a2a3. But
a1a2a3 is a history that cannot be reached if Player 1 uses the strategy
(d1, a4), because according to this strategy, Player 1 plays d1 at the
root. The standard reading of the strategy (d1, a4) is that “if history
a1a2a3 is reached, then Player 1 plays a4”. But this reading leaves
a number of questions unanswered. How Player 1 plays (if she is
rational) depends on her beliefs. Should this be read as “no matter
what Player 1’s beliefs are, if history a1a2a3 is reached, then Player 1
will play a4”? Or perhaps it should be that “given her current beliefs
(regarding, for example, what moves the other players will make),
if history a1a2a3 is reached, then Player 1 will play a4”. Or perhaps it
should be “in the state ¢closest¢¢ to the current state where history
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a1a2a3 is actually reached, Player 1 plays a4”. ((Halpern 2001, p.434),
paraphrased to match the example of Figure 1).

Halpern adopts the last interpretation and shows that one can make sense of
Aumann’s (Aumann (1995)) and Stalnaker’s (Stalnaker (1998)) opposite claims
about the implications of common belief of rationality for backward induction,45

by explicitly modeling the counterfactuals that are implicit in the strategies and
by varying the interpretation of those counterfactuals.

The approach put forward in this paper – which dispenses with strate-
gies and interprets states in terms of plays (or terminal histories) – is certainly
not rich enough to provide an epistemic foundation for the backward-induction
strategies, but it does provide an epistemic foundation for the backward-induction
play. A consequence of this is that the subtle issues, discussed in the literature,
pertaining to belief revision are not conceptually necessary for an understand-
ing of what is needed to obtain the backward-induction outcome.46 The differ-
ence between the two approaches (“states interpreted in terms of strategies”
versus “states interpreted in terms of outcomes”) reflects a different philoso-
phy concerning the nature of theoretical predictions in game theory. In the
strategy-based approach the prediction is in terms not only of what play will be
observed, but also in terms of a set of counterfactuals about what the various
players would do in circumstances that ought not to arise given the predicted
outcome. In the outcome-based approach what a player would actually do at
an unreached history is left unspecified; however, the beliefs of the active players
along the actual play of the game about the possible consequences of alternative moves
are explicitly modeled and provide the reasoning behind the selection of a specific move.

7.3 On the notion of pre-choice belief

While the standard approach in the literature is to model a player’s beliefs after
she has made her choice (and thus knows what that choice is), we have chosen
to model beliefs at the pre-choice, or deliberation, stage. This does not mean
that we are representing the beliefs of the players before the game is played;
on the contrary, beliefs are modeled as beliefs during the play of the game at

45Aumann’s claim is that common knowledge of substantive rationality implies the backward
induction solution in perfect-information games without relevant ties, while Stalnaker maintains
that it does not. Roughly speaking, a player is substantively rational if, for every history h of hers,
if the play of the game were to reach h, then she would be rational at h.

46It is worth noting that, as pointed out by Samet ((Samet 2013, p.194), while Aumann (Aumann
(1995)) states the weaker claim that common knowledge of substantive rationality implies the
backward-induction play, he actually proves that it implies the backward-induction strategies.
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decision nodes that are actually reached. According to this approach, when it is her
turn to move, a player considers the possible consequences of all her actions,
without pre-judging her subsequent decision; in other words, the beliefs of the
active player at a state ω and decision history h (that is reached at ω) are truly
open to the possibility of taking any of the actions available at h. This reflects
the view, expressed by several authors (Gilboa (1999), Ginet (1962), Goldman
(1970), Ledwig (2005), Levi (1986; 1997), Shackle (1958), Spohn (1977; 1999), that
it is the essence of deliberation that one cannot reason towards a choice if one
already knows what that choice will be. For example, Gilboa writes:

“[. . . ] we are generally happier with a model in which one
cannot be said to have beliefs about (let alone knowledge of) one’s
own choice while making this choice. [. . . ] One may legitimately ask:
Can you truly claim you have no beliefs about your own future
choices? Can you honestly contend you do not believe - or even
know - that you will not choose to jump out of the window? [. . . ]
The answer to these questions is probably a resounding “No”. But
the emphasis should be on timing: when one considers one’s choice
tomorrow, one may indeed be quite sure that one will not decide
to jump out of the window. However, a future decision should
actually be viewed as a decision by a different “agent” of the same
decision maker. [. . . ] It is only at the time of choice, within an “atom of
decision”, that we wish to preclude beliefs about it.” ((Gilboa 1999, pp.
171-172), second emphasis added.)]

An implication of this point of view is that, since – at the time of deliberation
– the agent does not know what choice she is going to make, she cannot know
that her forthcoming choice is rational. For example, at a state ω that belongs
to the event that characterizes backward induction (event ITRC: see Definition
5.2), at a reached history h the active player does not know that she is rational
(at h), even though she believes that every future player (and possibly herself
at histories that are successors of h) is rational. This issue has been discussed
extensively in the philosophical literature (see, for example, Levi (1986; 1997),
Spohn (1977; 1999)), where it is argued that no inconsistency is involved in this
approach (as pointed out in the above quote from Gilboa (1999))).

As pointed out in Section 7.2, the advantage of modeling beliefs as pre-
choice beliefs is that one can obtain a “conceptually lighter” characterization
of backward induction that does not require the use of (objective or subjective)
counterfactuals.
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A Proofs

Before proving Proposition 1 we introduce some notation and a definition.
Let G be a perfect-information game and σ a pure-strategy profile of G. Let

fσ : H → Z (recall that H is the set of histories and Z is the set of terminal
histories) be defined as follows: if z ∈ Z then fσ(z) = z and if h ∈ D (recall that
D is the set of decision histories) then fσ(h) is the terminal history reached from
h by following the choices prescribed by σ.

Definition A.1. Let G be a perfect-information game and σ a pure-strategy
profile of G. The model of G generated by σ is the following model:

• Ω = Z.

• ζ : Z→ Z is the identity function: ζ(z) = z,∀z ∈ Z.

• For every h ∈ D, Bh ⊆ Z × Z is defined as follows: Bh(z) , ∅ if and only
if h ≺ z and z′ ∈ Bh(z) if and only if z′ = fσ(ha) for some a ∈ A(h) (recall
that A(h) is the set of actions available at h). That is, the active player at
decision history h believes that if she takes action a then the outcome will
be the terminal history reached from ha by σ.

Figure 8 shows an extensive form with perfect information and the model
generated by the strategy profile σ = (a1, b1, c1, d1) (σ is highlighted by double
edges).

Remark 7. Let G be a perfect-information game and M the model generated by a
pure-strategy profile σ of G. Then the no-uncertainty condition (Definition 4.2) is
satisfied at every state, that is, C = Z. Furthermore, if z∗ is the play generated by σ
(that is, z∗ = fσ(∅)), then z∗ ∈ Bh(z∗) for all h ∈ D such that h ≺ z∗; that is, z∗ ∈ T.

Proof of Proposition 1

Proof. (A) Fix a perfect-information game G (not necessarily one that satisfies
the no-consecutive-moves condition) and let σ be a pure-strategy Nash equi-
librium of G. If h is a decision history, to simplify the notation we shall write
σ(h) instead of σι(h)(h) to denote the choice selected by σ at h. Consider the
model generated by σ (Definition A.1). Let z∗ be the play generated by σ, that
is, z∗ = fσ(∅). By Remark 7, z∗ ∈ C ∩ T. Thus it only remains to show that
z∗ ∈ R, that is, that z∗ ∈ Rh, for all h ∈ D such that h ≺ z∗. Fix an arbitrary
h ∈ D such that h ≺ z∗ and let a be the action at h such that ha � z∗, that is,
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σ(h) = a; then fσ(ha) = fσ(∅) = z∗. Suppose that z∗ < Rh. Then there is an action
b ∈ A(h) \ {a} that guarantees a higher utility to player ι(h), that is, if z′ ∈ Bh(z∗)
is such that hb � z′, then uι(h)(z′) > uι(h)(z∗). By Definition A.1, z′ = fσ(hb) and
thus uι(h)( fσ(hb)) > uι(h)( fσ(ha)) so that by unilaterally changing his strategy at
h from a to b (and leaving the rest of his strategy unchanged), player ι(h) can
increase his payoff, contradicting the assumption that σ is a Nash equilibrium.
(B) Let G be a perfect-information game that satisfies the no-consecutive-moves
condition (Definition 4.3) and consider a model of it where there is a state α
such that α ∈ T∩R∩C. We need to construct a pure-strategy Nash equilibrium
σ of G such that fσ(∅) = ζ(α).
STEP 1. For every h ∈ D such that h ≺ ζ(α), let σ(h) = a where a ∈ A(h) is the
action at h such that ha � ζ(α).
STEP 2. Fix an arbitrary h ∈ D such that h ≺ ζ(α) and an arbitrary b ∈ A(h) such
that b , σ(h) (σ(h) was defined in Step 1). Since α ∈ C, for every ω,ω′ ∈ Bh(α)
such that hb � ζ(ω) and hb � ζ(ω′), ζ(ω) = ζ(ω′). Select an arbitrary ω ∈ Bh(α)
such that hb � ζ(ω) and define, for every h′ ∈ D such that hb � h′ ≺ ζ(ω),
σ(h′) = c where c ∈ A(h′) is the action at h′ such that h′c � ζ(ω).
So far we have defined the choices prescribed by σ along the play to ζ(α) and
for paths at one-step deviations from this play. This is illustrated in Figure 9,
where T ∩ R ∩ C = {δ}.47 Focusing on state δ, the above two steps yield the
following partial strategy profile (which is highlighted by double edges). By
Step 1, σ(∅) = a1, σ(a1) = b2 and, by Step 2, σ(a2) = d1, σ(a1b1) = c1, σ(a1b1c1) = e1,
while σ(a2d2) and σ(a1b1c2) are left undefined by Steps 1 and 2.
STEP 3. Complete σ in an arbitrary way.48

Because of Step 1, ζ(α) = fσ(h), for every h � ζ(α). We want to show that σ is a
Nash equilibrium. Suppose not. Then there is a decision history h with h ≺ ζ(α)
such that, by changing her choice at h from σ(h) to a different choice, player
ι(h) can increase her payoff (recall the assumption that the game satisfies the
no-consecutive-moves assumption and thus there are no successors of h that
belong to player ι(h)). Let σ(h) = a (thus ha � ζ(α)) and let b be the choice at h
that yields a higher payoff to player ι(h); that is,

uι(h)( fσ(hb)) > uι(h)(ζ(α)). (2)

47In the model of Figure 9 we have that R∅ = {δ, ε, η, θ, λ},Ra1 = {δ},Ra2 = {α, β},Ra1b1 =
{η, θ},Ra1b1c1 = {ε},Ra1b1c2 = {η},Ra2d2 = {α} so that R = {δ}. Furthermore, T = {γ, δ} and
C = {δ, ε, η, θ, λ}. Hence T ∩ R ∩ C = {δ}.

48For instance, in the example of Figure 9, one can complete the above-mentioned partial strategy
profile by adding σ(a2d2) = g2 and σ(a1b1c2) = f1 (even though g2 and f1 are “irrational” choices).
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Let ω ∈ Bh(α) be such that hb � ζ(ω) (such an ω exists by Point 4 of Definition
2.2). Since α ∈ C, for every ω′ ∈ Bh(α) such that hb � ζ(ω′), ζ(ω) = ζ(ω′). By
Step 2 above,

ζ(ω) = fσ(hb). (3)

It follows from (3) that, at state α and history h, player ι(h) believes that if she
plays b her payoff will be uι(h)( fσ(hb)). Since α ∈ T, α ∈ Bh(α), and since α ∈ C,
for every ω′ ∈ Bh(α) such that ha � ζ(ω′), ζ(ω′) = ζ(α). Thus, at state α and
history h, player ι(h) believes that if she plays a her payoff will be uι(h)(ζ(α)).
It follows from this and (2) that at α and h player ι(h) believes that action b is
better than action a, which implies that α < Rh, contradicting the assumption
that α ∈ R ⊆ Rh. �

Before proving Proposition 2 we need to define the length of a game.

Definition A.2. The length of a history h, denoted by L(h), is defined recursively
as follows: L(∅) = 0 and, for every a ∈ A(h), L(ha) = L(h) + 1; thus the length of
history h is the number of actions in h. The length of a game, denoted by `, is the
length of a longest history in the game: ` = max

h∈H
{L(h)}.

Proof of Proposition 2

Proof. (A) Fix a perfect-information game G and let the pure-strategy profileσbe
a backward-induction solution of G (that is, a possible output of the backward-
induction algorithm). Consider the model generated by σ (Definition A.1); then
- by construction - for every terminal history z and every decision history h such
that h ≺ z,

∀z′ ∈ Z, z′ ∈ Bh(z) if and only if z′ = fσ(ha) for some a ∈ A(h). (4)

It follows from this that49

∀h ∈ D, if z = fσ(h) then z ∈ Th (5)

and50

49Proof. Let h ∈ D and z = fσ(h). Let a = σ(h) be the action prescribed by σ at h. Then
fσ(h) = fσ(ha). By (4), fσ(ha) ∈ Bh(z) and thus z ∈ Bh(z), that is, z ∈ Th.

50Proof. Let h ∈ D and z ∈ Z be such that h ≺ z. Fix an arbitrary a ∈ A(h) and arbitrary
z′, z′′ ∈ Bh(z) be such that ha � z′ and ha � z′′. Then, by (4), z′ = z′′ = fσ(ha); hence z ∈ Ch.
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∀z ∈ Z and ∀h ∈ D such that h ≺ z, z ∈ Ch. (6)

Let z∗ be the play generated by σ, that is, z∗ = fσ(∅). Since every backward-
induction solution is a Nash equilibrium, it follows from Part A of Proposition
1 that z∗ ∈ T ∩ R ∩ C. Let ` be the length of the game. If ` = 1 there is
nothing further to prove. Assume, therefore, that ` ≥ 2. We need to show
that z∗ ∈ ITRC, that is, that, for every decision history h = a1...am (m ≥ 1) and
for every sequence 〈z0, z1, ..., zm〉 that leads from z∗ to h (see Definition 5.1),
zm ∈ Th ∩ Rh ∩ Ch; however, by (6), we only need to show that zm ∈ Th ∩ Rh.
Let h = a1...am (m ≥ 1) be a decision history and let 〈z0, z1, ..., zm〉 be a sequence
that leads from z∗ to h (such a sequence exists: see Remark 3). By Definition 5.1,
zm ∈ Ba1...am−1 (zm−1), so that, by (4), zm = fσ(a1...am−1b) for some b ∈ A(a1...am−1);
hence a1...am−1b � zm. Again by Definition 5.1, a1...am−1am = h � zm and thus
b = am so that

zm = fσ(h). (7)

Hence, by (5), zm ∈ Th.
Let a ∈ A(h) be the action taken at h at state zm (that is, ha � zm). It follows

from (7) that a = σ(h). Furthermore, by (4), for every z′ ∈ Bh(zm), z′ = fσ(ha′)
for some a′ ∈ A(h). Hence at state zm and history h player ι(h) believes that
after any choice a′ at h the outcome will the one generated by σ starting from
ha′ (that is, the backward-induction outcome induced by σ in the subtree that
starts at history ha′). Furthermore, by (7), the action that she takes at h is σ(h),
the backward-induction choice prescribed by σ. Hence player ι(h) is rational at
h and zm, that is, zm ∈ Rh.

(B) Let G be a perfect-information game. Consider a model of G and a state
α in that model such that α ∈ (T ∩ R ∩ C) ∩ ITRC. We want to show that ζ(α) is
a backward-induction outcome. Let ` be the length of the game. If ` = 1 then
every successor of ∅ (the root of the tree) is a terminal history. Hence, since
α ∈ R ⊆ R∅, the action chosen at ∅ at state α maximizes player ι(∅)’s payoff and
thus is a backward-induction choice. Assume, therefore, that ` ≥ 2.
STEP 1. First we show that, at every decision history of length ` − 1 that is
reachable from α, the action chosen there is a backward-induction choice. Fix
an arbitrary decision history h = a1...a`−1 of length ` − 1 (thus every successor
of h is a terminal history) and let 〈ω0, ω1, ..., ω`−1〉 be a sequence in Ω that leads
from α to h (such a sequence exists: see Remark 3), that is, (1) ω0 = α, (2) for
every i = 1, ..., ` − 1, a1...ai ≺ ζ(ωi), (3) ω1 ∈ B∅(α) and, for every i = 2, ..., ` − 1,
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ωi ∈ Ba1...ai−1 (ωi−1). Since, by hypothesis, α ∈ ITRC, ω`−1 ∈ Rh and thus if b is the
action taken at history h at state ω`−1 (that is, ζ(ω`−1) = hb), then b maximizes
the payoff of player ι(h), that is, b is a backward-induction choice at h.

STEP 2. Next we show that, at every decision history of length ` − 2, the active
player believes that, for every a ∈ A(h), if ha is a decision history then the action
chosen at ha is a backward-induction action. Fix an arbitrary decision history
h = a1...a`−2 of length `− 2 and let 〈ω0, ω1, ..., ω`−2〉 be a sequence in Ω that leads
from α to h (see Remark 3). Let a ∈ A(h) be such that ha is a decision history and
let ω ∈ Bh(ω`−2) be such that ha � ζ(ω) (such an ω exists by Point 4 of Definition
2.2). Then the sequence 〈ω0, ω1, ..., ω`−2, ω〉 reaches ha fromα and thus, by Step 1,
the action chosen by the active player at ha is a backward-induction action (that
is, if ζ(ω) = hab, with b ∈ A(ha), then b is a backward-induction choice at ha).
Furthermore, since α ∈ ITRC, ω`−2 ∈ Ch and thus, for every other ω′ ∈ Bh(ω`−2)
such that ha � ζ(ω′), ζ(ω′) = ζ(ω) and thus, at h and ω`−2, player ι(h) believes
that if she takes action a at h then the ensuing outcome is backward-induction
outcome ζ(ω). From α ∈ ITRC it also follows that ω`−2 ∈ Rh and thus the action
chosen by player ι(h) at h at state ω`−2 is optimal given her beliefs that after
every choice a at h the outcome following ha is a backward-induction outcome.
Finally, from α ∈ ITRC it follows that ω`−2 ∈ Th so that ω`−2 ∈ Bh(ω`−2) and thus
player ι(h) has correct beliefs at h and at state ω`−2 about the outcome following
the action actually taken at h and at ω`−2 (that is, if â is such that hâ � ζ(ω`−2)
then player ι(h) believes that if she takes action â then the outcome will be the
backward-induction outcome ζ(ω`−2)). Thus ζ(ω`−2) is a backward-induction
outcome in the subtree that starts at history h.

STEP 3. Iterate the argument of Step 2 backwards to conclude that if a ∈ A(∅) is
decision history of length 1 that is reachable from α via a sequence of the form
〈α, β〉, then ζ(β) is a backward-induction outcome in the subtree that starts at
history a.

STEP 4. Use the fact that α ∈ T∅ ∩ C∅ to conclude that at state α and history ∅
player ι(∅) has correct and certain beliefs about the outcomes following decision
histories in A(∅) and thus, using the fact that α ∈ R∅ and the conclusion of Step
3, deduce that the action taken at state α by ι(∅) is a backward induction action,
so that ζ(α) is a backward-induction outcome. �
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