Calculus Review

1 Differentiation of one variable

Definition: The process of finding the derivative of a function is called differentiation. Notation: For function $y=f(x)$, the first derivative is generally denoted as $f^{\prime}(x)$ or $\frac{d y}{d x}$. The derivative of f at x is given by:

$$
\begin{equation*}
f^{\prime}(x)=\lim _{\triangle x \rightarrow 0} \frac{f(x+\triangle x)-f(x)}{\triangle x} \tag{1}
\end{equation*}
$$

1.1 Derivative as the slope of the tangent line

The slope of a strait line (linear function $y=f(x)$) is :

$$
\begin{equation*}
m=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f(x+\triangle x)-f(x)}{\Delta x}, \text { if } x_{2}-x_{1}=\triangle x \tag{2}
\end{equation*}
$$

If now we are working with a non-linear function such as $f(x)=x^{2}$, the slope of the curve changes at each point of the curve. To find a general formula of the slope, we use the derivative of the function $f(x)$. In our example, the slope of the curve x^{2} is given by its derivative which is $2 x$.

1.2 Derivative as the rate of change

Coming back to the linear function f, its slope measures how much $f(x)$ increases for each unit increase in x. Thus, it measures the rate of change of the function f. In equation $2, \Delta x$ measures the change in x and $f(x+\triangle x)-f(x)$ the change in y.

1.3 Differentiation Rules

Suppose that k is an arbitrary constant and that f, g are differentiable functions at $x=x_{1}$.

1.3.1 The Constant Rule

The derivative of a constant k is zero.

$$
\begin{equation*}
\frac{d}{d x}[k]=0 \tag{3}
\end{equation*}
$$

1.3.2 The Power Rule

If n is a rational number, a simple power rule is

$$
\begin{equation*}
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1} \tag{4}
\end{equation*}
$$

A more general rule is:

$$
\begin{equation*}
\frac{d}{d x}\left[f(x)^{n}\right]=n\left(f(x)^{n-1}\right) f^{\prime}(x) \tag{5}
\end{equation*}
$$

Example: If $f(x)=3 x^{3}, f^{\prime}(x)=9 x^{2}$
If $g(x)=(2 x+4)^{2}, g^{\prime}(x)=2(2 x+4) \cdot 2=4(2 x+4)=8 x+16$

1.3.3 The Product Rule

$$
\begin{equation*}
\frac{d}{d x}[f(x) \cdot g(x)]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x) \tag{6}
\end{equation*}
$$

Example: If $f(x)=3 x^{3}$ and $l(x)=(x+4)$, then $(f(x) \cdot l(x))^{\prime}=9 x^{2}(x+4)+3 x^{3}=12 x^{3}+36 x^{2}$

1.3.4 The Quotient Rule

$$
\begin{equation*}
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{\left[g(x)^{2}\right]}, \text { with } \mathrm{g}(\mathrm{x}) \neq 0 \tag{7}
\end{equation*}
$$

Example: If $f(x)=3 x^{3}$ and $l(x)=(x+4)$, then $\left(\frac{f(x)}{l(x)}\right)^{\prime}=\frac{9 x^{2}(x+4)-3 x^{3} \cdot 1}{(x+4)^{2}}=\frac{6 x^{3}+36 x^{2}}{(x+4)^{2}}$

1.3.5 The Sum and Difference Rules

$$
\begin{equation*}
(f \pm g)^{\prime}(x)=f^{\prime}(x) \pm g^{\prime}(x) \tag{8}
\end{equation*}
$$

Example: If $n(x)=3 x^{4}+x^{5}, n^{\prime}(x)=12 x^{3}+5 x^{4}$

1.3.6 The Chain Rule

Let's define the function h as $h(x)=g(f(x))$ and i as $i(x)=f(g(x))$
Example: if $f(x)=x+4$ and $g(x)=x^{2}$, then $h(x)=g(f(x))=(x+4)^{2}$ and $i(x)=f(g(x))=x^{2}+4$.

$$
\begin{equation*}
\frac{d}{d x}[g(f(x))]=g^{\prime}(f(x)) f^{\prime}(x) \tag{9}
\end{equation*}
$$

Example: $h^{\prime}(x)=2(x+4) \times 1=2 x+8$

1.3.7 The Derivative of the Log Function

A simple version of this rule is:

$$
\begin{equation*}
\frac{d}{d x}[\ln x]=\frac{1}{x} \tag{10}
\end{equation*}
$$

The more general rule is:

$$
\begin{equation*}
\frac{d}{d x}[\ln (f(x))]=\frac{f^{\prime}(x)}{f(x)} \tag{11}
\end{equation*}
$$

Example: If $f(x)=3 x^{3}$ then $\left(\ln \left(3 x^{3}\right)\right)^{\prime}=\frac{9 x^{2}}{3 x^{3}}=\frac{3}{x}$

2 Partial Derivative

For $z=f(x, y)$, the partial derivatives f_{x} and f_{y} are denoted by

$$
\begin{equation*}
\frac{\partial}{\partial x}[f(x, y)]=f_{x}(x, y)=\frac{\partial z}{\partial x} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial y}[f(x, y)]=f_{y}(x, y)=\frac{\partial z}{\partial y} \tag{13}
\end{equation*}
$$

Example: Let's define $f(x, y)=3 x-x^{2} y^{2}+2 x^{3} y$, then, $f_{x}(x, y)=3-2 x y^{2}+6 x^{2} y$ and $f_{y}(x, y)=-2 x^{2} y+2 x^{3}$

